Applied Mathematics and Materials

- Proceedings of the 8th International Conference on Materials Science (MATERIALS '15)
- Proceedings of the 8th International Conference on Finite Differences, Finite Elements, Finite Volumes, Boundary Elements (F-and-B '15)
- Proceedings of the 3rd International Conference on Optimization Techniques in Engineering (OTENG '15)

Rome, Italy, November 7-9, 2015
APPLIED MATHEMATICS and MATERIALS

Proceedings of the 8th International Conference on Materials Science (MATERIALS '15)

Proceedings of the 8th International Conference on Finite Differences, Finite Elements, Finite Volumes, Boundary Elements (F-and-B '15)

Proceedings of the 3rd International Conference on Optimization Techniques in Engineering (OTENG '15)

Rome, Italy
November 7-9, 2015
APPLIED MATHEMATICS and MATERIALS

Proceedings of the 8th International Conference on Materials Science (MATERIALS '15)

Proceedings of the 8th International Conference on Finite Differences, Finite Elements, Finite Volumes, Boundary Elements (F-and-B '15)

Proceedings of the 3rd International Conference on Optimization Techniques in Engineering (OTENG '15)

Rome, Italy
November 7-9, 2015

Published by WSEAS Press
www.wseas.org

Copyright © 2015, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by no less that two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive.
APPLIED MATHEMATICS and
MATERIALS

Proceedings of the 8th International Conference on Materials Science
(MATERIALS '15)

Proceedings of the 8th International Conference on Finite Differences, Finite
Elements, Finite Volumes, Boundary Elements (F-and-B '15)

Proceedings of the 3rd International Conference on Optimization Techniques
in Engineering (OTENG '15)

Rome, Italy
November 7-9, 2015
Editor:
Prof. Imre J. Rudas, Obuda University, Hungary

Committee Members-Reviewers:
Manijeh Razeghi
Igor Sevostianov
Vince Harris
Paschalis Alexandridis
David Carroll
Tadaaki Nagao
Zhiqiang Mao
Yoshitake Masuda
Byron Gates
Peter Filip
Emmanuel Paspalakis
Sam Lofland
Seong Ihl Woo
Amit Bandyopadhyay
Mohindar S. Seehra
Maurizio Ferrari
Abdulhadi Baykal
Chris Bowen
Eric Guibal
Takeshi Fukuda
Nicole Jaffrezic-Renault
Francesco Delogu
Orlando Frazao
Israel Felner
Bin Zhang
Sukhvinder Badwal
Zexiang Shen
Kalman Varga
Wen-Feng Hsieh
Ashutosh Tiwari
Marie-Paule Pilieni
Jaehwan Kim
Valeri Stepanyuk
Vladimir V. Tsukruk
Hermis Iatrou
Rongying Jin
Te-Hua Fang
Tao Liu
Marius Andruh
Veronica Cortés de Zea Bermudez
Zhongfang Chen
Yong Ding
Jian Wang
Yulin Deng
Saad Khan
Mohamed M. Chehimi
Kourosh Kalantar-Zadeh
Vincenzo Fiorentini
Anthony W. Coleman
Artur Cavaco-Paulo
Albert Chin
Tian Tang
Mohamedally Kurmoo
Concepcion Lopez
Tetsu Yonezawa
Daolun Chen
Yoshihiro Tomita
Victor M. Castano
Peter Chang
Dean-Mo Liu
Byung K. Kim
John T. Sheridan
Chi-Wai Chow
Christian M. Julien
Chun-Hway Hsueh
Hyung-Ho Park
Rui Vilar
Hugh J. Byrne
Won-Chun Oh
Yuanhua Lin
Huan-Tsang Chang
Jing Zhang
Mohd Sapuan Salit
Jun Zhang
Vesselin Dimitrov
Belkheir Hammouti
Shadpour Mallakpour
Stergios Pispas
Anna Lukowiak
Martin Bohner
Martin Schechter
Ivan G. Avramidi
Michel Chipot
Xiaodong Yan
Ravi P. Agarwal
Yushun Wang
Patricia J. Y. Wong
Andrei Korobeinikov
Jim Zhu
Ferhan M. Atici
Gerd Teschke
Meirong Zhang
Nikos E. Mastorakis
Lucio Boccardo
Shanhe Wu
Natig M. Atakishiyev
Jianming Zhan
Narcisa C. Apreutesei
Chun-Gang Zhu
Abdelghani Bellouquid
Jinde Cao
Josef Diblik
Jianqing Chen
Naseer Shahzad
Sining Zheng
Leszek Gasinski
Satit Saajung
Juan J. Trujillo
Table of Contents

Plenary Lecture 1: A Hybrid Deterministic/Probabilistic Model for Metal Vapor Transport in Physical Vapor Deposition (PVD) Process
Anil K. Kulkarni

Plenary Lecture 2: Perovskites: Novel Materials for Stable and High-Efficiency Solar Cells
Antonio Abate

Finite Element Analysis Simulation of Machine Tools with Integrated Drive Control
Gerhard Kehl, David Blank

Strength and Shape Stability of Graphene Sheets with Divacancies and Nanoscale Metallic Plates
A. S. Kochnev, I. A. Ovidko, B. N. Semenov

Constructing a New Japanese Development Design Model “NJ-DDM”: Intellectual Evolution of an Automobile Product Design
Kakuro Amasaka

Implementation and Testing of a Numerical Tool for the Prediction of Mechanical and Acoustic Performances of Sandwich Panels
M. Viscardi, P. Napolitano

Induction Heating on Thermally Remendable Self-Healing Polymers Containing Magnetic Nanoparticles
George Tsamasphyros, Aggelos Christopoulos

Dominating r-Tuples and Exposing Structures with Radial Formulation of Fair Service System Design
Jaroslav Janáček, Marek Kvet

Metamodelling and Optimization of Copper Flash Smelting Process
Marcin Gulik, Piotr Jarosz, Jan Kusiak, Stanisław Malecki, Paweł Morkisz, Piotr Oprocha, Wojciech Pietrucha, Łukasz Sztangret

Global-Local FEM-DBEM Approach to Assess Crack Growth in Magnet System of Wendelstein 7-X Under Load Spectrum
R. Citarella, M. Lepore, V. Giannella, J. Fellinger

Semi-Fair Deployment of the Failing Service Centers with Generalized Disutility
Marek Kvet, Jaroslav Janáček

Laboratory Outcomes Covering Impact Optimization of Nonlethal Projectiles
Marius Valeriu Cîrmaci-Matei, Adrian Rotariu, Laviniu Haller

Biomechanics Parameters in Teenage Cyclist – SUV Accident and Comparison with the Pedestrian
Filippo Carollo, Gabriele Virzi' Mariotti, Vincenzo Naso
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Modeling and Optimization of Deliming</td>
<td>88</td>
</tr>
<tr>
<td>Dagmar Janacova, Karel Kolomaznik, Vladimir Vasek, Pavel Mokrejs, Ondrej Liska</td>
<td></td>
</tr>
<tr>
<td>Operation Optimisation of Supermarket Refrigerated Display Case</td>
<td>92</td>
</tr>
<tr>
<td>Analyses of Truss Structures via Total Potential Optimization Implemented with Teaching Learning Based Optimization Algorithm</td>
<td>99</td>
</tr>
<tr>
<td>Rasim Temür, Gebrail Bekdaș, Yusuf Cengiz Toklu</td>
<td></td>
</tr>
<tr>
<td>Effects of Ionizing Radiation on the Physical and Functional Parameters of VDMOS and PMOS Components</td>
<td>109</td>
</tr>
<tr>
<td>Koviljka Stanković, Miloč Pejović, Predrag Osmokrović</td>
<td></td>
</tr>
<tr>
<td>Straight Method of Smokeless Powder Quantity Retrieval</td>
<td>117</td>
</tr>
<tr>
<td>Michal Kovarik</td>
<td></td>
</tr>
<tr>
<td>Teaching Learning Based Optimization Algorithm for Optimum Design of Axially Symmetric Cylindrical Reinforced Concrete Walls</td>
<td>122</td>
</tr>
<tr>
<td>Gebrail Bekdaș</td>
<td></td>
</tr>
<tr>
<td>FEM Analysis of Material Strain Rate Sensitivity Influence on Usability of Small Scale Structures in Blast Loads Analysis</td>
<td>128</td>
</tr>
<tr>
<td>Adrian Rotariu, Florina Bucur, Eugen Trană, Marius Cirmaci-Matei, Liviu Matache</td>
<td></td>
</tr>
<tr>
<td>Innovative Medical Device for Otorhinolaryngology Produced via Powder Injection Molding</td>
<td>135</td>
</tr>
<tr>
<td>Huba Jakub, Sanetrnik Daniel, Hausnerova Berenika, Hnatkova Eva, Dvorak Zdenek, Vladmir Zlinsky</td>
<td></td>
</tr>
<tr>
<td>Optimum Design of Cantilever Reinforced Concrete Retaining Wall Using Teaching Learning Based Optimization Algorithm</td>
<td>138</td>
</tr>
<tr>
<td>Gebrail Bekdaș, Rasim Temür</td>
<td></td>
</tr>
<tr>
<td>Numerical Modelling of a Heterogeneous Geothermal System Using Different Working Fluids</td>
<td>144</td>
</tr>
<tr>
<td>Musa D. Aliyu, Ouahid Harireche</td>
<td></td>
</tr>
<tr>
<td>Teaching-Learning-Based Optimization for Estimating Tuned Mass Damper Parameters</td>
<td>152</td>
</tr>
<tr>
<td>Sinan Melih Nigdeli, Gebrail Bekdaș</td>
<td></td>
</tr>
<tr>
<td>A Dispatching Rules-Based (DR-b) Algorithm for Single Machine Bi-Criterion Scheduling Problem with Two Agents</td>
<td>158</td>
</tr>
<tr>
<td>M. M. Mabkhot, Ibrahim M. Alharkan</td>
<td></td>
</tr>
<tr>
<td>Viscosity Models Development for Epoxy Resin Adhesive with the Variation of Filler Type, Shear Rate and Temperature</td>
<td>164</td>
</tr>
<tr>
<td>F. Nihal Tüzün</td>
<td></td>
</tr>
<tr>
<td>An Improvement on Compact Finite Difference by Crank Nicolson Approach for Parabolic PDEs</td>
<td>170</td>
</tr>
<tr>
<td>Jafar Biazar, Roxana Asayesh</td>
<td></td>
</tr>
</tbody>
</table>
Optimum Design of Reinforced Concrete Beams Using Teaching-Learning-Based Optimization
Gebrail Bekdaş, Sinan Melih Nigdeli

Use of Heavy Oil Fly Ash (HFO) for Geopolymer Cement Production
Abdulkarim M. Alqahtani, Ibrahim A. Aldawood, Mohammed Shqair, Montserrat Zamorano Toro, Mazen Alshaaer

Power Flow Optimization Using Seeker Optimization Algorithm and PSO
Vignesh P.

On a Two-Non-Identical Standby Repairable System with Imperfect Repair
Mohammed A. Hajeeh, Abdul-Wahab Alothman

Influence of Surfactant as an Electrolyte Additive on the Electrochemical and Corrosion Behaviors of Lead-Acid Battery
Naima Boudieb, Moussa Bounoughaz, Malha Nazef-Allaoua

Backtracking ACO for an Operational Amplifier Design Optimization
Bachir Benhala

Critical Facilities Safety
D. Prochazkova

Authors Index
Plenary Lecture 1

A Hybrid Deterministic/Probabilistic Model for Metal Vapor Transport in Physical Vapor Deposition (PVD) Process

Professor Anil K. Kulkarni

co-author Dr. Kevin N. Gott
Pennsylvania State University
Mechanical Engineering
USA
E-mail: akk@psu.edu

Abstract: Electron-beam physical vapor deposition (EB-PVD) is an established technology for producing unique material coatings for a variety of applications. In this process, a pre-selected metal ingot (the target) is vaporized in an evacuated chamber with a high power electron beam. The metal vapor flows across the high-vacuum chamber and is deposited on the component of interest (substrate). The process of vaporization and transport of metal vapors in near-vacuum involves a dense region just above the target, which quickly expands and becomes rarefied on route to the substrate. The goal of this research is to better understand the PVD vapor transport process by determining the most appropriate fluidic model to design PVD coating manufacturing. The vapor transport process is characterized by a wide range of values of the Knudsen number, Kn, which is defined as a ratio of the mean free path of atoms or molecules to a characteristic dimension, such as the target diameter (Kn = λ/D). The Knudsen number increases from a very low value on the order of 10^{-6} just above the evaporating target surface (signifying a highly dense, continuum regime), to a value of around 10 near the substrate (signifying a highly rarefied, almost free molecular regime). Any attempt to create an optimal mathematical model of this process requires successful descriptions of each of these regions. The continuum regime (Kn < 0.01) is best described by Computational Fluid Dynamics (CFD), the deterministic solution of the Navier-Stokes equations. Whereas, the transitional and rarefied regimes (around 0.01 < Kn < 10) require the application of the particle tracking probabilistic Direct Simulation Monte Carlo (DSMC) technique. In the modeling of the EB-PVD process, both these techniques are needed due the extreme density gradient and highly non-ideal nature of the metal vapor.

In this research, a hybrid CFD-DSMC solver is developed in OpenFOAM software to model the vapor transport process by Navier-Stokes and DSMC equations, and then the two regions are patched through a novel boundary condition. The velocity and temperature information is sent one-way from the CFD region to the DSMC region to appropriately define the energy states of the particles created at the boundary, and either pressure or density is interpolated between the regions to create the appropriate number of particles at the boundary. A comparison to experimental data was performed to determine if the unique physics of each fluidic model have a substantial effect on the expected deposition profile. The results showed the hybrid solver yields the widest range of reasonable results over either the Navier-Stokes or the DSMC solutions. Thus, in conclusion, the recommended fluidic model for PVD vapor transport is a hybrid CFD-DSMC solver using some form of a domain decomposition. Results also show that extreme care must be taken when modeling EB-PVD processes for design purposes, as the incorrect choice of flow regime will yield inaccurate inlet criteria.

Brief Biography of the Speaker: Professor Kulkarni joined as a faculty member in the Department of Mechanical Engineering at The Pennsylvania State University in 1980 after completing Sc. M. and Ph. D. degrees from Brown University, Providence, Rhode Island. His academic areas of interest are, engineering education, energy, materials processing, heat transfer, computational fluid mechanics, combustion, and professional ethics. Currently he is active in two areas- (i) in Materials Science, he has been conducting research on Electron Beam Physical Vapor Deposition (EB-PVD) and Field Assisted Sintering Technology (FAST), and (ii) in Energy area, he has been working on developing an optimization tool for hybrid power plants to be used in rural/remote areas. At Penn State, Dr. Kulkarni has taught courses in Thermodynamics, Indoor Air Quality Engineering, Propulsion and Power Systems, and Measurements and Instrumentation. He also has served as the Professor-in-charge of Mechanical Engineering Graduate Program for eight years, project director for an NSF-funded Environmentally Conscious Manufacturing Graduate Research Traineeship program at Penn State, and as an elected Faculty Senator and Graduate Council member at Penn State University, among other positions. Recently, Dr. Kulkarni was awarded US – Norway Fulbright Scholarship by the U. S. government for working on Indoor and Outdoor Fugitive Emissions in the Materials Processing Industry. He has had international collaborative activities with Australia, China, Germany, India, Japan, Norway, and former USSR.
Abstract: Organic-inorganic perovskites, such as CH3NH3 Pb X3 (X = I- or Br-), are quickly leading to research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. I will discuss the most recent advances to prepare stable and high-efficiency perovskite solar cells. The current most efficient perovskite solar cells employ small molecule or polymeric organic semiconductors as hole transporting layer within the device architecture. I will show that the hole transporter has a strong impact on the device lifetime and I will report new organic semiconductors that allow to prepare more stable and high-efficiency perovskite solar cells. Then, I will show that electronic trap states at the organic-inorganic interface between the perovskite crystal surface and the hole transporting layer generate charge accumulation and consequent recombination losses. I will demonstrate that under-coordinated iodine ions within the perovskite structure are responsible and make use of supramolecular halogen bond complexation to successfully passivate these sites and thus improve the power conversion efficiency.

Brief Biography of the Speaker: I am currently a Marie Curie Research Fellow at École Polytechnique Fédérale de Lausanne and I am acting as Research Group Leader at Adolphe Merkle Institute, University of Fribourg in Switzerland. After completing my PhD training at Politecnico di Milano in Italy, I spent 4 years as Postdoctoral Researcher at the University of Oxford and the University of Cambridge in the United Kingdom. My research interests are in hybrid organic-inorganic materials for optoelectronics.