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Abstract: In this work we show that Signorini’s principle of the gyroscopic effect can be expressed by
means of a vectorial equation of the type x × a = b, whose solutions lets us immediately obtain the
motion of the gyroscope in many usual applications.
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1 Principle of the gyroscopic ef-
fect

Usually a gyroscope is defined as a rigid system
of particle, symmetrical about an axis and rotat-
ing about that axis (spinning wheel or disc, see
[1, § 4.2 p.165]).
Now we want to remember a more precise defini-
tion of gyroscope (see [2, 3]): a rigid body G has
a gyroscopic structure about one of its points O,
when two of its principal moments of inertia rel-
ative to O are equal; in this case its ellipsoid of
inertia relative to O, EO, is an ellipsoid of revolu-
tion (oblate or prolate spheroid or sphere).
In particular if the rigid body has gyroscopic
structure about its centre of mass G, the body
is said to be a gyroscope and the rotation (or rev-
olution) axis of its central ellipsoid of inertia is
the so–called gyroscope axis.

Since in the gyroscopic phenomena the active
forces are usually applied to the points of the gy-
roscope axis, it generally results

M (a)
z = 0 (1)

and the third scalar Euler’s equation reduces to

Cṙ = 0 (2)

where C is the central moment of inertia related
to the gyroscope axis, usually chosen as body axis
z, and r is the spin of the gyroscope with respect
to the gyroscope axis. Consequently we obtain
the integral of motion

r = r0 = const . (3)

In the case of a gyroscope in rapid rotation around
its axis, the research of the solutions is very sim-
plified by using the principle of the gyroscopic ef-
fect, enunciated by Signorini [4] and justified by
Stoppelli [5]:

Principle 1. If at a certain instant t0 a gyroscope
is spinning very rapidly around its axis and the
active net force has null resultant moment about
the gyroscope axis, it is possible to approximate
the angular momentum theorem for a rigid body
with the following equation

Cr0
dk

dt = M
(a)
O , (4)

where k is the versor of the gyroscopic axis.

2 Vectorial equation of motion
of a gyroscope

Let GO be a gyroscope with a fixed point O and
let TO ≡ Oξηζ be a fixed coordinate system
with origin at the fixed pont O and with versors
I,J ,K; we choose as body frame an inertia prin-
cipal frame TO

1 with origin at the fixed point O,
whose z axis is coincident with the gyroscope axis,
and whose versors are ı, ,k.
We give the gyroscope G a rapid initial rotation
around its axis z and leave the axis in an arbitrary
direction. By means of the principle of the gyro-
scopic effect 1, we can approximate the equation

1 That is a set of three cartesian axes fixed in GO, which
are principal axes.
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of motion of the gyroscope with the equation (4),
then by using Poisson’s formula

dk

dt
= ω × k , (5)

we can change it into the finite vectorial equa-
tion 2

ω × k = 1
Cr0

M
(e,a)
O . (6)

Its compatibility condition

k ·M (e,a)
O︸ ︷︷ ︸

M
(e,a)
z

= 0 (7)

is verified, because the priciple of the gyroscopic
effect requires the hypothesis

M (e,a)
z = 0 .

Consequently equation (6) admits the infinite so-
lutions:

ω = 1
Cr0

k ×M
(e,a)
O + λk (8)

where λ ∈ (−∞,+∞).
The factor λ can be calculated by means of the
integral of motion (3):

ω · k = r0

and consequently λ = r0. So equation (8) be-
comes

ω = 1
Cr0

k ×M
(e,a)
O + r0k . (9)

Equation (8) seems rather formal, however it lets
us obtain immediately the solutions of the motion
in many cases of application of the principle of the
gyroscopic effect 1, in particular when the motion
is (or approximates) a precession.

3 Gyroscope subject to a force
applied to a point of its axis

A very common case in gyroscopic motions arises
when the active external forces are reducible to
their own resultant R, applied to a point C of the
gyroscope axis:

Σ(e, a) 7→ {(C,R)} .
2 It is a vectorial equation of the type x × a = b: if

the compatibility condition a · b = 0 is verified, the most
general solution of the vectorial equation is x = a ∧ b

a2 +λa

(see [7, § I.31 Example 17 p.25]).

Now let G be a gyroscope, freely rotating around
a fixed point O, not coincident with the point C,
and let’s choose the gyroscope axis as the princi-
pal axis z, oriented as the vector C − O = zCk,
where zC is the z–coordinate of C, and the mo-
ment of the active external forces about O is

M
(e, a)
O = (C −O)×R = zCk ×R .

Figure 1: Gyroscope subject to a force applied to
a point of its axis

We want to study the motion of the gyroscope
G, after an initial very rapid rotation, with spin
r0, around the gyroscope axis z. In this case the
solution (8) of the vectorial equation (6) becomes

ω = 1
Cr0

k ×M
(e,a)
O + r0k = zC

Cr0
k × (k ×R) + r0k

= − zC

Cr0
k × (R× k) + r0k

(10)

For the continued vector product theorem we have

k ×R× k = R−Rγk ,

where γ is the direction cosinus of R with respect
to the gyroscope axis, 3 so equation (10) becomes

ω = − zC

Cr0
R + zCR

Cr0
γk + r0k

3 In this case the continued vector product is indepen-
dent from the order of products because the first and the
third vector are equal (and so parallel), and it provides
the orthogonal component R∗ of R with respect to k,
R∗ = k ×R× k = R− kk ·R = R− Rz︸︷︷︸

Rγ

k.
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that we can also write as

ω =
(
r0 + zCR

Cr0
γ

)
k − zC

Cr0
R . (11)

Let’s observe that, because of the hypothesis of
rapid rotation, if the term zCR

Cr0
γ is neglectable

compared to r0, the motion reduces, with good
approximation, to the simple expression

ω = r0k − zC

Cr0
R . (12)

Now consider the case of a force R with constant
direction (and in particular the usual case of a
constant force, just like the weight force): if we
choose as fixed axis ζ the axis passing through
O, parallel ed equally orientated with R, so that
R = RK, it results γ = cos(−θ) = cos θ, where
θ is the nutation angle (i.e. the angle between
the fixed versor K and the mobile versor k), and
equation (11) represents a precession 4

ω =
(
zCR

Cr0
cos θ0 + r0

)
k︸ ︷︷ ︸

ωf

−zCR

Cr0
K︸ ︷︷ ︸

ωp

. (13)

If the term zCR

Cr0
cos θ0 is neglectable compared to

r0 (because of the hypothesis of very rapid rota-
tion), the equation (13) becomes, with good ap-
proximation,

ω = r0k − zCR

Cr0
K . (14)

If in addition we suppose constant the norm of the
force too, then R = RK = const, so the preces-
sion rate is constant and the equations (13),(14)
both represent a regular precession.
Finally we observe that, in the particular case
θ0 = π

2 , the equation (13) turns, this time with-
out any approximations, into (14), that in this
case describes a degenerate precession.

As an example we consider an heavy gyro-
scope, subject only to the weight force mg, whose
axis, oriented as the vector G − O, is free to ro-
tate around its fixed point O, distinct from the
centre of mass G; we choose as usual the vertical
axis, passing through O and oriented downwards,
as the fixed axis ζ, so that mg = mgK.

4 Since in equation (13) the angular velocity ω is de-
composed into the sum of two vectors, the first ωf with
the direction of the z–axis, fixed in G, the second ωp with
the direction of the fixed ζ–axis, the motion is a precession
and so the nutation angle must be constant, θ = const = θ0
(cfr. for example [3, § III.14 p.140]).

Figure 2: Heavy gyroscope

Once given the gyroscope G an initial rapid rota-
tion of spin r0, around the gyroscope axis z, the
equation (13) becomes

ω =
(
mgzG

Cr0
cos θ0 + r0

)
k − mgzG

Cr0
K , (15)

where θ is as usual the nutation angle (i.e. the
angle that the solidal versor k describes with the
fixed versor K).
If the term mzG

Cr0
cos θ is neglectable compared to

r0 (because of the hypothesis of very rapid ro-
tation), equation (15) will represent, with good
approximation, a regular precession with rotation
rate

ωf = r0k (16)

and precession rate

ωp = −mgzG

Cr0
K . (17)

This case occurs, for example, in the case of Fes-
sel’s gyroscope (see [3, §VII.7 p.319]).
Finally if θ = π

2 , the equation (15) turns into a
degenerate regular precession

ω = r0k − mgzG

Cr0
K . (18)

This case occurs when a bicycle wheel, is set on
a rapid rotation in a vertical plane around the
gyroscope axis, fixed in a frictionless point O.
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Figure 3: Gyroscopic effect for a spinning wheel.
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