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Abstract: In the paper, we present an efficent semi-analytical approach for functional differential equations (FDEs)
with constant delays consisting in combination of the method of steps and the differential transformation method
(DTM). Also some formulas based on DTM are determined for solving certain classes of functional differential
equations with proportional delays. The presented technique does not require any symbolic calculations or initial
guesstimates in contrast to methods like homotopy analysis method, homotopy perturbation method, variational
iteration method or Adomian decomposition method. Some examples are given to demonstrate the validity and
applicability of presented technique and a comparison is made with existing results.
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1 Introduction
Consider the following functional differential equa-
tion of n-th order with multiple constant delays

u(n)(t) = f(t, u(t), u′(t), . . . , u(n−1)(t),
u1(t− τ1),u2(t− τ2), . . . ,ur(t− τr)), (1)

where

ui(t− τi) = (u(t− τi), u′(t− τi), . . . , u(mi)(t− τi))

is mi-dimensional vector function, mi < n, i =
1, 2, . . . , r, r ∈ N and f : [t0,∞) × Rn × Rω is a

continuous function, ω =
r∑

i=1
mi.

Denote
t∗ = max{τ1, τ2, . . . , τr},

m = max{m1,m2, . . . ,mr}.
Initial function φ(t) needs to be assigned for equation
(1) on the interval [t0− t∗, t0]. Further, for the sake of
simplicity, we assume that φ(t) ∈ Cn([t0 − t∗, t0]).

Also we will consider the following functional differ-
ential equations with proportional delays

F
(
t,u(t),u(p0t),u(p1t), . . . ,u(pkt)

)
= 0, (2)

where

u(t) =
(
u(t), u′(t), . . . , u(n)(t)

)
,

t ≥ 0, F is a given function with appropriate domain
of definition, pi ∈ (0, 1), i = 0, 1, . . . , k.

Investigation of equations (1),(2) is important
since there is plenty of applications of such equa-
tions in real life. For example, we mention models
for stress-strain states of materials, motion of rigid
bodies, models of polymer crystallization, models de-
scribing behaviour of the central nervous system in a
learning process, species populations struggling for a
common food, systems controlled by PI or PID regu-
lators, evolution of population of one species etc. For
further models and details, see e.g. [1].

There are several series solution methods such
as homotopy analysis method (HAM), homotopy per-
turbation method (HPM), variational iteration method
(VIM), Adomian decomposition method (ADM),
Taylor polynomial method, Taylor collocation method
and differential transformation method (DTM) which
have been considered to approximate solutions of cer-
tain classes of equations (1), (2) in a series form.
However, in several papers initial problems for equa-
tion (1) were not properly defined. The authors used
only initial conditions in certain points, not the initial
function on the whole interval, thus the way to obtain
solutions of illustrative examples was not correct. We
propose a correct approach to overcome this vague-
ness.
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2 DTM, basic notions
The concept of differential transformation in the form
we use was proposed by Zhou [2] in 1986. It was
applied to solve linear and nonlinear initial value
problems in electric circuit analysis. This method
constructs a semi-analytical numerical technique
that uses Taylor method for solving of differential
equations in the form of a polynomial. It is different
from high-order Taylor series method which requires
symbolic computation of necessary derivatives of the
data functions.

The differential transformation of the k-th deriva-
tive of function u(t) is defined as follows:

U(k) =
1
k!

[
dku(t)

dtk

]
t=t0

, (3)

where u(t) is the original function and U(k) is the
transformed function. Inverse differential transforma-
tion of U(k) is defined as follows:

u(t) =
∞∑

k=0

U(k)(t− t0)k, (4)

and hence

u(t) =
∞∑

k=0

(t− t0)k

k!

[
dku(t)

dtk

]
t=t0

. (5)

In fact, inverse transformation (5) indicates that the
concept of differential transformation is derived from
Taylor series expansion. Although DTM is not able to
evaluate the derivatives symbolically, relative deriva-
tives can be calculated by an iterative way which is de-
scribed by the transformed form of the original equa-
tion. Since DTM is based on Taylor series, it is clear
that conditions for convergence of DTM are the same
as for Taylor series.
In actual applications the function u(t) is expressed as
uN (t) + RM , where a truncated series is

uN (t) =
N∑

k=0

U(k)(t− t0)k

and RN is the remainder term given by

RN =
1

(N + 1)!
dN+1u(t)

dtN+1

∣∣∣∣
t=t1

tN+1

for some t1 such that 0 < t1 < t. If the (N + 1)st
derivative of u(t) is bounded for t ∈ (0, 1], i.e.∣∣∣∣dN+1u(t)

dtN+1

∣∣∣∣ ≤ K

for a certain nonnegative constant K, then the maxi-
mum error for uN (t) in this interval can be estimated
from this remainder term as

emax =
K

(N + 1)!
.

The following well-known formulas for t0 = 0 have
been derived from definitions (3), (4):

Theorem 1 Assume that F (k), H(k) and U(k) are
differential transformations of functions f(t), h(t)
and u(t), respectively. Then:

Iff(t) =
dnu(t)

dtn
, then F (k) =

(k + n)!
k!

U(k + n).

Iff(t) = u(t)h(t), then F (k) =
k∑

l=0

U(l)H(k − l).

Iff(t) = tn, then F (k) = δ(k − n), where δ

is the Kronecker delta

Iff(t) = eλt, then F (k) =
λk

k!
Iff(t) = sin t, then

S(k) =

{
(−1)

k−1
2

1
k! if k = 2n + 1,

0 if k = 2n,

Iff(t) = cos t, then

C(k) =

{
(−1)

k
2

1
k! if k = 2n,

0 if k = 2n + 1.

More tramsformation formulas and proofs can be
found e.g. in [3], [4].

Theorem 2 Assume that F (k), G(k) are differential
transformations of functions f(t), g(t). If f(t) =
g(t− a),where a > 0 is a real constant, then

F (k) =
N∑

i=k

(−1)i−k

(
i

k

)
ai−kG(i), N →∞.

(6)

Proof. The proof follows immediately from definition
of differential transformation and binomial formula.

Recent Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-302-3 33



Hence

f(t) =
∞∑

k=0

G(k)(t− t0 − a)k

=
∞∑

k=0

G(k)
k∑

i=0

(−1)k−i

(
k

i

)
(t− t0)iak−i

=
∞∑

k=0

k∑
i=0

(−1)k−i

(
k

i

)
(t− t0)iak−iG(k)

=
∞∑
i=0

∞∑
k=i

(t− t0)i(−1)k−i

(
k

i

)
ak−iG(k)

=
∞∑
i=0

(t− t0)i
∞∑

k=i

(−1)k−i

(
k

i

)
ak−iG(k)

=
∞∑

k=0

(t− t0)k
∞∑

i=k

(−1)i−k

(
i

k

)
ai−kG(i).

Using Theorem 2 and the formula i) in Theorem 1 we
can easily prove differential transformation formula
for function f(t) = dn

dtn g(t− a).

Theorem 3 Assume that F (k), G(k) are differential
transformations of functions f(t), g(t), a > 0. If

f(t) =
dn

dtn
g(t− a),

then

F (k) =
(k + n)!

k!

N∑
i=k+n

(−1)i−k−n

(
i

k + n

)
× ai−k−nG(i), N →∞. (7)

Using Theorems 1, 2, 3 differential transformation of
any product of functions with delayed arguments and
derivatives of that functions can be proved. However,
such formulas are complicated and not easy applicable
for solving functional differential equations with mul-
tiple constant delays (see for example [5], [6], [7]).

3 FDEs with constant delays

Consider equation (1) subject to initials conditions

u(t0) = u0, u
′(t0) = u1, . . . , u

(n−1)(t0) = un−1

(8)

and subject to initial function φ(t) on interval
[t0 − t∗, t0] such that

φ(t0) = u(t0), φ′(t0) = u′(t0), . . . , φ(n−1)(t0)

= u(n−1)(t0). (9)

First we apply the method of steps. We substitute the
initial function φ(t) and its derivatives in all places
where unknown functions with deviating arguments
and derivatives of that functions appear. Then equa-
tion (1) changes to ordinary differential equation

u(n)(t) = f(t, u(t), u′(t), . . . , u(n−1)(t),

Φ1(t− τ1),Φ2(t− τ2), . . . ,Φr(t− τr)), (10)

where

Φi(t− τi) = (φ(t− τi), φ′(t− τi), . . . ,

φ(mi)(t− τi)), mi < n, i = 1, 2, . . . , r.

For more details on method of steps, see e.g. [1] or
[8].

Now applying DTM we get recurrence equation

(k + n)!
k!

U(k + n)

= F
(
k, U(0), U(1), . . . , U(k + n− 1)

)
, (11)

where, in general, F is a nonlinear function of its ar-
guments.
Using transformed initial conditions and then inverse
transformation rule, we obtain approximate solution
of equation (1) in the form of infinite Taylor series

u(t) =
∞∑

k=0

U(k)(t− t0)k

on the interval [t0, t0 + α], where α =
min{τ1, τ2, . . . , τr}, and u(t) = φ(t) on the in-
terval [t0− t∗, t0]. We demonstrate potentiality of this
approach on several examples.

Example 1. Consider the following problem for
delayed differential equation with variable coefficient
that was solved by Arikoglu and Ozkol [5],

u′′′(t) =− sin(t)u′
(
t− π

2

)
+ cos(t)u′(t)

+
√

2u
(
t− π

4

)
+ sin(t)− 2 cos(t)− 1

(12)

subject to initial conditions

u(0) = 0, u′(0) = 1, u′′(0) = 0. (13)

First, we remark that such formulation of problem is
not correct since if we take for instance t = 0, then
u(t− π

2 ) = u(−π
2 ) is not defined at all. Further, since

there is no initial function, this is not a Cauchy prob-
lem, thus it is not clear what kind of solution are we
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looking for since uniqueness of solution is not guar-
anteed.

The authors claim that the exact solution of
(12),(13) is u(t) = sin(t). However, this is only one
of many possible solutions, namely it is true for initial
function φ(t) = sin(t). If, for example, we consider
another initial function φ(t) = t3/6 + t which also
satisfies initial conditions (13), then we obtain com-
pletely different solution satisfying (12),(13).

The authors applied Theorems 1, 2, 3 for N = 5,
10, 15 and obtained approximate solution of the given
initial value problem.

Presented approach is different:
We solve equation (12) on interval [0, π/4] with initial
function

φ(t) = sin(t) (14)

for t ∈ [−π/2, 0] and initial conditions

u(0) = φ(0) = 0,
u′(0) = φ′(0) = 1,
u′′(0) = φ′′(0) = 0.

Using the method of steps we get

u′′′(t) = sin2(t) + cos(t)u′(t)− cos(t)− 1. (15)

Applying differential transformation on equation (15)
we obtain recurrence relation

(k + 1)(k + 2)(k + 3)U(k + 3) =
k∑

i=0

S(i)S(k − i)

+
k∑

i=0

C(i)(k − i + 1)U(k − i + 1)− C(k)− δ(k),

(16)

and from initial conditions u(0) = 0, u′(0) =
1, u′′(0) = 0 we get U(0) = 0, U(1) = 1, U(2) =

0. From (16) we have

U(3) =
1
3!

(
C(0)U(1) + S2(0)− C(0)− δ(0)

)
= − 1

3!
,

U(4) =
1
4!

[C(0)2U(2) + C(1)U(1) + 2S(0)S(1)

− C(1)− δ(1)] = 0,

U(5) =
1

3.4.5
[C(0)3U(3) + C(1)2U(2) + C(2)U(1)

+ 2S(0)S(2) + S2(1)− C(2)− δ(2)] =
1
5!

,

(17)

U(6) = 0,

...

U(k) =

{
− (−1)k

k! , k = 2n− 1, n ∈ N,
0, k = 2n, n ∈ N,

...

Therefore, the closed form of the solution can be writ-
ten as

u(t) = t− t3

3!
+

t5

5!
− t7

7!
+(−1)k t2k+1

(2k + 1)!
+· · · = sin t

which is unique exact solution of Cauchy problem
(12), (14) on [0, π/4]. It can be easily verified that it
is a solution of Cauchy problem (12), (14) on [0,∞).

Example 2. Consider delayed differential equation of
the third order

u′′′(t) = −u(t)− u(t− 0.3) + e−t+0.3 (18)

subject to the initial function

φ(t) = e−t, t ≤ 0 (19)

and conditions

u(0) = 1,

u′(0) = −1, (20)
u′′(0) = 1.

This problem was solved using the Adomian decom-
position method (ADM) by Evans and Raslan [9],
later using current DTM approach by Karakoc and
Bereketoglu [6] and again using ADM by Blanco-
Cocom et al. [10].

Straightforward observation gives the informa-
tion that, as Blanco-Cocom et al. [10] point out, it
is enough to consider only (18) and (19), since condi-
tions (20) are not independent of initial function φ(t)
defined in (19). However, in fact, in all mentioned
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papers authors did not use initial function (19) at all,
they solved problem (18), (20) which is not a Cauchy
problem. Karakoc and Bereketoglu [6] tried to rectify
the situation of not using (19) by excluding this condi-
tion from formulation of the studied problem. Unfor-
tunately, this step led to the same curiosity observed
in Example 1 when for instance u(−0.3) is not de-
fined. In any of the cases, uniqueness of solution is
not guaranteed.

In both papers using ADM the authors obtained
approximate solution using iterative scheme contain-
ing a triple integral and compared the result to func-
tion u(t) = e−t which is a solution of (18), (20)
and satisfies (19) as well. Karakoc and Bereketoglu
[6] solved equation (18) using current DTM approach
without the dependence on the initial function and de-
termined recurrence relation

(k + 1)(k + 2)(k + 3)U(k + 3)

= −U(k)−
N∑

h1=k

(−1)h1−k

(
h1

k

)
(0.3)h1−kU(h1)

+
1
k!

(−1)ke0.3. (21)

The authors solved (21) for N = 6, 8, 10 and
compared obtained approximate solutions to solution
u(t) = e−t.

In contrast to complicated formula mentioned
above, DTM combined with method of steps gives
simple recurrence relation

U(k + 3) =
−U(k)

(k + 1)(k + 2)(k + 3)
, k ≥ 0. (22)

From initial conditions (20) and recurrence relation
(22) we have

U(0) = 1, U(1) = −1, U(2) =
1
2

U(3) =
−1
3!

,

U(4) =
1
4!

, . . . , U(k) =
(−1)k

k!
, ...

Using inverse differential transformation (4) we ob-
tain a solution of (18), (19) in the form

u(t) =
∞∑

k=0

(−1)k

k!
tk = e−t. (23)

It is the closed form unique solution of Cauchy prob-
lem (18), (19) which cannot be reached using either
ADM or current approach of using DTM as described
in above mentioned papers [9], [10] and [6], only ap-
proximation of the solution was possible.

4 FDEs with proportional delays

In this section we investigate equation (2). First, we
give several theorems which can be easily proved
from definition of the differential transformation
method.

Theorem 4 Assume that W (k), U(k) are the differ-
ential transformations of the functions w(t), u(t) and
q ∈ (0, 1), then:

If w(t) = u(qt), then W (k) = qkU(k).

Proof. We calculate k − th derivative of equation
w(t) = u(qt). We get

dk

dtk
w(t) =

dk

dtk
[u(qt)] = qk dk

dt̃k
u(t̃),

where t̃ = qt, thus[
dk

dtk
w(t)

]
t=t0

= qk

[
dk

dt̃k
u(t̃)

]
t=t0

= qkk!U(k)

and using (2) we have

W (k) =
1
k!

[
dkw(t)

dtk

]
t=t0

=
1
k!

qkk!U(k) = qkU(k),

where k ∈ N ∪ {0}.
Similarly using Theorem 1 and Theorem 4 we can
prove the following theorems:

Theorem 5 Assume that W (k), Ui(k) are the dif-
ferential transformations of the functions w(t), ui(t)
and qi ∈ (0, 1), i = 1, 2, then

If w(t) = u1(q1t)u2(q2t)

then

W (k) =
k∑

l=0

ql
1q

k−l
2 U1(l)U2(k − l).

Theorem 6 Assume that W (k), U(k) are the differ-
ential transformations of the functions w(t), u(t) and
q ∈ (0, 1), then:

If w(t) =
dmu(qt)
d(qt)m

then

W (k) =
(k + m)!

k!
qkU(k + m).
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Example 3 As a practical example, we consider the
following pantograph delay equation:

u′′(t) =
3
4
u(t)+u

(
t

2

)
−t2+2, u(0) = u′(0) = 0.

(24)
Using differential transformation method, the trans-
formed version of equation (24) is

(k + 1)(k + 2)U(k + 2)

=
3
4
U(k) +

(
1
2

)k

U(k)− δ(k − 2) + 2δ(k),

(25)

k ≥ 0, and the differential transformation version of
the initial conditions u(0) = u′(0) = 0 has the form
U(0) = U(1) = 0. From system (25), we have

U(2) =
1
2

[
3
4
U(0) + U(0) + 2

]
= 1,

U(3) =
1
6

[
3
4
U(1) +

1
2
U(1)

]
= 0,

U(4) =
1
12

[
3
4
U(2) +

1
4
U(2)− 1

]
= 0,

U(5) =
1
20

[
3
4
U(3) +

1
8
U(3)

]
= 0,

...

U(k) = 0,

... (26)

Using the inverse transformation rule (4) , we obtain
the following solution

u(t) = t2

which is the exact solution of equation (24).
The same equation was solved by Ghomanjani and
Farahi [11] using the Bezier control points method.
They obtained the same solution in very complicated
form

u(t) = t2(1− t)6 + 6t3(1− t)5 + 15t4(1− t)4

+ 20t5(1− t)3 + 15t6(1− t)2 + 6t7(1− t) + t8.

Example 4 Consider the following neutral differential
equation with proportional delays of the third order:

u′′′(t) = u(t) + u′
(

t

2

)
+ u′′

(
t

3

)
+

1
2
u′′′

(
t

4

)
− t4 − t3

2
− 4

3
t2 + 21t (27)

subject to initial conditions

u(0) = u′(0) = u′′(0) = 0. (28)

The differential transformation version of equation
(27) has the form

U(k + 3) =
1(

1− 1
22k+1

)
(k + 3)(k + 2)(k + 1)

×
[
U(k) +

1
2k

(k + 1)U(k + 1)

+
1
3k

(k + 1)(k + 2)U(k + 2)− δ(k − 4)

− 1
2
δ(k − 3)− 4

3
δ(k − 2) + 21δ(k − 1)

]
. (29)

Differential transformation version of initial condi-
tions (28) is

U(0) = 0, U(1) = 0, U(2) = 0.

Solving recurrence equation (29) we get

U(3) =
1
3

[
U(0) + U(1) + 2U(2)

]
= 0,

U(4) =
1
21

[U(1) + U(2) + 2U(3) + 21] = 1,

U(5) =
8

465

[
U(2) +

3
4
U(3) +

4
3
U(4)− 4

3

]
= 0,

U(6) =
16

1905

[
U(3) +

1
2
U(4) +

20
27

U(5)− 1
2

]
= 0,

...

U(k) = 0,

...

From here we get

u(t) = t4

which is the exact solution of equation (27).

Chen and Wang [12] solved equation (27) using
variational iteration method and obtained sequence of
approximate solutions in the form

u1(t) =
7
8
t4 − 1

45
t5 − 1

240
t6 − 1

210
t7,

u2(t) =
63
64

t4 − 1
288

t5 − 1031
1492992

t6 − . . . .

Ghomani and Farahi [11] solved equation (27) using
Bezier control points method and obtained the exact
solution in complicated form

u(t) = t4(1− t)4 + 4t5(1− t)3 + 6t6(1− t)2

+ 4t7(1− t) + t8.
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5 Conclusion
In the present paper, we have shown that the differen-
tial transformation method and the differential trans-
formation method in combination with the method of
steps can be successfully used for solving functional
differential equations with constant delays and pro-
portional delays, respectively. The results obtained
using the proposed method are in good agreement
with those obtained by other methods. It can be con-
cluded that DTM is powerful and efficient in find-
ing analytical as well as numerical solutions for wide
class of functional differential equations.

The main advantage of presented approach is that
it can be applied directly to functional differential
equations without requiring linearization, discretiza-
tion or perturbation. Another important advantage is
that this technique is capable of greatly reducing the
size of computational work and also reduces solving
of an initial value problem to solving of a system of
recurrence algebraic equations.

It is necessary to point out that all the other men-
tioned methods are more complicated in comparison
with the differential transformation method. More-
over, the other methods usually give only approxi-
mate solutions whereas using differential transforma-
tion method it is possible to obtain solutions in closed
form.
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