
 
 

 

On Cognitive Learning Methodologies for Cognitive Robotics 
 

Yingxu Wang 

International Institute of Cognitive Informatics and Cognitive Computing (ICIC) 
Laboratory for Computational Intelligence and Software Science 

Dept. of Electrical and Computer Engineering 
Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary 

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 
Email: yingxu@ucalgary.ca 

 
 

Abstract: A cognitive robot is an autonomous robot that is capable of inference, perception, and learning 
mimicking the cognitive mechanisms of the brain. The underpinning technologies for cognitive robots are the 
cognitive knowledge base (CKB) and the cognitive learning engine (CLE). This paper explores the cognitive 
foundations and denotational mathematical means of CLE and CKB for cognitive robotics. The conceptual 
architectures and cognitive functions of CKB and CLE are formally described. A content-addressed knowledge 
base methodology for CKB and a recursive learning algorithm for CLE are formally presented. The CLE and 
CKB theories and methodologies are not only designed to explain the mechanisms of human knowledge 
acquisition and learning, but also applied in the development of cognitive robots, cognitive computers, and 
knowledge-based systems as a key methodology. 
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1 Introduction 
 
The hierarchy of human knowledge is categorized at 
the levels of data, information, knowledge, and 
intelligence. For instance, given an AND-gate with 
1,000-input pins, it may be described very much 
differently at various levels of perceptions in the 
knowledge hierarchy. At the data level on the 
bottom, it represents a 21,000 state space, known as 
‘big data’ in recent terms, which appears to be a big 
issue in engineering. However, at the information 
level, it just represents 1,000 bit message that is 
equivalent to the numbers of inputs. Further, at the 
knowledge level, it expresses only two rules that if 
all inputs are one, the output is one; and if any input 
is zero, the output is zero. Ultimately, at the 
intelligence level, it is simply an instance of the 
logical model of an AND-gate with arbitrary inputs. 
This example reveals that human intelligence and 
wisdom are an extremely efficient and a fast 
convergent induction mechanism for knowledge and 

wisdom elicitation and abstraction where data are 
merely factual materials and arbitrary instances in the 
almost infinite state space of the real world. 
Therefore, databases and knowledge bases are 
significantly different in both theories and 
manipulation mechanisms.   

A Cognitive Knowledge Base (CKB) is a 
knowledge base that represents and manipulates 
knowledge as a dynamic concept network mimicking 
human knowledge processing. CKB is demanded in 
machine learning, knowledge-based systems, 
cognitive computers, and cognitive robots in general, 
as well as in the development of the Cognitive 
Learning Engine (CLE) for cognitive robots in 
particular. CKB is a central component for machine 
learning via autonomous knowledge acquisition and 
manipulation, because the general form of learning is 
a knowledge acquisition and manipulation process 
according to the latest studies in cognitive science, 
brain science, and neuroinformatics [3, 6, 17, 22, 24, 
31, 34].  
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Conventional knowledge bases are studied in 
three categories known as the linguistic knowledge 
bases [5, 6, 7, 10, 13, 31], expert knowledge bases [1, 
21, 34], and ontology [2, 9, 20, 21]. Typical linguistic 
knowledge bases are generic lexical databases such 
as WordNet and ConceptNet [7, 11]. The linguistic 
knowledge bases only provide general materials or 
dictionaries for applied knowledge bases of 
individuals and systems. Expert knowledge bases are 
elicitations of various domain knowledge represented 
by logical and fuzzy logical rules [1, 15, 32, 33, 35, 
36]. However, human knowledge representation and 
retrieval are more complicated and semantics-centric 
beyond logical rules. Ontology deals with small-scale 
knowledge in a certain domain as a hierarchical 
network of a set of natural words and their semantic 
relations [2, 4, 8, 14, 16, 29]. Ontology represents 
knowledge in a static and application-specific model, 
which cannot be applied as a general knowledge base 
for machine learning and real-time knowledge 
manipulations. 

According to studies in cognitive science and 
neurophysiology [9, 12, 25, 26, 30], the foundations 
of human knowledge and long-tem memory can be 
represented by an Object-Attribute-Relation (OAR) 
model based on the synaptic structure of human 
memory. The OAR model represents the hierarchical 
and dynamic neural clusters of knowledge retained in 
memory, which leads to the development of the 
logical model of cognitive knowledge bases. 

Definition 1. The OAR model of knowledge as 
retained in long-term memory (LTM) is a triple, i.e.: 

                        OAR  (O, A, R)                       (1) 

where O is a finite set of objects identified by unique 
symbolic names, A is a finite set of attributes for 
characterizing each object, and R is a set of relations 
between objects and attributes. 

The OAR model can be illustrated as shown in 
Fig. 1 for formally modelling the structure of human 
knowledge and its representation in LTM and CKB. 

This paper presents a novel cognitive learning 
engine (CLE) for cognitive robots powered by the 
cognitive knowledge base (CKB). The structure 
model of CKB is described in Section 2, which 
encompasses the formal concept model for itemized 
knowledge representation and the dynamic concept 
network model for the entire knowledge base 
composition. Knowledge manipulations in CKB are 
embodied by a set of knowledge acquisition and 
retrieval operations on the structural models of CKB. 

On the basis of CKB, the CLE architecture and 
methodologies are formally described in Section 4 
for implementing the autonomous learning of 
cognitive robots.  

     O1 
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Figure 1. The OAR model of human knowledge 
representation 

 

 

2 The Cognitive Knowledge Base for  
   Robot Learning 
 

It is recognized that the generic form of machine 
learning is a knowledge acquisition and manipulation 
process mimicking the brain. Therefore, knowledge 
representation as a dynamic concept network is 
centric in the design and implementation of the 
intelligent knowledge base for the cognitive learning 
engine in a cognitive robot.  

The logical structure of CKB is modeled as a 
dynamic network of acquired knowledge of concepts 
and themes as shown in Fig. 2. The formal concept in 
CKB represents a set of itemized knowledge in the 
form of the OAR model according to concept algebra 
[18]. The theme and view represent a set of 
composite knowledge on a subject with multiple 
associate concepts in CKB. Knowledge acquisition, 
fusion, and retrieval in CKB are controlled by the 
knowledge manipulation engine. 

2.1 The formal Concept Model of Knowledge  

Definition 2. Let O denote a finite nonempty set 
of objects, and A be a finite nonempty set of 
attributes, the semantic discourse Uc of knowledge 

bases is a triple, i.e.:   
 

( )c  = 

   =     |    |    |      : 

U O, A, R

R O O O A A O A A         (2) 
where R is a set of relations between O and A .   
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Figure 2. Architectural model of the cognitive knowledge 
base 

 
On the basis of the semantic discourse of 

knowledge, an abstract or general concept can be 
formally modeled as follows. 

Definition 3. A formal concept, C, as the basic 
unit of knowledge and the unique semantic model of 
linguistics in the discourse of the universal concept 
environment Uc is a 5-tuple, i.e.: 

( , , , , )c i oC A O R R R                 (3) 

where A is a finite nonempty set of attributes 

(intension) of C, A  ÞA  Uc where Þ represents a 

power set and  denotes that a set is a substructure 

of a given hyperstructure; O is a finite nonempty set 

of objects (extension) of C, O  ÞO  Uc; 

Rc O   A  is a finite nonempty set of internal 

relations, Rc  ÞR  Uc; 

  ' , ' ' 'iR A A A C AÍ ´    C , is a finite nonempty 

set of input relations where C is a set of external 
concepts, c ' Þ 'C C CÍ O U . For convenience, 

 'iR A A= ´  will be simply denoted as  'iR C CÍ ´ ; 

and  'oR C CÍ ´ is a finite nonempty set of output 
relations. 

The formal concept is the minimum meaningful 
unit of knowledge, while words in natural languages 
are not because of their overloaded ambiguity. The 
structure model (SM) of concepts, Concept|SM, 
describes an itemized knowledge in CKB as shown 
in Fig. 3. Concept|SM represents a formal concept as 
a 5-tuple in Real-Time Process Algebra (RTPA) [19] 
where each field in the tuple is defined by a type and 

a constraint. In the concept model, ConceptID|S 
denotes the name of the concept as a string upto 100 
characters; A|U a set of attributes that denotes the 
intention of the concept; O|U a set of objects that 
instantiates the extension of the concept; RI|U a set 
of internal relations between the objects and 
attributes; and RE|U a set of external relations 
between the concept and other concepts in the 
knowledge base. 
  
 

 Concept|SM   

   {<ConceptID: S | 1  ConceptID|S  100>,            // ID of the concept 
     <A: U | A|U = {A1|SM, A2|SM, …, An|SM}>,   // Attributes 
     <O: U | O|U = {O1|SM, O2|SM, …, Om|SM}>,  // Objects 
     <RI: U | RC|U = O|U  A|U>,               // Internal relations 
     <RE: U | RO|U = C|SM  C’|SM>                        // External relations 
   } 

 

Figure 3. The structure model of formal concepts 
 

In the CKB models, a set of typical type suffixes 
of RTPA is adopted for denoting the semantic 
categories of entities such as SM (structure models), 
PM (process models), N (natural numbers), R (real 
numbers), L (Boolean variables with two constants T 
– true or F – false), S (strings), and U (sets). An 
entity in CKB is defined as EntityID:TypeSuffix and 
invoked as EntityID|TypeSuffix, e.g., A|U is a set of 
attribute A in the set type.  

 

2.2 The Structure of Cognitive Knowledge Base 
      for Cognitive Robots 

 

Definition 4. A generic knowledge K in Uc is an 

n-nary relation Rk among a set of n concepts, C, i.e.: 

                      
1

: X
n

k i
i=

K = R C C                         (4) 

where X denotes a Cartesian product and 

ckR Î R U . 

According to Definition 4, the entire knowledge 
K of a person or a cognitive system is a Cartesian 

product of all formal concepts acquired in the form 
of a concept network.  

Theorem 1. The entire knowledge K in  is a 

Cartesian product among all formal concepts C in the 
CKB, i.e.:    

           
1 1

: X X
n n

k i j
i= j=

DCN = R C  C ,  i j K           (5) 

where K is embodied as a dynamic concept network 

(DCN).   
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The Cognitive Learning Engine (CLE) 
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Proof: Theorem 1 can be directly proven based 
on Definitions 1 through 4 with neurophysiological 
support as shown in Fig. 1. Because the relations 
between concepts are transitive, the generic topology 
of knowledge is a DCN, which is continuous 
updating when new knowledge in the form of formal 
concepts is acquired.  

The advantages of the DCN representation of 
knowledge are natural (as described in the OAR 
model in Fig. 1), dynamic, and evolvable. It is 
dynamic because the knowledge base can be updated 
flexibly during knowledge acquisition and learning 
without destructing the existing nodes and edges. It is 
evolvable because the knowledge base may 
adaptively grow without changing the existing 
structure and topology of DCN. 

The formal structure of CKB, CKB|SM, is 
modeled as a set of interconnected concepts 
Concept|SM as shown in Fig. 4 in RTPA. The current 
numbers of concepts in CKB|SM is registered in 
#Concepts|N. The itemized knowledge of 
Concept|SM as modeled in Fig. 3 is extended by a 
concept index as a serial number and a time stamp 
that indicates when the concept is created. The 
logical model of CKB is designed according to the 
nature of human knowledge as described in Theorem 
1. The DCN can be embodied as a digraph where a 
node is a formal concept, and an edge is one of the 
built-in relations such as attribute, object, synonym, 
antonym, hyponym, and hypernym as formally 

described in Fig. 4. The formal model of CKB|SM 
indicates that a CKB in cognitive computing and 
cognitive linguistics is not merely a relational 
database. Instead, it is a complex network of itemized 
knowledge denoted by a set of formal concepts and 
their relational themes and views. The Cartesian 
product between all concepts in CKB indicates the 
semantic complexity of a knowledge base.  

According to concept algebra [18] and semantic 
algebra [27], a formal concept is represented in a 
hierarchical semantic context related to the synonym 
and antonym concepts at the same conceptual level, 
to the hypernym concepts at the higher level, and to 
hyponyms as well as attributes and objects at the 
lower level. This hierarchical semantic framework 
represents the knowledge base acquired by a person 
or a cognitive robot during learning. 

 

2.3 Manipulations of Knowledge Acquisition in  
      CKB for Robot Learning 
 

Knowledge acquisition in CKB as a result of 
leaning by humans and cognitive systems can be 
formally manipulated by the cognitive processes of 
concept memorization and knowledge fusion. The 
former enters an acquired concept into CKB based on 
the formal structure Concept|SM as formally defined 
in Fig. 3. The latter analyzes the relationship between 
a newly established concept and all existing concepts 
in CKB|SM according to Theorem 1. 

 
 

 
CKB|SM  {<#Concepts: N | 1 < #Concept|N  SizeOfCKB|N>, 

                       <
#Concepts|N

|N 1i
R


Concept(i|N)|SM :: 

                                         (<Concept|SM>, 
                                           <Index: N | Index|N := i|N>, 
                                           <TimeStamp: YYYY:MM:DD:hh:mm:ss> 

                                           <
#Concepts|N

|N 1i
R


Concept(i|N)|SM 
#Concepts|N

|N 1j
R


Concept(j|N | i|N  j|N)|SM ::   

                                                             | <Synonym: U | Synonym|U | C(i|N)|SM.A|U = C(j|N)|SM.A|U)>, 
                                                             | <Antonym: U | Antonym|U | C(i|N)|SM.A|U = C(j|N)|SM. A |U)>,  
                                                             | <Hyponym: U | Hyponym|U  = C(i|N)|SM.A|U  C(i’|N)|SM.A|U)>,  
                                                             | <Hypernym: U | Hypernym|U = C(i|N)|SM.A|U  C(i’|N)|SM.A|U)>, 
                                                             | <Independent: U | Independent|U = {C(i|N)|SM.A|U  C(i’|N)|SM.A|U) = > 
                                           > )  
                       >                                          
                     } 

 
 

Figure 4. The structure model of the entire knowledge base
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The first step of knowledge acquisition is to retain 
a newly acquired itemized knowledge in CKB. The 
second step of knowledge acquisition is to connect the 
newly acquired itemized knowledge to existing 
knowledge in CKB by mapping the newly acquired 
concept into the entire knowledge base via 
comparative analyses. This process is called 
knowledge fusion that analyzes potential relations 
between the new concept and the n existing ones by 1-
to-n pairwise mapping throughout CKB. The 
mathematical model of knowledge fusion is formally 
described in Eq. 4. It reveals the mechanisms of 
knowledge memorization and fusion where acquired 
knowledge buffered in short-term memory is 
selectively moved into long-term memory [17, 21, 23, 
28]. It is also the cognitive mechanism of human 
subconscious learning and knowledge comprehension. 
 
 

2.4 Manipulations of Knowledge Retrieval in CKB  
      for Robot Learning 
 

As the result of machine learning, knowledge 
retrieval from CKB can be implemented at three levels 
such as those of concept retrieval, subject retrieval, 
and entire knowledge base retrieval. The bottom level 
retrievals for concepts from CKB can be further 
classified as those of formal concepts, antonyms, 
hyponyms (attributes and objects), and hypernyms.  

An important function of CKB is its content-
addressed mechanism for knowledge retrieval and 
manipulations enabled by the structure models and 
cognitive search algorithms.  

Concept retrieval seeks a targeted itemized 
knowledge by content-addressed matching, which 
adaptively allocates and fetches a target concept in 
CKB without the requirement for a memory address as 
that in databases. The ConceptRetrieval|PM process is 
designed as a set of iterative matching searches on all 
concepts learnt and acquired in CKB|SM. Then, 
synonym, antonym, hypernym, and hyponym 
retrievals from CKB can be implemented in the similar 
way. 

On the basis of the retrieval algorithms of 
individual concept as well as antonyms, hyponyms, 
and hypernyms, the retrieval of a subject/theme and 
the entire knowledge base is logically reduced to an 
iterative retrieval of all concepts encompassed in them, 
respectively. As a result, a subject or the entire CKB is 
embodied by an interconnected concept network, 

denoted by the Dynamic Concept Network (DCN), 
where a node is a concept and an edge is an external 
relation between a pair of concepts established by the 
algorithm of knowledge fusion. 
 
 

3 The Cognitive Learning Engine of 
   Cognitive Robots  
 
On the basis of CKB as formally described in the 
preceding section, a general Cognitive Learning 
Engine (CLE) is designed and implemented for 
autonomous machine learning of natural language 
contents and online documents mimicking the 
cognitive process of human beings.  
 
3.1 The Architecture of CLE 
    

CLE is an autonomous machine learning system to 
learn text-based knowledge in natural languages and 
symbolic notations. The architecture of CLE is 
described by the functional model as shown in Fig. 5. 
CLE encompasses two subsystems known as the 
learning kernel and CKB. The former enables 
autonomous machine learning based on a recursive 
learning algorithm, which will be formally described 
in Section 3.2. The latter supports the manipulation of 
existing and newly acquired knowledge via conceptual 
and logic knowledge representation. 

 

3.2 Implementation of CLE 

CLE implements autonomous machine learning by 
a recursive learning algorithm. As analysed in Section 
2, concept is the basic unit of learning that reserves the 
complete and stable semantics in natural languages. 
Therefore, at the most fundamental level, concept 
learning is implemented as the kernel of CLE. Based 
on the cognitive algorithm of concept learning, high-
level learning mechanisms such as sentence, subject 
(paragraph), and general (essay) learning are 
implemented recursively as shown in Fig. 6. 

There are seven relational operators, five 
reproductive operators, four compositional operators, 
on formal concepts according to concept algebra [18]. 
On the basis of concept algebra, human knowledge 
and semantics in natural languages can be rigorously 
modeled as formal concepts.      
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Figure 5. Architecture of the cognitive learning engine (CLE) 
 

 
The learning of fundamental concepts can be 

reduced to the algebraic operations on formal concepts 
in CKB. For instance, the composition of two concepts 
C1 and C2 yields a superconcept C by the intersection 
of both sets of attributes, the union of both sets of 
objects, the updating of internal relations, and the 
incremental unions of the input/output relations, 
respectively. Given two formal concepts C1(pen) and 
C2(pencil), the composite semantics of a superconcept 
C3(stationery), can be rigorously derived as formally 
described in Eq. 6. 

The example of concept composition as given in 
Eq. 6 yields a superconcept C3(stationery) as 
illustrated in Fig. 7 where the superconcept is 
composed by the given subconcepts 

1 2( ) and ( )C pen C pencil . 

Similarly, the aggregation of a superconcept C1 
from a given concept C0 is an inductive generalization 
of C0 by a broader intension with fewer specific 
attributes 'A  and extended coverage of objects 'O . 
Given the subsets of attributes and objects 

' { } and ' { }A ink O pencil= =  to be removed or 
extended, respectively. The aggregation of the 
superconcept (41 41)C stationery  based on (1 )C pen can 

be obtained as shown in Eq. 7. The example of 

concept aggregation yields a superconcept relation 
with increasingly broader concept, i.e., 

1 1 41 41( )  ( )C pen C stationery  as illustrated in Fig. 8. 

 
Figure 6. The recursive learning mechanism of CLE 
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Figure 9. Cognitive robot learning implemented by CLE and CKB

Process Example 
  

“A cognitive computer  is  an intelligent computer  for  knowledge processing.” 

  

  

  

  

  

  
 

Subject = {CgC} 
Concept = {Cg, C, I, K, P, CgC, IC, KP} 
Knowledge_ differential = d(OAR)/dt 
   = {Cg, C, I, K, P, CgC, IC, KP} \ {C, K, P} = {Cg, I, CgC, IC, KP} 
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Figure 7. Robot learning by concept composition 
 

With the support of CKB for knowledge 
representation, acquisition, and retrieval, the cognitive 
learning system, CLE, mimics human cognitive 
processes of learning and knowledge acquisition as 
illustrated in Fig. 9 where the denotational 
mathematical operators are adopted from concept 
algebra and semantic algebra [18, 27]. 

 

 
 

Figure 8. Robot learning by concept aggregation  

4 Conclusion  
 
This paper has presented a novel cognitive learning 
engine (CLE) for cognitive robotics powered by the 
cognitive knowledge base (CKB). CKB and its 
theoretical foundations on cognitive science and 
neuroinformatics are formally presented in this paper, 
which explains how humans acquire, memorize, and 
manipulate knowledge in learning. It also 
demonstrates how cognitive machines and systems 
may learn from the human cognitive processes of 
knowledge manipulations and learning on the basis of 
the denotational mathematical models and algorithms. 
The CKB system has been characterized by its 
content-addressed knowledge access, which is 
different from those of conventional databases.  

CLE as an autonomous robot learning system has 
been developed based CKB for text-based knowledge 
acquisition in natural languages and symbolic 
notations. CLE has implemented the recursive learning 
technology at concept, subject, and essay levels from 
the bottom up. An interest finding in this work has 
been the shareability and transformability of learnt 
knowledge among cognitive machines when the same 
structure of cognitive knowledge base is adopted. The 
CLE and CKB systems have not only been adopted to 
simulate the mechanisms of human knowledge 
acquisition, comprehension, and learning, but also 
been applied in the development of cognitive robots, 
cognitive learning systems, cognitive computers, and 
knowledge-based systems as a key methodology and 
novel technology.      
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