
Introducing Autonomy in Internet of Things
QAZI MAMOON ASHRAF AND MOHAMED HADI HABAEBI

Department of Electrical and Computer Engineering
International Islamic University Malaysia

Jalan Gombak, Selangor
MALAYSIA

mamoonq@gmail.com; habaebi@iium.edu.my

Abstract: - Internet of Things (IoT) is playing a major role in extending the reach of the existing
communication systems to include resource constrained devices. Many exciting research works for IoT have
been proposed for management of such devices such that human intervention is minimized. This is a challenge
due to the high heterogeneity, high complexity of the devices and the lack of dynamic management
schemes.Here, we introduce the paradigm of autonomic computing to be used for such dynamic yet secure
management in IoT. The adoption of the autonomy in IoT architecture can prove to be a valuable addition to
IoT systems.

Key-Words: -Internet of Things, Autonomy, Management, Wireless Sensor Networks

1 Introduction
The deployment of a large number of sensor devices
in various applications has led to the arrival of
Internet of Things (IoT). The manual installation
and management of these devices
becomesimpractical due to the large numbers
involved.Specifically, there exists an inefficiency
that can be resolved by minimizing user
intervention.The manual maintenance of a large
number of devices becomes inefficient, and
demands the presence of intelligent and dynamic
management schemes.

A similar problem has been encountered in
traditional client-server paradigms, where
autonomic computing has come to the rescue.
Autonomic computing has substantially helped
minimize user intervention for management of
computer systems. In the traditional client-server
paradigm, and enterprise computing, an autonomic
system is defined as “an intelligent system, or
system of systems where data acquired by sensing or
monitoring capability is utilized in an overall
autonomic decision-making process.”[1]. Such a
system should be able to vary its configuration
dynamically throughout its working duration. The
main goal of autonomic computing is the
management of computing resources in a manner so
as to minimize the user intervention. It is essentially
a group of computer systems which are managing
and optimizing the functions of other groups of
computing systems. All this is done while
minimizing manual intervention[2].

Autonomic systems have been defined
differently by many researchers. For our purpose,

we accept the definition provided in[1]. The reason
of selecting this definition is because it can be
applied easily for the scope of IoT, and is not
limited by specific issues.

Autonomy in IoT can be realized by
implementing self-managing systems. Self-
management is the property of a system to achieve
management and maintenance of its resources
intrinsically and internally. Management and
maintenance is realized through many levels of
decision making. In IoT, the management scope
extends to access management, device management
as well as service management. Thus, for self-
management, decision making in IoT should pertain
to this management scope of IoT. As a consequence,
autonomic IoT will be achieved after self-
management is achieved. Later in this paper, we
expand the reasoning behind this and describe the
architecture to introduce autonomy into the
traditional IoT architecture.We also discuss other
scopes of management such as data management,
context management as well as trust management.

2 Related Work
Recently, Perera et al.[3][4][5] have worked on
similar management problem sets using few
middleware approaches for decision making. For
decision making, parameters of device context
information are gathered to allow heterogeneous
devices to be manageable under a common
framework. Sensor data is filtered at the application
layer where the complete data is stored.The major
disadvantage of this method is that the end network

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 215

mailto:mamoonq@gmail.com
mailto:habaebi@iium.edu.my

Fig. 1. The autonomic control loop divided between an

autonomic manager and a managed resource. Adapted

from[11].

continues to forward all the data, irrespective of the
fact that only few data sets are required.
Furthermore, individual nodes can’t be requested for
specific data.This leads to a situation where all the
end nodes are active and adds a constraint to energy
conservation by affecting the duty cycle.

Krco et al. [6]designed a system to achieve
“plug-and-play” functionality via a middle ware
implementation. This middleware acts as a dynamic
manager which allows the system to quickly add or
remove sensors and networks. The end nodes are
essentially the sensors and the networks are
essentially the gateway along with their set of end
nodes. All the data is forwarded to the gateway,
which acts as a wireless network sink. In turn, the
gateway groups the data and forwards it to the
machine management system.

Rajan et al. [7] first realized that an intelligent
management scheme is required for device
management in IoT. They introduce a scheme and
present general requirement for achieving the same,
without much attention to technical specifications.

Pujolle G. [8] proposes an IoT architecture

following similar requirements and principles. The
scope of decision making is limited to selecting the
best communication protocol to use. A higher level
overview on agent features is provided without
enough details on how autonomy is achieved in the
protocol. The performance evaluation for IoT
architecture, however,was conducted in a telephone
switching system instead of a wireless network.

Features such as topology control, node
registration as well as support for heterogeneous,
constrained nodesare compared in Table I for few
other research works as well. Few requirements of
autonomy are mentioned and the research works are
compared against the same. A component based
design is required for autonomy as it allows for
modularity in the design. The feature of the support
for constrained, heterogeneous nodes is quite broad,
and eventually decision making for management of
such nodes is important. In this regard, our goals
and those of[5] are similar. An autonomic system
should be system topology aware. This property
allows to support both dynamic control as well
being environmentally aware. As an example, the
SDN based approach [9] offers a high level of such
networking capabilities. Autonomy can also be
realized in the field of service self-configuration and
service management. For the middleware proposed
in[10], suitable modifications can allow this
approach to support autonomy in service
configuration.

3 Autonomic Framework
IBM[11], in the year 2003, first introduced the
theory of autonomic computing. A framework was
proposed which was aimed to make the
management of systems easier. This was done
making the management resources in the system
less dependable on human input. The framework
consists of two functionally important entities,
namely, 1) Managed Resource and 2) Autonomic
Manager.

Table I.Feature comparison of autonomic behavior with literature

Method [10] [9] [5] Autonomic
Scheme

Approach
Component Based Design
Support for Constrained, Heterogenous Nodes
System Topology Aware
Node Registration
Service Self-Configuration

Middleware
Yes
Yes
No
No

Possible

SDN
-

No
Yes

Possible
No

Semantics
Yes
Yes
No
No
No

 System
Yes
Yes
Yes
Yes
Yes

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 216

In the autonomic framework, the two entities are
separated by the level of complexity and the role in
the overall decision making process. The managed
resource is the less complex entity whereas the
autonomic manager is highly complex and provides
the central control and analysis. The managed
resource acts as a monitoring interface for the
environmental states. Thus, their function can be
described primarily as data collectors. In addition to
these two entities, an effector interface in the
managed resource allows for the manipulation of the
environment by the system. Effectors are essentially
actuators which act upon command to change the
current state in the system and environment.

Autonomy in the managed resource and the
managed elements is implemented through the
control loop of monitor, analyze, plan and execute.
These modules are presented in Fig. 1. The monitor
component, as the name suggests, is responsible to
collect details from a managed resource element, as
well as the environment. The whole purpose is to
aggregate, filter, manage, and report the data the
autonomic manager. On the other hand, the analyze
components allows to play with the monitored data,
and extract useful patterns and information. This
processing enables the system to learn about the
environment and even predict future situations. The
plan component provides further mechanisms to
guide the action with the help of higher level
policies, in order to achieve goals and objectives.
These are high level objectives set up by the system
designer or the system administrator. Finally, the
execute component controls execution of pre-
defined plans and interfaces with the managed
resource.

4 Autonomy in IoT
Figure 2 shows the relation between the IoT and
autonomic decision making. The left side of the
figure shows the traditional layers and components
of IoT. These are grouped as the fog and the things.
The fog is a concept that computational resources
that traditionally used to exist on the cloud are
coming further down to the end devices, thereby
being termed as fog. In this case, the fog comprises
of the middleware, the network and the
virtualization capabilities, as well as the web
applications and portals. The things group comprise
of gateways and end devices.

Implementing the control loop of autonomy
means to assign autonomic managers and managed
resources to these components. Interestingly, the
flexibility of IoT allows to assign the autonomic
paradigm components to any IoT components, as
long as hierarchy is maintained. Thus, each
component above can be the autonomic manager of
the components below, either individually or as a
group. Autonomy will assist in decision making for
functions of device management, access
management, as well as identity management. These
problems are manifest throughout each layer of IoT.
The reasoning is that there is need to manage end
devices, gateways, multiple middlewares as well as
remote servers. Each set of components can be
governed and made more efficient using the
autonomic framework. Constant monitoring allows
real time decision making and execution of tasks.

For autonomy to be introduced into IoT, it is
important to copy the autonomic framework and

Fig. 2. The autonomic component system interaction for management using an autonomic scheme.

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 217

apply into the structure of IoT as well. We take the
example of a gateway and devices pair. Here we
assign the gateway to be an autonomic manager and
the devices to be the managed resources. The
concept of managed resource has been previously
applied [2] and its role is represented by the mobile
node device (MND). The role of autonomic
manager on the other hand is fulfilled by the
gateway device (GWD). Therefore, we denote a
MND as an element that contains sensors and
effectors for sensing and interacting with the system
environment. We also denote GWD to act as the
autonomic manager.

4.1 Mobile Node Device (MND):

To facilitate an autonomic system, it is necessary
to have the following components present in the end
device: These include a memory component, a
device profile component and a system control
component.

1. Memory: Memory and its management is an
essential part for implementing autonomy as all the
services that are to be received will be stored in the
memory. Services will be received using the
configuration information for being stored in the
memory.

2. Device Profile: This component will keep
track of the current status of the MND. Information
about the memory along with few other parameters
will be sent to the GWD so that it can make suitable

decision for what services to offer or deploy. This
contributes directly to the monitoring stage in the
control loop.

3. System Control: This component is for the
overall control and management in the MND and
can be an operating system or a process inside an
operating system. For having the self-configuring
feature, it requires an interface of services
information from the GWD. Such a module
contributes directly to the execution stage in the
autonomic control loop.

4.2 Gateway Device (GWD)

We denote a GWD as an element that contains
features to act as an autonomic manager to achieve
the functionalities of plan, analyze, monitor and
execute. To facilitate an autonomic system, it is
necessary to have the following components present
in the autonomic manager. The components
proposed inside the GWD are a node monitor
component, a requirement analysis component, a
service search component, and a service delivery
component.

1. Node Monitor: This component in a GWD
is responsible to receive and collect the details from
the MND. It accumulates the data locally, filters,
and forwards all the data through an interface to an
external data base component.

2. Requirements Analysis: This component in
a GWD is responsible to obtain the requirements

Fig. 3.The overall component architecture and their dependencies. Adapted from [2]

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 218

from an external source or by a local decision. The
GWD may set up its own mandated goals and levels
or services or may be able to receive the
requirements from an external component. This
component is also responsible to understand the
functionality of the MND that is currently under
perspective leading to arrive at a decision. This
relates to the analyze module in the autonomic
control loop.

3. Service Search: Based on the decision from
the ‘Requirements Analysis’ component, this
component will look for suitable services.

4. Service Delivery: Once the service required
has been finalized, the configuration elements are
delivered to the MND. This also relates to the
execution stage in the autonomic control loop.

The final proposed system architecture is
presented as shown in Figure 3.

5 Guidelines for Secure Autonomy
Security not only encompasses privacy, but also
availability and integrity. For network security and
rigidness, an autonomic IoT network would need
some routing capability, as a backup method to
route the data [12]. So instead of just behaving as an
add-on to the existing infrastructure of the Internet,
guidelines and policies are required to make it self-
sufficient and practical. We present some scenarios
where autonomic decision making can contribute in
terms of security in IoT.

5.1 Storage Management
The autonomic system should be able to decide
dynamically about the amount of data to be stored
locally and remotely based on the external
conditions. This decision scope will be related to
storage management. Dynamically setting an
optimum or minimal storage use and encrypting the
storage for confidentiality will the foremost priority.
Perhaps, the ability to re-generate lost data may not
be achieved in the present state of technology, but
detection of such an event can allow further actions
to be taken so as to minimize the damage.

5.2 Logging Data Paths
It is essential for an autonomic system in IoT to
generate logs keeping tracking of the major as well
as minor events in the system. This will allow the
exposure of the path of data and any alteration or
fault can be traced back to its root cause.Decision
making in this case is concerned on how to treat the
logged data, as well as how often to log the data.
There may also be different levels of logging,

locally done in the managed resource as well as
done in the remote server for the whole system.

5.3 Integrity of Device Firmware
After going through pattern of data communication,
an attacker may be able to create another firmware
to mimic the capabilities of genuine nodes. It will be
highly advantageous if the autonomic system can
make sure that all devices will run only authorized
software. Thus, there should be additional headers
and control data that will need to be generated to
monitor the system.

5.4Minimal Functionality
No system is fool-proof, and failures and faults are
always to be expected. In autonomic IoT, once a
failure or attack occurs, self-healing functionality
should be enabled such that systems should at least
be able to deliver the lowest level of functionality.

5.5 Scalability
In the event of introducing and including extra
resources in an IoT network, the expansion should
occur smoothly. This is also known as the
scalability issue in IoT.Autonomy can assist in the
scalability issue by deciding on duty cycling
methods, where part of the network can be switched
off without losing functionality. Autonomic decision
making, in this case, can assist in prolonging the
lifetime of the network without loss of availability
and functionality. As an example how scalability
and availability are inter-related, we present the
work done in [13]. Here, a large number of nodes
attempt to enter and register to a network
simultaneously. This result in repeated collisions,
and thereby loss in the network availability. In this
case, the system can automatically decide on
contention parameters using an autonomic engine.

5.6 Non-linkability
As a part of autonomic data management, non-
linkability refers to the separation of the data
belonging to the same user or same device, such that
the data may not allow a third party to establish a
profile of the owner.

A single user may also own a multitude of
devices. In this case, an intelligent autonomic
system should be able to dynamically add noise to
the data, and then be able to filter it out as well. This
will prevent any attacker from searching for patterns
and reverse engineering any sniffed data. The major
disadvantage that arises with the implementation of
such a scheme is the increase in bandwidth
utilization. Here, the autonomic system has to

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 219

decide on the addition of data noise, as well as the
channel frequency, such as in cognitive aware
systems.

5.7 Context Privacy
As a part of autonomic access management, the
access context information of the end devices
should be kept secret. It is important for the
autonomic system to ensure that personal as well as
device data is protected. In [14], there exist varying
levels of profiles for such context privacy. There
may be few data sets which can be accessed by a
doctor without a patient’s permission, and there may
be other sets which the doctors always have access
to. Similarly, other stakeholders in a medical IoT
system will have varying levels of access to a
patient’s records.

5.8Preserving Anonymity
The purpose of preserving anonymity for IoT end
nodes is that the identity of a node be hidden for any
third parties. It is important for the autonomic
system to decide in a way that identity in not
compromised. However, a purely anonymous
communication is not possible because of
shortcomings of existing communication protocols,
such as the need for authentication. Anonymity and
authentication are opposite goals.

5.10 Trust Management
Trust management will be a future problem in the
autonomic decision making process. This
justification for this because a large scale adoption
of IoT is proportional to the security offered by IoT

services. Trust is one important factor which helps
customer acceptance as well as reduce the element
of risk.

5.11 Environmental States
An important factor in introducing autonomy in IoT,
is that constant monitoring of the environment and
functional states is required. A security requirement
for such data also arises. The control data to monitor
the functional states of any system also needs to be
authenticated and protected from manipulation. This
can be relevant for detecting device faults, detecting
configuration changes, as well as for collecting
performance data[12].

6 Preliminary Results
Figure 4 shows the power consumption difference in
an actual Zolertia Z1 node before and after having
done self-configuration using the autonomic control
loop. The configuration was done automatically to
enable transmission of sensor readings thereby
affecting the duty cycle. The battery level was
measured by its internal battery sensor and
processed using an available Contiki
implementation [15]. The readings were then
transmitted to the gateway for storage and display.
The autonomic decision making took place at point
A, which resulted in a difference in processing. This
eventually affected the energy level in the battery.

A decision making scheme isalso simulated
using Contiki-based Cooja simulator for emulated
Z1 nodes in [2]. The nodes are divided in two sets
with each set having different values for the timing

Fig. 5. Time for registration for a number of nodes for
autonomic protocol.Simulation results for the registration of a
number of IoT nodes with a gateway. The difference is shown with
and without the autonomy in decision making whether it is required
to transmit data or not. The line at the bottom shows results after
autonomic decision making[2].

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9

To
ta

l t
im

e
fo

r R
eg

is
tra

tio
n

(m
s)

Number of Nodes

Fig. 4. Test-bed results for the change in battery sensor

measurements over time. The difference is shown with and without
the autonomy in decision making whether it is required to transmit
data or not[2].

0

0,05

0,1

0,15

0,2

0,25

0,3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

W
at

t (
W

)

Time (s)

Autonomic Decision Making
Without Autonomic Decision Making

A

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 220

variables. The total time taken to register a varying
number of nodes (1-9) is found out as shown in
Figure 5 [2]. The decision is based on constant
monitoring of the environment, and then performing
analysis to come up with a decision.

7 Conclusion
Autonomy in IoT is still in infant stages, however
researchers have started to recognize the importance
of minimizing user intervention. The introduction of
autonomic theory in IoT to achieve dynamic
management of resource constrained devices by
minimizing user intervention is one such solution.
At the same time, autonomy permits innovative use
of various security schemes. It is only a matter of
time until theadoption of the autonomy in IoT
transforms functionality, management and energy
efficiency in IoT systems.

Acknowledgement:
This research was supported by the Ministry of
Higher Education Malaysia (MOHE) under
Exploratory Research Grant Scheme (ERGS)
number ERGS13-023-0055.

References:

[1] AAD Knowledge Transfer Network, "Autonomous Systems:
Opportunities and Challeneges for the UK," 2012. [Online].
Available:
https://connect.innovateuk.org/c/document_library/get_file?folder
Id=278657&name=DLFE-91023.pdf. [Accessed 6 June 2013].

[2] Q. Ashraf, M. Habaebi, G. Sinniah, M. Ahmed, S. Khan and S.
Hameed, "Autonomic protocol and architecture for devices in
Internet of Things," in IEEE Innovative Smart Grid Technologies
- Asia (ISGT Asia), Kuala Lumpur, 2014.

[3] C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen and D.
Georgakopoulus, "Context-aware Dynamic Discovery and
Configuration of 'Things' in Smart Environments," in Big Data
and Internet of Things: A Roadmap for Smart Environments,
Studies in Computational Intelligence, Springer Berlin
Heidelberg, 2014.

[4] C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen and D.
Georgakopoulus, "MOSDEN: An Internet of Things Middleware
for Resource Constrained Mobile Devices," in 47th Hawaii
International Conference on System Sciences (HICSS), Kona,
2014.

[5] C. Perera, A. Zaslavsky, P. Christen, M. Compton and D.
Georgakopoulos, "Context-Aware Sensor Search, Selection and
Ranking Model for Internet of Things Middleware," in IEEE 14th
International Conference on Mobile Data Management (MDM),
Milan, 2013.

[6] S. Krco, V. Tsiatsis, K. Matusikova, M. Johansson, I. Cubic and

R. Glitho, "Mobile Network Supported Wireless Sensor Network
Services," in IEEE Internatonal Conference on Mobile Adhoc and
Sensor Systems (MASS 2007), Pisa, 2007.

[7] M. Rajan, P. Balamuralidhar, K. Chethan and M.
Swarnahpriyaah, "A Self-Reconfigurable Sensor Network
Management System for Internet of Things Paradigm," in 2011
International Conference on Devices and Communications
(ICDeCom), Mesra, 2011.

[8] G. Pujolle, "An Autonomic-oriented Architecture for the Internet
of Things," in IEEE John Vincent Atanasoff International
Symposium on Modern Computing (JVA '06.), Sofia, 2006.

[9] W.-Y. Huang, J.-W. Hu, S.-C. Lin, T.-L. Liu, P.-W. Tsai, C.-S.
Yang, F. I. Yeh, J. H. Chen and J. Mambretti, "Design and
Implementation of an Automatic Network Topology Discovery
System for the Future Internet Across Different Domains," in 26th
International Conference on Advanced Information Networking
and Applications Workshops (WAINA), Fukuoka, 2012.

[10] M. S. Familiar, J. F. Martínez, I. Corredor and C. García-Rubio,
"Building service-oriented Smart Infrastructures over Wireless Ad
Hoc Sensor Networks: A middleware perspective," Computer
Networks, vol. 56, no. 4, pp. 1303-1328, 2012.

[11] J. Kephart and D. Chess, "The vision of autonomic computing,"
Computer, vol. 36, no. 1, pp. 41-50, 2003.

[12] Q. M. Ashraf and M. H. Habaebi, "Autonomic schemes for threat
mitigation in Internet of Things," Elsevier Journal of Network and
Computer Applications, vol. 49, no. 1, pp. 112-127, 2015.

[13] Q. M. Ashraf, M. H. Habaebi, G. R. Sinniah and J. Chebil,
"Broadcast based registration technique for heterogenous nodes in
the IoT," in International Conference on Control, Engineering,
and Information Technology (CEIT 2014), Sousse, 2014.

[14] Q. M. Ashraf, M. H. Habaebi and J. Chebil, "SIHAT: simplifying
interfaces in health-nets for achieving telemetry," in Handbook on
the emerging trends in scientific research, Kuala Lumpur, Pak
Publishing Group, 2014, pp. 207-217.

[15] C. Alberto Boano, April 2010. [Online]. Available:
https://groups.google.com/forum/#!topic/osdeve_mirror_rtos_con
tiki-developers/jQ3eoMLN02c.

Qazi Mamoon Ashraf is working towards obtaining his Ph.D. in
Computer Engineering from the Department of Electrical and
Computer Engineering, Universiti Islam Antarabangsa
Malaysia. He is also working at Digital Communications Lab,
Telekom Research and Development and involved in IoT
research in Malaysia. He was also a Research Assistant with
Wireless Communication Division in MIMOS, Malaysia. His
research interests include Internet of Things, autonomic
computing, ubiquitous networks and secure M2M
communication.

Mohamed Hadi Habaebi is an Associate Professor and the Post
Graduate Academic Advisor at the Department of Electrical and
Computer Engineering of University Antarabangsa Malaysia.
He received his MS in Electrical Engineering from Universiti
Teknologi Malaysia, and his PhD in Computer and
Communication System Engineering from Universiti Putra
Malaysia. His research interests include M2M communication
protocols, wireless sensor and actuator networks, and network
performance optimisation.

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 221

