
Approximation Theorems for Solving the Common Solution for
System of Generalized Equilibrium Problems and Fixed Point

Problems and Variational Inequality Problems

PONGRUS PHUANGPHOO
Department of Mathematics

Faculty of Education
Bansomdejchaopraya Rajabhat

University, Hiranruchi
Thonburi, Bangkok 10600

THAILAND
p.phuangphoo@gmail.com

POOM KUMAM∗
Theoretical and Computational Science Center (TaCS)

& Department of Mathematics, Faculty of Science
King Mongkut’s University of Technology Thonburi

126 Pracha Uthit Rd., Bang Mod
Thrung Khru, Bangkok 10140

THAILAND
poom.kum@kmutt.ac.th

Abstract: In this paper, we introduce a new iterative sequence which is constructed by using the hybrid projection
method for solving the common solution for a system of generalized equilibrium problems of inverse strongly
monotone mappings and a system of bifunctions satisfying certain the conditions, the common solution for the
families of quasi -φ- asymptotically nonexpansive and uniformly Lipschitz continuous and the common solution
for a variational inequality problem. Strong convergence theorems are proved on approximating a common so-
lution of a system of generalized equilibrium problems, fixed point problems for two countable families and a
variational inequality problem in a uniformly smooth and 2-uniformly convex real Banach space.
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1 Introduction
The theory of equilibrium problems, the development
of an efficient and implementable iterative algorithm
is interesting and important. This theory combines
theoretical and algorithmic advances with novel do-
main of applications. Analysis of these problems re-
quires a blend of techniques from convex analysis,
functional analysis and numerical analysis.

The equilibrium problem theory provides a novel
and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruc-
tion, ecology, transportation, network, elasticity and
optimization, and it has been extended and general-
ized in many directions. In particular, equilibrium
problems are related to the problem of finding fixed
points of nonexpansive mappings.

In 2008-2009, Takahashi and Zembayashi [10,
11] introduced iterative sequences for finding a com-
mon solution of an equilibrium problem and a fixed
point problem for a relatively nonexpansive mapping,
and established some strong and weak convergences
theorems.

∗Corresponding author email: poom.kum@kmutt.ac.th (P.
Kumam)

In 2010, Chang et al. [12] discussed the com-
mon solution of a generalized equilibrium problem
and a common fixed point problem for two relatively
nonexpansive mappings, and established a strong con-
vergence theorem on the common solution problem.
The frameworks of [10, 11, 12] are the uniformly
smooth and uniformly convex Banach spaces. Chang
et al.[9] established a strong convergence theorem for
solving the common fixed point problem for a family
of uniformly quasi -φ- asymptotically nonexpansive
and uniformly Lipschitz continuous mapping in a uni-
formly smooth and strictly convex Banach space with
the Kadec-Klee property.

In 2011, Qu and Cheng [1] established a strong
convergence theorem on solving common solutions
for generalized equilibrium problems and fixed point
problems in Banach spaces. Saewan and Kumam [2]
established a new modified block iterative algorithm
for finding common element of the set of common
fixed point of an infinite family of closed and uni-
formly quasi -φ- asymptotically nonexpansive map-
pings, the set of the variational inequality for an α-
inverse-strongly monotone mapping and the set of so-
lution of a system of generalized mixed equilibrium
problems. Zegeye and Shahzad [18] introduced an it-
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erative process which converges strongly to a common
solution of finite family of variational inequality prob-
lems for γ−inverse strongly monotone mappings and
fixed point of two continuous quasi-φ-asymptotically
nonexpansive mapping in Banach spaces. Tan and
Chang [19] introduced a new hybrid iterative scheme
for finding a common element of the set of solutions
for a system of generalized mixed equilibrium prob-
lems, set of common fixed points of a family of quasi-
φ-asymptotically nonexpansive mappings, and null
spaces of finite family of γ−inverse strongly mono-
tone mappings in a 2-uniformly convex and uniformly
smooth real Banach space. Kim [20] introduced a
hybrid projection method for finding a common ele-
ment in the fixed point set of an asymptotically quasi-
φ- asymptotically nonexpansive mapping and in the
solution set of an equilibrium problem. Strong con-
vergence theorems of common elements are estab-
lished in a uniformly smooth and strictly convex Ba-
nach space which has the Kadec-Klee property. Liu
[26] proved a strong convergence theorem for finding
a common element of the set of solutions for a gen-
eralized mixed equilibrium problems, the set of fixed
points of infinite family of quasi -φ- asymptotically
nonexpansive mappings in Banach space by using CQ
method. Zhang, Chan and Lee [27] introduced mod-
ified block iterative algorithm for finding a common
element in the intersection of the set of common fixed
points of an infinite family of quasi -φ- asymptotically
nonexpansive and the set of solutions to an equilib-
rium problem and the set of variational inequality, he
proved strong convergence theorems in 2-uniformly
convex and uniformly smooth Banach space. As ap-
plication, he studied the convex feasibility problem
(CEP) and zero point problem of maximal monotone
mappings. In this paper, Motivated and inspired by
the previously mentioned above results, we introduce
a new iterative sequence by the new hybrid projection
method for solving the common solution problem for
a system of generalized equilibrium problems of in-
verse strongly monotone mappings and a system of
bifunctions satisfying certain the conditions, and the
common solution problem for a family of uniformly
quasi -φ- asymptotically nonexpansive and uniformly
Lipschitz continuous and the common solution prob-
lem for a variational inequality problem in a uniformly
smooth and 2-uniformly convex real Banach space.
Then, we prove a strong convergence theorem of the
iterative sequence generated by the conditions. The
results obtained in this paper extend and improve sev-
eral recent results in this area.

2 Definitions and Notation
Throughout this paper, we assume that R and J are
denoted by the set of real numbers and the set of
{1, 2, 3, ...,M}, respectively, where M is any given
positive integer. Let E be a Banach space with norm
‖ · ‖, C be a nonempty closed and convex subset of
E and let E∗ denote by the dual of E. let {Fk}k∈J :
C ×C → R be a bifunction, and {Bk}k∈J : C → E∗

be a monotone mapping. The system of generalized
equilibrium problems, is to find x ∈ C such that

Fk(x, y) + 〈y − x,Bkx〉 ≥ 0, k ∈ J, ∀y ∈ C.
(2.1)

The set of solutions of (2.1) is denoted by
SGEP (Fk, Bk), that is

SGEP (Fk, Bk) = {x ∈ C : Fk(x, y)+〈y−x,Bkx〉 ≥ 0}

∀y ∈ C,∀k ∈ J.
If J is a singleton, then problem (2.1) reduces to

the generalized equilibrium problems, is to find x ∈ C
such that

F (x, y) + 〈y − x,Bx〉 ≥ 0, ∀y ∈ C. (2.2)

The set of solutions of (2.2) is denoted by
GEP (F,B), that is

GEP (F,B) = {x ∈ C : F (x, y)+〈y−x,Bx〉 ≥ 0, }.

∀y ∈ C.
If B ≡ 0 the problem (2.2) reduces into the equi-

librium problem for F , denoted by EP (F ), is to find
x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (2.3)

If F ≡ 0 the problem (2.2) reduces into
variational inequality of Browder type, denoted by
V I(C,B), is to find x ∈ C such that

〈y − x,Bx〉 ≥ 0, ∀y ∈ C. (2.4)

Recall that, a mapping S : C → C is said to be
nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let E be a real Banach space and {xn} be a se-
quence in E. We denote by xn → x and xn ⇀ x the
strong convergence and weak convergence of {xn},
respectively. The normalized duality mapping J from
E to 2E

∗
is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E.
(2.5)
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By the Hahn-Banach theorem, Jx 6= ∅ for each x ∈
E.

A Banach space E is said to be strictly convex if∥∥x+y
2

∥∥ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1
and x 6= y. It is said to be uniformly convex if
limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn}
and {yn} in E such that ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 and

lim
n→∞

∥∥∥∥xn + yn
2

∥∥∥∥ = 1. (2.6)

Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere
of E. Then, the Banach space E is said to be smooth
if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.7)

exists for each x, y ∈ UE . It is said to be uniformly
smooth if the limit (2.7) is attained uniformly for all
x, y ∈ UE .

Let E be a Banach space. Then a function ρE :
R+ → R+ is said to be the modulus of smoothness of
E if

ρE(t) = sup
{‖x+ y‖+ ‖x− y‖

2
−1 : ‖x‖ = 1 , ‖y‖ = t

}
.

The space E is said to be smooth if ρE(t) > 0,
∀t > 0 and is said to be uniformly smooth if and only
if limt→0+

ρE(t)
t = 0.

The modulus of convexity ofE is the function δE :
[0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖ ≤ 1 , ‖y‖ ≤ 1 ; ‖x−y‖ ≥ ε
}
.

A Banach space E is said to be uniformly convex
if and only if δE(ε) > 0 for all ε ∈ (0, 2].

Let a real number p > 1. Then, E is said to be
p − uniformly convex if there exists a constant c > 0
such that δE(ε) ≥ cεp, for all ε ∈ [0, 2]. Observe that
every p-uniformly convex space is uniformly convex.
It is well-known for example (see Xu [17]) that

Lp(lp) or W p
m is

{
p-uniformly convex, if p ≥ 2;
2-uniformly convex, if 1 < p ≤ 2.

One should note that no a Banach space is p-
uniformly convex for 1 < p < 2. It is known that
a Hilbert space is uniformly smooth and 2-uniformly
convex.

In the sequel, we shall make use of the following
results.

Remark 2.1. The basic properties below hold (see
Cioranescu [3] and Takahashi [13]).

1. If E is uniformly smooth Banach space, then J
is uniformly continuous on each bounded subset
of E.

2. If E is a strictly convex reflexive Banach space,
then J−1 is hemicontinuous, that is, J−1 is
norm-to-weak∗-continuous.

3. If E is a smooth and strictly convex reflexive Ba-
nach space, then J is single-valued, one-to-one
and onto.

4. A Banach space E is uniformly smooth if and
only if E∗ is uniformly convex.

5. A Banach space E is strictly convex if and only
if E∗ is smooth.

6. A Banach space E is smooth if and only if E∗ is
strictly convex.

7. If E∗ is a smooth Banach space, then E is a
strictly convex Banach space.

8. A Banach space E∗ is a strictly convex Banach
space, then E is a smooth Banach space.

9. Each uniformly convex Banach space E has the
Kadec-Klee property, that is, for any sequence
{xn} ⊂ E, if {xn}⇀ x ∈ E and ‖xn‖ → ‖x‖,
then xn → x.

10. A Banach space E is strictly convex if and only
if J is strictly monotone, that is, 〈x − y, x∗ −
y∗〉 > 0, whenever x, y ∈ E, x 6= y and x∗ ∈
Jx, y∗ ∈ Jy.

11. Both uniformly smooth Banach spaces and uni-
formly convex Banach spaces are reflexive.

12. If E∗ is uniformly convex and J is the dual-
ity mapping of E, then J is uniformly norm-to-
norm continuous on bounded sets of E., i.e., for
a bounded set B of E and ε > 0, there exists
δ > 0 such that ‖x − y‖ < δ ⇒ ‖Jx − Jy‖ <
ε, for x, y ∈ B.

Now let E be a smooth and strictly convex reflex-
ive Banach space. As Alber (see [4]) and Kamimura
and Takahashi (see [5]) did, the Lyapunov functional
φ : E × E → R+ is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

It follows from Kohsaka and Takahashi (see [6])
that φ(x, y) = 0 if and only if x = y, and that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2. (2.8)
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Further suppose that C is nonempty closed con-
vex subset of E. The generalized projection (Alber
see [4]) ΠC : E → C is defined by for each x ∈ E,

ΠC(x) = arg min
y∈C

φ(x, y).

A mapping A : C → E∗ is said to be
δ-inverse-strongly monotone, if there exists a constant
δ > 0 such that

〈x− y,Ax−Ay〉 ≥ δ‖Ax−Ay‖2, ∀x, y ∈ C.

A mapping S : C → C is said to be closed if for
each {xn} ⊂ C, xn → x and Sxn → y imply
Sx = y.

Example 2.2. Let T is a nonexpansive of C into itself
and I is the identity mapping of a real Banach space
E. Then, a mapping A = I − T is 1

2 -inverse-strongly
monotone mapping.

Example 2.3. Let a mapping Ak : R→ R by Akx =
kx, ∀x ∈ R and k ∈ {1, 2, 3, ..., n}. Then, a mapping
Ak : R → R is a finite family of 1

k -inverse-strongly
monotone.

A mapping S : C → C is said to be quasi -φ-
nonexpansive (relatively quasi-nonexpansive) if
Fix(S) 6= ∅, and

φ(u, Sx) ≤ φ(u, x), ∀x ∈ C, u ∈ Fix(S).

A mapping S : C → C is said to be quasi -
φ- asymptotically nonexpansive (asymptotically rel-
atively nonexpansive) (see Zhou and Gao [7]) if
Fix(S) 6= ∅, and there exists a sequence {kn} ⊂
[1,∞) with kn → 1 such that

φ(u, Snx) ≤ knφ(u, x), ∀x ∈ C, u ∈ Fix(S), ∀n ≥ 1.

It is easy to see that if A : C → E∗

is δ-inverse-strongly monotone, then A is
1
δ -Lipschitz continuous.

Remark 2.4. Let E be a uniformly smooth and
strictly convex Banach space and A ⊂ E × E∗ be
a maximal monotone mapping such that its zero set
A−1(0) is nonempty. Then, we get Jr = (J+rA)−1J
is closed and quasi -φ- asymptotically nonexpansive
mapping from E onto D(A) and Fix(Jr) = A−1(0).

Remark 2.5. Let Πc be the generalized projection
from a smooth, strictly convex and reflexive Banach
space E onto a nonempty closed and convex subset C
of E. Then, we get Πc is closed and quasi -φ- asymp-
totically nonexpansive mapping from E onto C with
Fix(Πc) = C.

Example 2.6. Let C := [−1
π ,

1
π ] and define T : C →

C by

Tx =

{
x
2 sin( 1

x), if x 6= 0;
x, if x = 0.

Then, T is quasi -φ- asymptotically nonexpansive
mapping.

The class of quasi -φ- asymptotically nonexpan-
sive mappings contains properly the class of relatively
nonexpansive mappings (see Matsushita and Taka-
hashi [21]) as a subclass.

Let E be a smooth, strictly convex and reflexive
Banach space, C be a nonempty closed convex subset
of E, T : C → C be a mapping and Fix(T ) be the
set of fixed points of T.

A point p ∈ C is said to be an asymptotic fixed
point of T if there exists a sequence {xn} ⊂ C such
that xn ⇀ p and ‖xn − Txn‖ → 0. We denoted the
set of all asymptotic fixed points of T by F̂ ix(T ).

A point p ∈ C is said to be a strong asymptotic
fixed point of T, if there exists a sequence {xn} ⊂ C
such that xn → p and ‖xn − Txn‖ → 0. We denoted
the set of all strong asymptotic fixed points of T by
F̃ ix(T ).

A mapping T : C → C is said to be relatively
nonexpansive [21, 22], if Fix(T ) 6= ∅, F ix(T ) =

F̂ ix(T ) and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ Fix(T ).

A mapping T : C → C is said to be weak rela-
tively nonexpansive [23], if Fix(T ) 6= ∅, F ix(T ) =

F̃ ix(T ) and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ Fix(T ).

Remark 2.7. If E is a real Hilbert space H, then
φ(x, y) = ‖x− y‖2 and ΠC = PC (the metric projec-
tion of H onto C).

Remark 2.8. From the definition of a mapping. It is
easy to see that

1. Each relatively nonexpansive mapping is closed.

2. Every quasi -φ- nonexpansive mapping is quasi
-φ- asymptotically nonexpansive mapping with
{kn = 1}, but the converse is not true.

3. Each weak relatively nonexpansive mapping is a
quasi -φ- nonexpansive mapping (because it does
not require the condition Fix(T ) = F̃ ix(T ), but
the converse is not true.

4. Every relatively nonexpansive mapping is a weak
relatively nonexpansive mappings, but the con-
verse is not true.
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5. Every countable family of weak relatively nonex-
pansive mappings is a countable family of of uni-
formly closed and quasi -φ- nonexpansive map-
pings, and so it is a countable family of uni-
formly closed and quasi -φ- asymptotically non-
expansive mappings.

Definition 2.9. (see Chang et al. [9]) Let {Si}∞i=1 :
C → C be a sequence of mappings. {Si}∞i=1 is said to
be a family of uniformly quasi -φ- asymptotically non-
expansive mappings, if

⋂∞
i=1 Fix(Si) 6= ∅ and there

exists a sequence {kn} ⊂ [1,∞) with kn → 1 such
that for each i ≥ 1,

φ(u, Sni x) ≤ knφ(u, x), ∀u ∈
∞⋂
i=1

Fix(Si), x ∈ C, ∀n ≥ 1.

Definition 2.10. A mapping S : C → C is said to
be uniformly L-Lipschitz continuous, if there exists a
constant L > 0 such that

‖Snx− Sny‖ ≤ L‖x− y‖, ∀x, y ∈ C, ∀n ≥ 1.

Lemma 2.11. (see Alber [4]). Let C be a nonempty
closed and convex subset of a smooth and strictly con-
vex reflexive Banach space E, and let x ∈ E. Then,

φ(x,ΠC(y))+φ(ΠC(y), y) ≤ φ(x, y),∀x ∈ C, y ∈ E.

Lemma 2.12. (see Kamimura and Takahashi [5]).
Let C be a nonempty closed and convex subset of a
smooth and strictly convex reflexive Banach space E,
and let x ∈ E and u ∈ C. Then,

u = ΠC(x)⇔ 〈u− y, Jx− Ju〉 ≥ 0, ∀y ∈ C.

We make use of the function V : E × E∗ → R
defined by

V (x, x∗) = ‖x‖2−2〈x, x∗〉+‖x∗‖2, ∀x ∈ E,∀x∗ ∈ E∗.

Observe that V (x, x∗) = φ(x, J−1x∗) for all x ∈
E and x∗ ∈ E∗. The following lemma is well-known.

Lemma 2.13. (see Alber [4]) Let E be a smooth and
strictly convex reflexive Banach space with E∗as its
dual, then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.14. (see Kamimura and Takahashi [5]). Let
E be a uniformly convex and smooth real Banach
space and let {xn} and {yn} be two sequences of E.
If φ(xn, yn)→ 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0.

For solving the generalized equilibrium problem,
let us assume that the mapping B : C → E∗ is δ-
inverse-strongly monotone mapping and the bifunc-
tion F : C × C → R satisfies the following condi-
tions:

(A1) F (x, x) = 0, for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤
0, ∀x, y ∈ C;

(A3) lim sup
t↓0

F (x+t(z−x), y) ≤ F (x, y), ∀x, y, z ∈

C;

(A4) for any y ∈ C, the function y 7→ F (x, y) is con-
vex and lower semicontinuous.

Lemma 2.15. Let E be a uniformly smooth and
strictly convex Banach space with the Kadec-Klee
property, {xn} and {yn} be two sequences of E, and
p ∈ E. If xn → p and φ(xn, yn)→ 0, then yn → p.

Lemma 2.16. (see Blum and Oettli [15]). Let C be a
nonempty closed and convex subset of a smooth and
strictly convex reflexive Banach space E, and let F
: C × C → R be a bifunction satisfying the follow-
ing conditions (A1) - (A4). Let r > 0 be any given
number and x ∈ E be any point. Then, there exists a
z ∈ C such that

F (z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.9)

Lemma 2.17. (see Chang et al. [12]) Let C be a
nonempty closed and convex subset of a smooth and
strictly convex reflexive Banach space E, and let B :
C → E∗ be a δ-inverse-strongly monotone mapping
and F : C×C → R be a bifunction satisfying the fol-
lowing conditions (A1)-(A4). Let r > 0 be any given
number and x ∈ E be any point. Then, there exists a
point z ∈ C such that

F (z, y)+〈y−z,Bz〉+1

r
〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C.

(2.10)

Lemma 2.18. (see Chang et al. [12]) Let C be a
nonempty closed and convex subset of a smooth and
strictly convex reflexive Banach space E, and let B :
C → E∗ be a δ-inverse-strongly monotone mapping
and F : C×C → R be a bifunction satisfying the fol-
lowing conditions (A1)-(A4). Let r > 0 and x ∈ E.
and we define a mapping TFr : E → C as follows: for
any x ∈ C,

TFr x = {z ∈ C : F (z, y) + 〈y − z,Bz〉

+
1

r
〈y − z, Jz − Jx〉 ≥ 0, } ∀y ∈ C.

Then, the following conclusions hold:
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(1) TFr is single-valued;

(2) TFr is a firmly nonexpansive type mapping, i.e.,
〈TFr x − TFr y, JT

F
r x − JTFr y〉 ≤ 〈TFr x −

TFr y, Jx− Jy〉,∀x, y ∈ E

(3) Fix(TFr ) = ˜Fix(TFr ) = EP ;

(4) EP is a closed and convex set of C;

(5) φ(p, TFr x) + φ(TFr x, x) ≤ φ(p, x),∀p ∈
Fix(TFr );

(6) for each n ≥ 1, rn > d > 0 and un ∈ C with
limn→∞ un = limn→∞ Trnun = u, we have

F (u, y) + 〈y − u,Bu〉 ≥ 0, ∀y ∈ C.

Lemma 2.19. (see Cioranescu [3]) Let C be a
nonempty closed and convex subset of a real uni-
formly smooth and strictly convex Banach space E
with the Kadec-Klee property, S : C → C be a closed
and quasi -φ- asymptotically nonexpansive mapping
with a sequence {kn} ⊂ [1,∞) and kn → 1. Then,
Fix(S) is closed and convex in C.

Lemma 2.20. (see Chang et al. [9]) Let E be a uni-
formly convex Banach space, r > 0 be a positive num-
ber and Br(0) be a closed ball of E. Then, for any
given sequence {xn}∞n=1 ⊂ Br(0) and for any given
{λn}∞n=1 ⊂ (0, 1) with

∑∞
n=1 λn = 1, there exists a

continuous, strictly increasing and convex function g
: [0, 2r) → [0,∞) with g(0) = 0 such that for any
positive integers i , j with i < j,∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn‖xn‖2 − λiλjg(‖xi − xj‖).

Lemma 2.21. (see Xu [17]) Let E be a 2-uniformly
convex real Banach space, then for all x, y ∈ E, we
have

‖x− y‖ ≤ 2

c2
‖Jx− Jy‖,

where J is the normalized duality mapping of E and
0 < c ≤ 1, and 1

c is called the 2-uniformly convex
constant of E.

We note that every uniformly convex Banach
space has the Kadec-Klee property. For more de-
tails on Kadec-Klee property, the reader is referred to
[3, 13].

Let A be an inverse-strongly monotone mapping
ofC intoE∗ which is said to be hemicontinuous it for
all x, y ∈ C, the mapping F : [0, 1]→ E∗, defined by
F (t) = A(tx + (1 − t)y) is continuous with respect
to the weak∗ topology of E∗. We define NC(v) the
normal cone for C at a point v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}.

Lemma 2.22. (see Rockafellar [24]) Let C be a
nonempty, closed and convex subset of a Banach
spaceE andA is monotone, hemicontinuous operator
of C into E∗. Let U ⊂ E×E∗ be an operator defined
as follows:

Uv =

{
Av +NC(v), v ∈ C;
∅, v /∈ C.

Then, U is maximal monotone and U−1(0) =
V I(C,A).

3 Main results
In this section, we show a strong convergence theorem
which solves the problem of finding a common solu-
tion of the system of generalized equilibrium prob-
lems and fixed point problems in Banach spaces.

Now, we remark that, as it is the mentioned in
Zegeye and Shahzad [25] that let C be a subset of
a real Banach space E and A : C → E∗ be an in-
verse strongly monotone mapping satisfying ‖Ax‖ ≤
‖Ax − Ap‖, for all x ∈ C and p ∈ V I(C,A), then
V I(C,A) = A−1(0) = {p ∈ C : Ap = 0}. For
example the following the condition is satisfied.

Example 3.1. Let A : R→ R by given by

Ax :=

{
0, if x ≤ 0;
4x, if x > 0.

Then, A is 1
4 -inverse-strongly monotone mapping

with V I(R, A) = A−1(0) = (−∞, 0].

Before stat our theorem we give an example for
nonlinear mappings to illustrate the theoretical results.

Example 3.2. Let S : R → R be given by S :=
(I + rB)−1, for r > 0, where

Bx :=


x+ 1, if x ∈ (−∞,−1];
0, if x ∈ (−1, 0],
2x, if x ∈ (0,∞).

Then, we get that Jr := (I+rB)−1 = S is uniformly
L- Lipschitz continuous and quasi -φ- asymptotically
nonexpansive with {kn} = 1 for each n ≥ 1 and
Fix(Jr) = B−1(0) = Fix(S) = [−1, 0].

We shall make use of this remark to prove the next
theorem.

Theorem 3.3. Let C be a nonempty, closed and con-
vex subset of a uniformly smooth and 2-uniformly con-
vex real Banach space E. Suppose that
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(B1) Let Bk : C → E∗ for each k =
1, 2, 3, ...,M be a finite family of δk-inverse-strongly
monotone mappings, and let Fk : C × C → R be a
bifunction which satisfies conditions (A1)-(A4).

(B2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be count-
able families of uniformly closed and ωi,µj-Lipschitz
continuous and quasi -φ- asymptotically nonexpan-
sive mappings with sequences {kn}, {ln} ⊂ [1,∞)
and kn → 1, ln → 1, respectively.

(B3) LetAn : C → E∗ for each n = 1, 2, 3, ..., N
be a finite family of γn-inverse strongly monotone
mappings and let γ = min{γn : n = 1, 2, 3, ..., N}.

(B4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂

(⋂M

k=1
SGEP (Fk, Bk)

)⋂(⋂N

n=1
V I(C,An)

)
is a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be
sequences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − λnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJT

n
i xn

+
∑∞

j=1 β
(3)
n,jJS

n
j zn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + θn}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(3.1)
where TFk

rk,n
: E → C, k = 1, 2, 3, ...,M , is a map-

ping defined by (2.18) with F = Fk and r = rk,n and
it is the solutions to the following system of general-
ized equilibrium problem: Fk(z, y) + 〈y − z,Bkz〉+
1
r 〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C, k = 1, 2, 3, ...,M,
where rk,n ∈ [d,∞), for some d > 0, θn =
supp∈Ω(max{kn, ln} − 1)φ(p, xn), An = An(mod
N), ‖Anx‖ ≤ ‖Anx − Anp‖, for all x ∈ C and
p ∈ Ω. Let {λn} be a sequence in [0,1] such that
0 < λn <

c2γ
2 , where 1

c is the 2-uniformly convex con-

stant of E. Let {β(1)
n,0}, {β

(2)
n,i}, {β

(3)
n,j} be sequences in

[0,1] satisfying the following conditions:

1. for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j =

1;

2. lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ =
ΠΩ(x0).

Proof. We shall complete this proof by six steps be-
low.

Step 1. We will show that Ω and Cn+1 are
closed and convex, for each n ≥ 0.
In fact, It follows from Lemma 2.18(4) and Lemma
2.19 that Fix(Ti) and Fix(Sj), for any i, j ≥ 1 and
SGEP (Fk, Bk) are closed and convex subset of C.
Therefore, Ω is closed and convex in C.
Clearly, C0 = C is closed and convex. Suppose that
Cn is closed and convex for some n ≥ 1. By the as-
sumption, φ(v, un) ≤ φ(v, xn) + θn is equivalent to

‖v‖2−2〈v, Jun〉+‖un‖2 ≤ ‖v‖2−2〈v, Jxn〉+‖xn‖2+θn.

So that 2〈v, Jxn〉−2〈v, Jun〉 = 2〈v, Jxn−Jun〉 ≤
‖xn‖2 − ‖un‖2 + θn. Hence, Cn+1 is closed and
convex. Therefore, ΠCn+1(x0) and ΠΩ(x0) are well-
defined.

Step 2. We will show that {xn} is bounded and
{φ(xn, x0)} is convergent sequence, for all n ≥ 1.
Indeed, it follows from (3.1) and Lemma 2.11 that

φ(xn, x0) = φ(ΠCn(x0), x0)

≤ φ(p, x0)− φ(p,ΠCn(x0))

≤ φ(p, x0), ∀n ≥ 0, p ∈ Ω.

This implies that {φ(xn, x0)} is bounded. By the
virtue of (2.8). Then, the sequence {xn} is also
bounded.
By the assumption of Cn, we have Cn+1 ⊂ Cn,
xn = ΠCn(x0) and xn+1 = ΠCn+1(x0). This implies
that xn+1 ∈ Cn+1 ⊂ Cn, and

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.

Therefore, {φ(xn, x0)} is convergent sequence. With-
out loss of generality, we can assume that

lim
n→∞

φ(xn, x0) = d ≥ 0.

Step 3. We will show that Ω ⊂ Cn, for all n ≥
0.
By taking Kj

n = T
Fj
rj,nT

Fj−1
rj−1,n ...T

F2
r2,nT

F1
r1,n , where j =

1, 2, 3, ...,M and K0
n = I for all n ≥ 1. We note

that un = KM
n yn. For n ≥ 0, we have Ω ⊂ C =

C0. For any given p ∈ Ω, then by the equation (3.1),
Lemma 2.12 and Lemma 2.13, we compute

φ(p, zn)

= φ(p,ΠCJ
−1(Jxn − λnAnxn))

≤ φ(p, J−1(Jxn − λnAnxn))

= V (p, Jxn − λnAnxn)

≤ V (p, (Jxn − λnAnxn) + λnAnxn)

−2〈J−1(Jxn − λnAnxn)− p, λnAnxn〉
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= V (p, Jxn)− 2λn〈J−1(Jxn − λnAnxn)− p,Anxn〉
= φ(p, xn)− 2λn〈xn,−p,Anxn〉
−2λn〈J−1(Jxn − λnAnxn)− xn, Anxn〉

≤ φ(p, xn)− 2λn〈xn − p,Anxn −Anp〉
−2λn〈xn − p,Anp〉
−2λn〈J−1(Jxn − λnAnxn)− xn, Anxn〉. (3.2)

Because p ∈ Ω, hence p ∈ V I(C,An) and An is γ-
inverse strongly monotone mappings, from (3.2), we
get

φ(p, zn) ≤ φ(p, xn)− 2λnγ‖Anxn −Anp‖2+

2λn‖J−1(Jxn − λnAnxn)− J−1(Jxn)‖‖Anxn‖.
(3.3)

From (3.3), Lemma 2.21 and the fact that ‖Anx‖ ≤
‖Anx−Anp‖, for all x ∈ C and p ∈ Ω and λn < c2γ

2 ,
we obtain

φ(p, zn) ≤ φ(p, xn)− 2λnγ‖Anxn −Anp‖2

+
4λ2

n

c2
‖Anxn −Anp‖2

= φ(p, xn) + 2λn(
2λn
c2
− γ)‖Anxn −Anp‖2

≤ φ(p, xn)− 2λn(
2λn
c2
− γ)‖Anxn‖2

≤ φ(p, xn). (3.4)

Therefore, we have φ(p, zn) ≤ φ(p, xn). From (3.1)
and (3.4), we compute

φ(p, un)

= φ(p, TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn)

= φ(p,KM
n yn)

≤ φ(p, yn)

= φ(p, J−1(β
(1)
n,0Jxn +

∞∑
i=1

β
(2)
n,iJT

n
i xn

+
∞∑
j=1

β
(3)
n,jJS

n
j zn))

= ‖p‖2 − 2〈p, β(1)
n,0Jxn +

∞∑
i=1

β
(2)
n,iJT

n
i xn

+

∞∑
j=1

β
(3)
n,jJS

n
j zn〉

+‖β(1)
n,0Jxn +

∞∑
i=1

β
(2)
n,iJT

n
i xn +

∞∑
j=1

β
(3)
n,jJS

n
j zn‖2

≤ ‖p‖2 − 2β
(1)
n,0〈p, Jxn〉 − 2

∞∑
i=1

β
(2)
n,i 〈p, JT

n
i xn〉

−2
∞∑
j=1

β
(3)
n,j〈p, JS

n
j zn〉

+β
(1)
n,0‖xn‖

2 +
∞∑
i=1

β
(2)
n,i‖T

n
i xn‖2 +

∞∑
j=1

β
(3)
n,j‖S

n
j zn‖2

−β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

= β
(1)
n,0φ(p, xn) +

∞∑
i=1

β
(2)
n,iφ(p, Tni xn)

+
∞∑
j=1

β
(3)
n,jφ(p, Snj zn)

−β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ β
(1)
n,0φ(p, xn) +

∞∑
i=1

β
(2)
n,iφ(p, Tni xn)

+

∞∑
j=1

β
(3)
n,jφ(p, Snj zn)

−β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ β
(1)
n,0φ(p, xn) + kn

∞∑
i=1

β
(2)
n,iφ(p, xn)

+ln

∞∑
j=1

β
(3)
n,jφ(p, zn)

−β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ β
(1)
n,0φ(p, xn) + kn

∞∑
i=1

β
(2)
n,iφ(p, xn)

+ln

∞∑
j=1

β
(3)
n,jφ(p, xn)

−β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ max{kn, ln}φ(p, xn)− β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ φ(p, xn) + sup
p∈Ω

(max{kn, ln} − 1)φ(p, xn)

−β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)
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= φ(p, xn) + θn − β(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

−β(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ φ(p, xn) + θn. (3.5)

It follows that

φ(p, un) ≤ φ(p, xn) + θn, (3.6)

where θn = supp∈Ω(max{kn, ln} − 1)φ(p, xn). By
the assumptions of {kn} and {ln}, and from (2.8), we
obtain

θn = sup
p∈Ω

(max{kn, ln} − 1)φ(p, xn)

≤ sup
p∈Ω

(max{kn, ln} − 1)(‖p‖+ ‖xn‖)2

≤ sup
p∈Ω

(max{kn, ln} − 1)(‖p‖+M)2 → 0(3.7)

(as n→∞),

whereM = supn≥0 ‖xn‖. So, we get p ∈ Cn+1. This
implies that Ω ⊂ Cn for all n ≥ 0 and the sequence
{xn} is well-defined.

Step 4. We will show that there exists some
point p∗ ∈ C such that xn → p∗.
Since xn = ΠCn(x0) and xn+1 = ΠCn+1(x0) ∈
Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), (3.8)

which implies that the sequence {φ(xn, x0)} is non-
decreasing and bounded, and so limn→∞{φ(xn, x0)}
exists. Hence, for any positive integer m, by Lemma
2.11, we have

φ(xn+m, xn) = φ(xn+mΠCn(x0)) ≤ φ(xn+m, x0)−φ(xn, x0),
(3.9)

for all n ≥ 0. Since limn→∞{φ(xn, x0)} exists, we
obtain

φ(xn+m, xn)→ 0, as n→∞, ∀m ∈ N. (3.10)

By Lemma 2.14, we get ‖xn+m − xn‖ → 0, as n →
∞. This implies that the sequence {xn} is a Cauchy
sequence in C. Since C is a nonempty closed subset
of Banach space E, it is complete. Hence, there exists
a point p∗ ∈ C such that

xn → p∗, as n→∞. (3.11)

Step 5. We will show that p∗ ∈ Ω,

where Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂(⋂M

k=1 SGEP (Fk, Bk)
)⋂(⋂N

n=1 V I(C,An)
)
.

(5.1) First, we will show that p∗ ∈
⋂∞
i=1 Fix(Ti).

Since xn+1 ∈ Cn+1 ⊂ Cn, by the definition of Cn+1,
we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn. (3.12)

Again by (3.10) and Lemma 2.14, we get
limn→∞ ‖xn+1 − un‖ = 0. Since

‖xn − un‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − un‖. (3.13)

Hence,
lim
n→∞

‖xn − un‖ = 0. (3.14)

This implies that un → p∗ as n → ∞. Since E is
uniformly smooth, This implies that J is uniformly
continuous on bounded subset of E by remark 2.1(1),
we obtain

lim
n→∞

‖Jxn − Jun‖ = 0. (3.15)

From (3.5), we have φ(p, un) ≤ φ(p, xn) + θn −
β

(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖) − β

(1)
n,0β

(3)
n,jg(‖Jxn −

JSnj zn‖). Hence, φ(p, un) ≤ φ(p, xn) + θn −
β

(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖) and so

β
(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)

≤ φ(p, xn)− φ(p, un) + θn

= ‖xn‖2 − ‖un‖2 + 2〈p, Jun − Jxn〉+ θn

≤ (‖xn‖ − ‖un‖)(‖xn‖+ ‖un‖) + 2〈p, Jun − Jxn〉
+θn.

From (3.7), (3.14) and (3.15), we get

β
(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖)→ 0, as n→∞.

In the view of condition, lim infn→∞ β
(1)
n,0β

(2)
n,i > 0,

we see that

g(‖Jxn − JTni xn‖)→ 0, as n→∞. (3.16)

It follows from the property of g that

‖Jxn − JTni xn‖ → 0, as n→∞. (3.17)

Since xn → p∗ and J is uniformly continuous, it yield
that Jxn → Jp∗. Hence, from (3.17), we have

JTni xn → Jp∗, as n→∞, ∀i ≥ 1. (3.18)

Since E∗ is uniformly smooth, then J−1 is uniformly
continuous, it follows that

Tni xn → p∗, as n→∞, ∀i ≥ 1. (3.19)
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Furthermore, by the assumption that for each i ≥ 1,
Ti is uniformly ωi-Lipschitz continuous, so that we
have

‖Tn+1
i xn − Tni xn‖

≤ ‖Tn+1
i xn − Tn+1

i xn+1‖+ ‖Tn+1
i xn+1 − xn+1‖

+‖xn+1 − xn‖+ ‖xn − Tni xn‖
≤ (ωi + 1)‖xn+1 − xn‖+ ‖Tn+1

i xn+1

−xn+1‖+ ‖xn − Tni xn‖
→ 0, as n→∞.

Hence,
lim
n→∞

Tn+1
i xn = Tni xn = p∗. (3.20)

That is

lim
n→∞

Tn+1
i xn = lim

n→∞
TiT

n
i xn = lim

n→∞
Tip
∗ = p∗.

(3.21)
In view of (3.19) and the closeness of Ti, it yield that
Tip
∗ = p∗, for all i ≥ 1. This implies that

p∗ ∈
⋂∞

i=1
Fix(Ti). (3.22)

(5.2) Next, we will show that p∗ ∈⋂∞
j=1 Fix(Sj).

From (3.5), we have φ(p, un) ≤ φ(p, xn) + θn −
β

(1)
n,0β

(2)
n,ig(‖Jxn − JTni xn‖) − β

(1)
n,0β

(3)
n,jg(‖Jxn −

JSnj zn‖). Hence, φ(p, un) ≤ φ(p, xn) + θn −
β

(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖), and so

β
(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖)

≤ φ(p, xn)− φ(p, un) + θn

= ‖xn‖2 − ‖un‖2 + 2〈p, Jun − Jxn〉+ θn

≤ (‖xn‖ − ‖un‖)(‖xn‖+ ‖un‖)
+2〈p, Jun − Jxn〉+ θn

From (3.7), (3.14) and (3.15), we get
β

(1)
n,0β

(3)
n,jg(‖Jxn − JSnj zn‖) → 0, as n → ∞. In

the view of condition, lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, we

see that

g(‖Jxn − JSnj zn‖)→ 0, as n→∞. (3.23)

It follows from the property of g that

‖Jxn − JSnj zn‖ → 0, as n→∞. (3.24)

Since xn → p∗ and J is uniformly continuous, it yield
Jxn → Jp∗. Hence, from (3.24), we have

JSnj zn → Jp∗, as n→∞, ∀j ≥ 1. (3.25)

Since E∗ is uniformly smooth, then J−1 is uniformly
continuous, it follows that

Snj zn → p∗, as n→∞, ∀j ≥ 1. (3.26)

From (3.4), we have

φ(p, un) ≤ φ(p, xn) + 2λn(
2λn
c2
− γ)‖Anxn‖2.

(3.27)
So that

2λn(γ − 2λn
c2

)‖Anxn‖2 ≤ φ(p, xn)− φ(p, un).

That is,
lim
n→∞

‖Anxn‖2 = 0. (3.28)

It follows from (3.1) and (3.28) that we have

lim
n→∞

‖zn − p∗‖

= lim
n→∞

‖ΠCJ
−1(Jxn − λnAnxn)− p∗‖

≤ lim
n→∞

‖J−1(Jxn − λnAnxn)− p∗‖ = 0.

Furthermore, by the assumption that for each j ≥ 1,
Sj is uniformly µj-Lipschitz continuous, so that

‖Sn+1
j zn − Snj zn‖

≤ ‖Sn+1
j zn − Sn+1

j zn+1‖+ ‖Sn+1
j zn+1 − zn+1‖

+‖zn+1 − zn‖
+‖zn − Snj zn‖

≤ (µi + 1)‖zn+1 − zn‖+ ‖Sn+1
j zn+1 − zn+1‖

+‖zn − Snj zn‖
→ 0, as n→∞.

Hence,
lim
n→∞

Sn+1
j zn = Snj zn = p∗. (3.29)

That is

lim
n→∞

Sn+1
j zn = lim

n→∞
SjS

n
j zn = lim

n→∞
Sjp
∗ = p∗.

(3.30)
In view of (3.19) and the closeness of Sj , it yield that
Sjp
∗ = p∗, for all j ≥ 1. This implies that

p∗ ∈
⋂∞

j=1
Fix(Sj). (3.31)

(5.3) Next, we will show that p∗ ∈⋂M
k=1 SGEP (Fk, Bk).

Putting KM
n = TFM

rM,n
T
Fm−1
rM−1,n ...T

F2
r2,nT

F1
r1,n and

K0
n = I for all n ∈ N. For any p ∈ Ω, we have

φ(KM
n yn,K

M−1
n yn)
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≤ φ(p,KM−1
n yn)− φ(p,KM

n yn)

≤ φ(p, yn)− φ(p,KM
n yn)

≤ φ(p, xn) + θn − φ(p,KM
n yn)

≤ φ(p, xn) + θn − φ(p, un).

It follows from (3.16) that
limn→∞ φ(KM

n yn,K
M−1
n yn) = 0. Since E is

uniformly smooth and 2-uniformly convex Banach
space and {zn} is bounded, we have

lim
n→∞

‖KM
n yn −KM−1

n yn‖ = 0. (3.32)

Since un → p∗, and un = KM
n yn, so that KM

n yn →
p∗ as n→∞. and

lim
n→∞

‖KM
n yn−KM−1

n yn‖ = lim
n→∞

‖un−KM−1
n yn‖ = 0.

(3.33)
That is KM−1

n yn → p∗. By induction, the conclusion
can be obtained. Since J is uniformly continuous on
bounded subset of E, we get

lim
n→∞

‖JKM
n yn − JKM−1

n yn‖ = 0, (3.34)

and from the condition rk,n ∈ [d,∞) for some d > 0,
we have

lim
n→∞

‖JKM
n yn − JKM−1

n yn‖
rM,n

= 0. (3.35)

Consider

φ(un, yn)

≤ φ(KM
n yn, yn)

≤ φ(p, yn)− φ(p,KM
n yn)

= φ(p, yn)− φ(p, un)

≤ φ(p, xn) + θn − φ(p, un)

= ‖p‖2 − 2〈p, xn〉+ ‖xn‖2 + θn − ‖p‖2

+2〈p, Jun〉 − ‖un‖2

= ‖xn‖2 − ‖un‖2 + θn

+2〈p, Jun − Jxn〉
≤ (‖xn‖ − ‖un‖)(‖xn‖+ ‖un‖) + θn

+2‖p‖‖Jun − Jxn‖
→ 0, as n→∞.

Using lemma 2.15, we get yn → p∗. Since
Fk(K

M
n yn, y) + 〈y−KM

n yn, BkK
M
n yn〉+ 1

rM,n
〈y−

KM
n yn, JK

M
n yn − Jyn〉 ≥ 0, ∀y ∈ C, k =

1, 2, ...,M. By condition (A2), we have 〈y −
KM
n yn, BkK

M
n yn〉 + 1

rM,n
〈y − KM

n yn, JK
M
n yn −

Jyn〉 ≥ −Fk(KM
n yn, y) ≥ Fk(y,K

M
n yn). From

KM
n yn → p∗ and yn → p∗, we have

〈y − p∗, Bkp∗〉 ≥ Fk(y, p∗),∀y ∈ C.

For any 0 < t < 1, y ∈ C and setting yt = ty + (1−
t)p∗, we have yt ∈ C and so

〈yt − p∗, Bkp∗〉 ≥ Fk(yt, p∗),∀y ∈ C.

In view of the convexity of φ it yield

t〈yt − p∗, Bkp∗〉 ≥ Fk(yt, p∗),∀y ∈ C.

It follows from (A1) and (A4) that

0 = Fk(yt, yt) ≤ tFk(yt, y) + (1− t)Fk(yt, p∗)
≤ tFk(yt, y) + (1− t)t〈yt − p∗, Bkp∗〉.

Let t→ 0, from the condition (A3), we obtain

Fk(p
∗, y)+〈yt−p∗, Bkp∗〉 ≥ 0, ∀y ∈ C, k = 1, 2, ...,M.

This implies that p∗ ∈
⋂M
k=1 SGEP (Fk, Bk).

(5.4) Last, we will show that p∗ ∈⋂N
n=1 V I(C,An).

From Lemma 2.12, we note that zn =
ΠCJ

−1(Jxn − λnAnxn) if and only if

〈y−zn, Anxn〉+〈y−zn,
Jzn − Jxn

λn
〉 ≥ 0, ∀y ∈ C.

(3.36)
Let {nj}j≥1 ⊂ N be an increasing sequence of natural
numbers such that Anj = A1 for all j ∈ N. From
(3.36), we get

〈y−znj , A1xnj 〉+〈y−znj ,
Jznj − Jxnj

λnj

〉 ≥ 0, ∀y ∈ C.

(3.37)
Put yt = ty + (1 − t)p∗ for any 0 < t < 1 and y ∈
C. Consequently, we get that yt ∈ C. From (3.37), it
follows that

〈yt − znj , A1yt〉
≥ 〈yt − znj , A1yt〉 − 〈yt − znj , A1xnj 〉

−〈yt − znj ,
Jznj − Jxnj

λnj

〉

= 〈yt − znj , A1yt −A1znj 〉+ 〈yt − znj , A1znj −A1xnj 〉

−〈yt − znj ,
Jznj − Jxnj

λnj

〉.

By the continuity of A1 and the fact that znj , xnj →
p∗ and Jznj , Jxnj → p∗ as k → ∞, we obtain

that A1znj − A1xnj → p∗ and
Jznj−Jxnj

λnj
→ p∗

as k → ∞. Since A1 is monotone, we also have
〈yt − znj , A1yt −A1znj 〉 ≥ 0. Hence, it follows that

0 ≤ lim
k→∞
〈yt − znj , A1yt〉 = 〈yt − p∗, A1yt〉,
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and so

〈y − p∗, A1yt〉 ≥ 0, ∀y ∈ C.

Letting t→ 0, we obtain

〈y − p∗, A1p
∗〉 ≥ 0, ∀y ∈ C.

This implies that p∗ ∈ V I(C,A1). Similarly we ob-
tain that p∗ ∈ V I(C,An). for n = 2, 3.4, ..., N. So
that p∗ ∈

⋂N
n=1 V I(C,An). From (5.1) to (5.4), we

can conclude that p∗ ∈ Ω.
Step 6. Finally, we will show that xn → p∗ =

ΠΩ(x0).
Let w = ΠΩ(x0). Since w ∈ Ω ⊂ Cn and xn =
ΠCn(x0), we have

φ(xn, x0) ≤ φ(w, x0), ∀n ≥ 0.

This implies that

φ(p∗, x0) = lim
n→∞

φ(xn, x0) ≤ φ(w, x0). (3.38)

In view of the definition of ΠΩ(x0), from (3.38) we
have p∗ = w. Therefore, xn → p∗ = ΠΩ(x0). This
completes the proof of Theorem 3.1.

If we change the condition (B2) in Theorem 3.3
as follows : {Ti}∞i=1 and {Sj}∞j=1 are quasi -φ- non-
expansive mappings. Since every quasi -φ- nonexpan-
sive mappings is quasi -φ- asymptotically nonexpan-
sive mappings. Then, we obtain the following corol-
lary.

Corollary 3.4. Let C be a nonempty, closed and con-
vex subset of a uniformly smooth and 2-uniformly con-
vex real Banach space E. Suppose that

(C1) Let Bk : C → E∗ for each k =
1, 2, 3, ...,M be a finite family of δk-inverse-strongly
monotone mappings, and let Fk : C × C → R be a
bifunction which satisfies conditions (A1)-(A4).

(C2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be
countable families of uniformly closed and quasi -φ-
nonexpansive mappings.

(C3) Let An : C → E∗ for each n =
1, 2, 3, ..., N be a finite family of γn-inverse strongly
monotone mappings and let γ = min{γn : n =
1, 2, 3, ..., N}.

(C4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂(⋂M

k=1 SGEP (Fk, Bk)
)⋂(⋂N

n=1 V I(C,An)
)

is
a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be
sequences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − λnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJTixn

+
∑∞

j=1 β
(3)
n,jJSjzn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(3.39)
where TFk

rk,n
: E → C, k = 1, 2, 3, ...,M , is a map-

ping defined by (2.18) with F = Fk and r = rk,n and
it is the solutions to the following system of general-
ized equilibrium problem: Fk(z, y) + 〈y − z,Bkz〉+
1
r 〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C, k = 1, 2, 3, ...,M.
rk,n ∈ [d,∞), for some d > 0, An = An(mod N),
‖Anx‖ ≤ ‖Anx−Anp‖, for all x ∈ C and p ∈ Ω. Let
{λn} be a sequence in [0,1] such that 0 < λn <

c2γ
2 ,

where 1
c is the 2-uniformly convex constant of E. Let

{β(1)
n,0}, {β

(2)
n,i}, {β

(3)
n,j} be sequences in [0,1] satisfying

the following conditions:

1. for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j =

1;

2. lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ =
ΠΩ(x0).

Proof. Since {Ti}∞i=1 and {Sj}∞j=1 are countable fam-
ilies of uniformly closed and quasi -φ- nonexpansive
mappings, By Remark 2.8 (ii), it is countable fami-
lies of uniformly closed and quasi -φ- asymptotically
nonexpansive mapping with {kn = 1} and {ln = 1}.
So θn = supp∈Ω(max{kn, ln} − 1)φ(p, xn) = 0.
Therefore, the conditions appearing in Theorem 3.3
: “Ω is bounded subset in C. and for each i ≥ 1”,
({Ti}∞i=1 and {Sj}∞j=1 : C → C be countable families
of uniformly closed and ωi,µj-Lipschitz continuous
and nonexpansive mappings) are no use here. There-
fore, all conditions in Theorem 3.3 are satisfied. The
conclusion of Corollary 3.4 can be obtained from The-
orem 3.3 immediately.

If we change the condition (C2) in Corollary 3.4
as follows : {Ti}∞i=1 and {Sj}∞j=1 are weak rela-
tively nonexpansive mappings. Since every weak rela-
tively nonexpansive mappings is quasi -φ- nonexpan-
sive mappings and every quasi -φ- nonexpansive map-
pings is quasi -φ- asymptotically nonexpansive map-
pings. Then, we obtain the following corollary.
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Corollary 3.5. Let C be a nonempty, closed and con-
vex subset of a uniformly smooth and 2-uniformly con-
vex real Banach space E. Suppose that

(D1) Let Bk : C → E∗ for each k =
1, 2, 3, ...,M be a finite family of δk-inverse-strongly
monotone mappings, and let Fk : C × C → R be a
bifunction which satisfies conditions (A1)-(A4).

(D2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be
countable families of uniformly closed and weak rela-
tively nonexpansive mappings.

(D3) Let An : C → E∗ for each n =
1, 2, 3, ..., N be a finite family of γn-inverse strongly
monotone mappings and let γ = min{γn : n =
1, 2, 3, ..., N}.

(D4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂(⋂M

k=1 SGEP (Fk, Bk)
)⋂(⋂N

n=1 V I(C,An)
)

is
a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be
sequences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − λnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJTixn

+
∑∞

j=1 β
(3)
n,jJSjzn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(3.40)
where TFk

rk,n
: E → C, k = 1, 2, 3, ...,M , is a map-

ping defined by (2.18) with F = Fk and r = rk,n and
it is the solutions to the following system of general-
ized equilibrium problem: Fk(z, y) + 〈y − z,Bkz〉+
1
r 〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C, k = 1, 2, 3, ...,M.
rk,n ∈ [d,∞), for some d > 0, An = An(mod N),
‖Anx‖ ≤ ‖Anx−Anp‖, for all x ∈ C and p ∈ Ω. Let
{λn} be a sequence in [0,1] such that 0 < λn <

c2γ
2 ,

where 1
c is the 2-uniformly convex constant of E. Let

{β(1)
n,0}, {β

(2)
n,i}, {β

(3)
n,j} be sequences in [0,1] satisfying

the following conditions:

1. for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j =

1;

2. lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ =
ΠΩ(x0).

Proof. Since {Ti}∞i=1 and {Sj}∞j=1 are countable fam-
ilies of uniformly closed and weak relatively nonex-
pansive mappings, By Remark 2.8 (v) and (ii), it is

countable families of uniformly closed and quasi -
φ- nonexpansive mappings, and it is countable fam-
ilies of uniformly closed and quasi -φ- asymptotically
nonexpansive mappings. Therefore, all conditions in
Corollary 3.4 are satisfied. The conclusion of Corol-
lary 3.5 can be obtained from Corollary 3.4 and it can
be obtained from Theorem 3.3 immediately.

If Ti = T, Sj = S, Fk = F, Bk = B and
An = A where ∀i, j ∈ N, k = 1, 2, 3, ...,M and
∀n = 1, 2, 3, ..., N in Theorem 3.3, then the Theorem
3.3 is reduced to the following corollary.

Corollary 3.6. Let C be a nonempty, closed and con-
vex subset of a uniformly smooth and 2-uniformly con-
vex real Banach space E. Suppose that

(E1) Let B : C → E∗ be a δ-inverse-strongly
monotone mappings, and let F : C × C → R be a
bifunction which satisfies conditions (A1)-(A4).

(E2) Let T and S : C → C be two uni-
formly closed and ω,µ-Lipschitz continuous and quasi
-φ- asymptotically nonexpansive mappings with se-
quences {kn}, {ln} ⊂ [1,∞) and kn → 1, ln → 1,
respectively.

(E3) Let A : C → E∗ be a γ-inverse strongly
monotone mappings.

(E4) Ω := Fix(T )
⋂
Fix(S)

⋂
GEP (F,B)

⋂
V I(C,A)

is a nonempty and bounded in C.
Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be

sequences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − λAxn)

yn = J−1(β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnzn)

un = TFrnyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + θn}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(3.41)
where TFrn : E → C, is a mapping defined by (2.18)
and it is the solutions to the following a generalized
equilibrium problem:

F (z, y)+〈y−z,Bz〉+1

r
〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C.

rn ∈ [d,∞), for some d > 0, θn =
supp∈Ω(max{kn, ln} − 1)φ(p, xn), ‖Ax‖ ≤ ‖Ax −
Ap‖, for all x ∈ C and p ∈ Ω. Let {λ} be
a sequence in [0,1] such that 0 < λ < c2γ

2 ,

where 1
c is the 2-uniformly convex constant of E. Let

{β(1)
n }, {β(2)

n }, {β(3)
n } be sequences in [0,1] satisfying

the following conditions:

1. for each n ≥ 0, β
(1)
n + β

(2)
n + β

(3)
n = 1;
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2. lim infn→∞ β
(1)
n β

(2)
n > 0 and

lim infn→∞ β
(1)
n β

(3)
n > 0.

Then, the sequence {xn} converges strongly to p∗ =
ΠΩ(x0).

If we set β(1)
n = βn and set β(2)

n = 0 in Corollary
3.6, then β(2)

n JTnxn = 0 and so β(3)
n = 1− βn, thus

the Corollary 3.6 is reduced to the following corollary.

Corollary 3.7. Let C be a nonempty, closed and con-
vex subset of a uniformly smooth and 2-uniformly con-
vex real Banach space E. Suppose that

(F1) Let B : C → E∗ be a δ-inverse-strongly
monotone mappings, and let F : C × C → R be a
bifunction which satisfies conditions (A1)-(A4).

(F2) Let S : C → C be closed and uni-
formly µ-Lipschitz continuous and uniformly quasi
-φ- asymptotically nonexpansive mappings with se-
quences {ln} ⊂ [1,∞) and ln → 1.

(F3) Let A : C → E∗ be a γ-inverse strongly
monotone mappings.

(F4) Ω := Fix(S)
⋂
GEP (F,B)

⋂
V I(C,A)

is a nonempty and bounded in C.
Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be

sequences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − λAxn)

yn = J−1(βnJxn + (1− βn)JSnzn)

un = TFrnyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + θn}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(3.42)
where TFrn : E → C, is a mapping defined by (2.18)
and it is the solutions to the following a generalized
equilibrium problem:

F (z, y)+〈y−z,Bz〉+1

r
〈y−z, Jz−Jx〉 ≥ 0, ∀y ∈ C.

rn ∈ [d,∞), for some d > 0, θn =
supp∈Ω(max{kn, ln} − 1)φ(p, xn), ‖Ax‖ ≤ ‖Ax −
Ap‖, for all x ∈ C and p ∈ Ω. Let {λ} be a se-
quence in [0,1] such that 0 < λ < c2γ

2 , where 1
c is the

2-uniformly convex constant of E. Let {βn} be a se-
quence in [0,1] such that lim infn→∞ βn(1−βn) > 0.
Then, the sequence {xn} converges strongly to p∗ =
ΠΩ(x0).

Taking Bk = 0, Fk = 0, which k = 1, 2, 3, ...,M
in Corollary 3.5, we can obtained the following corol-
lary.

Corollary 3.8. Let C be a nonempty, closed and con-
vex subset of a uniformly smooth and 2-uniformly con-
vex real Banach space E. Suppose that

(G1) Let Bk : C → E∗ for each k =
1, 2, 3, ...,M be a finite family of δk-inverse-strongly
monotone mappings, and let Fk : C × C → R be a
bifunction which satisfies conditions (A1)-(A4).

(G2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be
countable families of uniformly closed and weak rela-
tively nonexpansive mappings.

(G3) Let An : C → E∗ for each n =
1, 2, 3, ..., N be a finite family of γn-inverse strongly
monotone mappings and let γ = min{γn : n =
1, 2, 3, ..., N}.

(G4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂(⋂N

n=1 V I(C,An)
)

is a nonempty and bounded in
C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be
sequences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − λnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJTixn

+
∑∞

j=1 β
(3)
n,jJSjzn)

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(3.43)
whereAn = An(mod N), ‖Anx‖ ≤ ‖Anx−Anp‖, for
all x ∈ C and p ∈ Ω. Let {λn} be a sequence in [0,1]
such that 0 < λn <

c2γ
2 , where 1

c is the 2-uniformly

convex constant of E. Let {β(1)
n,0}, {β

(2)
n,i}, {β

(3)
n,j} be

sequences in [0,1] satisfying the following conditions:

1. for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j =

1;

2. lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ =
ΠΩ(x0).

4 Conclusions
In this work we have introduced a new iterative se-
quence by the new hybrid projection method for solv-
ing the common solution problem for a system of
generalized equilibrium problems of inverse strongly
monotone mappings and a system of bifunctions satis-
fying certain the conditions, and the common solution
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problem for a family of uniformly quasi -φ- asymp-
totically nonexpansive and uniformly Lipschitz con-
tinuous and the common solution problem for a vari-
ational inequality problem in a uniformly smooth and
2-uniformly convex real Banach space. Then, we also
obtained a strong convergence theorem of the iterative
sequence generated by the conditions. The results ob-
tained in this paper extend and improve several recent
results in this area in the following remark.

Remark 4.1. Theorem 3.3 and Corollaries 3.4, 3.5,
3.6, 3.7 and 3.8 improve and extend the correspond-
ing results in [1], [2], [9], [10], [11], [12], [14], [18],
[19], [20], [21], [22], [23] in the following aspect:

(a) For the solution of the classical equilibrium
problem to the system of generalized equilibrium
problems.

(b) For the mapping, we extend the mappings
from nonexpansive mappings, quasi -φ- nonexpansive
mappings, relatively nonexpansive mappings, weak
relatively nonexpansive mappings and a closed quasi
-φ- nonexpansive mappings to more general than the
countable families of uniformly closed and quasi -φ-
asymptotically nonexpansive mappings.

(c) For the frame work of the spaces, we extend
the space form a uniformly smooth and uniformly
convex real Banach space or a uniformly smooth and
strictly convex real Banach space with the Kadec-Klee
property to more general than a uniformly smooth and
2-uniformly convex real Banach space.

(d) For the algorithm, we propose a new hybrid it-
erative algorithms which are different from ones given
in above and others.
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