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Abstract: Fixed point method for solving one dimensional problem has been well studied. Here we consider
two dimensional fixed point method and apply it to solve the SIR model which is a system of nonlinear integral
equations. It is used to describe endemic infectious diseases for which infection confers permanent immunity.
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1 Introduction

Many mathematical models have been developed to
describe the dynamics of infectious diseases. The
Kermack-McKendrick (or SIR) model is perhaps the
most well-known epidemiological model [1]. It di-
vides the population into three separate compartments
relating to the infectious disease dynamics and then
uses a system of ordinary differential equations to
track how individuals move between them. More pre-
cisely, a typical subdivision consists of susceptibles
S, infectives I , and a third, removed class R of in-
dividuals who can no longer contract the disease be-
cause they have recovered with immunity, have been
placed in isolation, or have died. If the disease con-
fers a temporary immunity on its victims, individuals
can be moved from the third class to the first. Here
we adopt the technique of the Kermack-McKendrick
model (with some modifications), but take another ap-
proach to the underlying mathematics. In particular,
we include terms that account for birth and natural
death of individuals and incorporate the vaccination
of newborns and susceptible individuals. As an ex-
ample, measles is a serious childhood disease that can
lead to many complications and even death [3]. Be-
cause of a major outbreak in 1989-1991, the United
States changed to a two-dose measles vaccination pro-
gram. As a result, the basic reproduction number R0

in the SIR model now appears to be below 1 through-
out the United States; so that measles is no longer con-
sidered to be endemic there. Using this framework,
we build a system of integral equations to describe the
disease dynamics that are adapted from Hethcote &
Tudor [4]. We then employ a fixed point method to
establish the existence of a stable equilibrium. In sec-
tion 2, we will recall some preliminary backgrounds
followed by introducing notations in section 3. We

describe our model in section 4 and provide the main
result in section 5. Several discussions and conclusion
are presented in section 6.

2 Preliminary Backgrounds

In this section, we recall some basic concepts of inte-
gral equations and fixed point theorem which are de-
scribed in the following two subsections.

2.1 Integral Equations
An integral equation is an equation in which the un-
known function u(t) appears under an integral sign. A
general example of the Volterra integral equation in
u(t) is:

(Tu)(t) = f(t) +
∫ t

0
K(t, x, u(x))dx (1)

where K(t, x, u(x)) is called the kernel of the integral
equation and is continuous with respect to t, x and u(x)
on the domain D such that 0 < t < b, a < x < t and
u(x) is bounded, i.e. c < u(x) < d for some constants
a, b, c and d, f(x) is continuous on [0,t] and bounded,
namely, m1 < f(x) < m2 and K(t, x, u(x)) is Lip-
schitz with respect to u(x), i.e., if there is a positive
constant L such that:

|K(t, x, B(x))−K(t, x, A(x))| = L|B(x)−A(x)|
(2)

for (t, x, B(x)) and (t, x, A(x)) in the domain of K.
When Tu = 0 it is called a Volterra equation of the
first kind and is called a Volterra equation of the sec-
ond kind when Tu = u. When f(x) = 0, then it is
called homogeneous [2]. In what follows, we will use
integral equations to describe our model.
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2.2 Fixed Point Method
Let V be a Banach space with the norm |.|V , and let W
be a subset of V. Consider the operator T : W → V
defined on W. We say an operator is contractive with
contractivity a ∈ [0,1) if:

|T (x)− T (y)|V ≤ a|x− y|V , x, y ∈ W (3)

Theorem 1 [5] Assume that W is a nonempty closed
set in V and T : W → W is a contractive mapping
with contractivity constant 0 < a < 1. Then there
exists a unique x∗ ∈ W such that:

T (x∗) = x∗ (4)

Moreover for any x0 ∈ W , the sequence xn ∈ W
defined by:

xn+1 = T (xn) (5)

converges to x∗.

In what follows we will consider W = R2, the inte-
gral equation:

X(t) = G(t) +
∫ t

0
K(t, x)H(x,X(x))dx (6)

for all t ∈ I = [a, b] and assume that G ∈ C[a, b] and
K ∈ L2([a, b]× [a, b]). Define the operator T as:

(TX)(t) = G(t) +
∫ t

0
K(t, x)H(x,X(x))dx (7)

Notice then that the solution of the above integral
equation (6) can be obtained using the operator T. In
fact, we will use this operator to define iterations and
establish the existence of an equilibrium for our model
for infectious disease.

3 Notations

In what follows, we will use the following notations.
S(t): The fraction of the population that is susceptible
I(t): The fraction of the population that is infectious
I0(t): Function describing the initial infectious popu-
lation
R(t): The fraction of the population that is removed
β: Average number of contacts (sufficient for trans-
mission) between individuals in the population
µ: The rate of natural death
P (t): The probability of remaining infectious t units
after becoming infectious
Q(T ): The probability of being alive at time t0 + T ,
given that an individual is alive at time t0
ρ: Rate of newborn immunization
θ: Rate of susceptible immunization

4 Model

In this section, we formulate a general idea for de-
veloping the model by showing the following simple
diagram followed by detailed discussions.

Susceptible

Infected
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Following the framework of the Kermack-
McKendrick (or SIR) model, we divide the population
into three separate compartments that relate to an in-
dividual’s exposure to the disease. One compartment
corresponds to those who are not currently infected
by the disease but are susceptible to being infected
at some time in the future. The second compartment
contains the fraction of the population that is currently
infectious and capable of spreading the disease, and
the final compartment corresponds to those who are
removed from the disease dynamics (either as a result
of recovery or immunization).

We also make the following assumptions:
(i) Contact between individuals in the population

occurs at a constant rate, and such contact is sufficient
to transmit the disease.

(ii) The probability of remaining infectious fol-
lows a non-increasing function P(t) such that:

P (0) = 1 and limt→∞P (t) = 0.

(iii) If an individual is alive at time t0, then the
conditional probability of him or her being alive at
time t0+t is independent of age and may be modeled
using the following function:

Q(t) = e−µt (8)

(iv) Infection is not passed from mothers to their
newborns.
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(v) Both newborns and susceptible individuals in
the population are successfully immunized at constant
rates.

(vi) The total population remains constant.
Hence we illustrate the model in the above diagram at
the beginning of this section.

Let’s now consider the dynamics happening in the
Infectious compartment. In general, we have:

(Infectious at T ime t)

= (Total Infectious at t = 0)

×Pr(Still Being Alive)

+
∫ t

0
Pr(Becoming Infected)

×Pr(Still Being Infected)

×Pr(Still Being Alive)dx

so that mathematically:

I(t) = I0(t)e−µt+
∫ t

0
βS(x)I(x)P (t−x)e−µ(t−x)dx

(9)
Similarly in the Removed compartment:

(Removed at T imet) = (Total Removed at t = 0)

×Pr(Still Being Alive)

+[Removed from Infected at t = 0]

×Pr(Still Being Alive)+(Immunized Newborns)

+
∫ t

0
Pr(Becoming Infected)×Pr(Recovering)

×Pr(Still Being Alive)dx

+
∫ t

0
(Immunized Susceptibles)

×Pr(Still Being Alive)dx

so that we have:

R(t) = R0e
−µt + [I0(0)− I0(t)]e−µt + φ(1− e−µt)

+
∫ t

0
βS(x)I(x)[1− P (t− x)]e−µ(t−x)dx

+
∫ t

0
θS(x)e−µ(t−x)dx (10)

Finally since the population is assumed constant, our
third equation is given by:

S(t) + I(t) + R(t) = 1 (11)

which may be solved for S(t) if so desired.

5 Main Theorem

Let X0 (t) be the initial function. We define the fixed
point iteration:

Xn+1(t) = (TXn)(t)

= G(t) +
∫ t

0
K(t, s)H(s,Xn(s))ds (12)

for t ∈ [a, b] and integers n = 0. The above model
can be expressed in terms of the operator T if:

X(t) = [I(t) R(t)]t (13)

so that:

T1(X(t)) = G1(t) +
∫ t

0
K1(t, s)H(s,X(s))ds,

(14)

T2(X(t)) = G2(t) +
∫ t

0
(K21(t, s)H21(s,X(s))

+K22(t, s)H22(s,X(s)))ds (15)

where:
G1(t) = I0(t)e−µt

K1(t, s) = βP (t− s)e−µ(t−s)

H1(t, X(t)) = (1− I(t)−R(t))I(t)

G2(t) = R0e
−µt + [I0(0)− I0(t)]e−µt +φ(1− e−µt)

K21(t, s) = β(1− P (t− s))e−µ(t−s)

H21(t, X(t)) = (1− I(t)−R(t))I(t)

K22(t, s) = θe−µ(t−t)

H22(t, X(t)) = 1− I(t)−R(t)

Theorem 2 Consider the operator T with two com-
ponents (14), and (15) and assume G ∈ C[a, b],Ki ∈
L2([a, b]× [a, b]), and Hij satisfy a uniform Lipschitz
condition with respect to its second argument. Then T
has a unique fixed point in C[a, b]. Moreover, this it-
erative method (12) converges for any initial function
X0 ∈ C[a, b].

We will provide proof of this theorem in a future
paper.
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6 Conclusion
We have applied a fixed point method to solve the SIR
model. It is possible to use the same idea to solve
the SEIR model which is similar to the SIR model
except that a class of exposed individuals is consid-
ered. Also, the fraction of the population that was ini-
tially exposed is still alive at some time. Our proof is
different from standard methods; we use an iteration
method which will give rise to the unique solution.
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