
A Quality Requirements Safety Model for Embedded and Real Time
Software Product Quality

KHALID T. AL-SARAYREH
Department of Software Engineering

Hashemite University
Zarqa 13115, Jordan
khalidt@hu.edu.jo

Abstract— safety requirements quality is typically expressed at the software system levels, which may lead to
specific safety-related functions that may be applied in either or both hardware and software. According to the
Previous work of academia and industry standards such as ISO 25021 square series safety requirements can be
defined and measured internally and externally; the internal safety concepts could include control software
hazards, safety levels of software integration and critical software catastrophic, while the external safety could
include software safety functions, safety failure mechanism and safety switching of redundant items. This paper
collects and organizes these safety-related requirements into a quality requirements safety model for identifying
and evaluation of the quality safety requirements of embedded and real time systems..

Keywords: Safety Requirements, Software Product Quality, ISO 2502n Squares

1. Introduction

A quality requirements model for safety is a key to
the success of the embedded and real time software
systems. The development of such quality model of
requirements early in the software life cycle is
therefore of prime importance by defining a
comprehensive specification and evaluation of
software product quality.

The qualities of the safety requirements as
currently defined can be considered subjective since
they can be viewed, interpreted and evaluated
differently by different people; when the safety
requirements are stated briefly and vaguely the
problem is compounded [1]. Safety requirements and
their qualities can also be defined relatively, since the
interpretation and importance of such kind of safety
requirements may vary depending on the particular
system being considered.

Furthermore, if the safety requirements are
not addressed, then it may lead to [2] "Software
which is inconsistent and of poor quality. User,
developer and clients who are unsatisfied and time
and cost overruns to fix software, which was not
developed with such requirements".

However, safety requirements may also
impact considerably project effort and should also be
taken into account when doing project benchmarking.
It is however challenging to take these requirements
into account in software estimation and software
benchmarking.

The aim of this paper is to propose a
procedure for describing, and next quality, software
safety using a strategy based neither on our own
views nor on individual researchers view of such type
of safety requirements, but on a consensual view
documented in international standards of software
safety as quality requirements.

For the purpose of this research, the set of
European standards have been selected: [3-6], ISO
2502n [7] square standards and a previous published
work for academia.

This paper is organized as follows. Section 2
presents related work. Section 3 presents a standard-
based procedure to develop a model of requirement
for software safety. A conclusion is presented in
Section 4.
2. Related Work

The European Standard series [3-6] present software
safety requirement for real-time and embedded
software: in these standards, the safety requirements
are described as system state where an acceptable
level of risk is not exceeded with respect to fatality,
injury or occupational illness, damage to launcher
hardware or launch site facilities, damage to an
element of an interfacing manned systems, the term
“safety” is described differently in ISO/IEC Guide 2,
as “freedom from unacceptable risk or harm”. The
ISO 8402 [8] was replaced by ISO 9000, but the
definition of safety was not maintained.

According to safety requirements shall be
identified and traced from the system level into the

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 200

mailto:khalidt@hu.edu.jo

design and then allocated to the lower levels as well
as the identified safety requirements shall be justified
in the design and presented in an appropriate
document. [3-4] describe the the mandatory aspects
for safety requirements of a system safety programme
to ensure that all safety risks associated with the
design, development, production and operations of
space product are adequately identified, assessed,
minimized, controlled and finally accepted through
the implementation of a safety assurance programme.

The [3-6] safety policy is applied by
implementing a system safety program, supported by
risk assessment, which can be summarized as
follows:
• Hazardous characteristics (system and

environmental hazards) and functions with
potentially hazardous failure effects are identified
and progressively evaluated by iteratively
performing systematic safety analyses;

• The potential hazardous consequences associated
with the system characteristics and functional
failures are subjected to a hazard reduction
sequence whereby: hazards are eliminated from
the system design and operations; hazards are
minimized and hazard controls are applied and
verified.

• The risks that remain after the application of a
hazard elimination and reduction process are
progressively assessed and subjected to risk
assessment, in order to: show compliance with
safety targets; support design trade-offs; identify
and rank risk contributors; support apportionment
of project resources for risk reduction; assess risk
reduction progress; and support the safety and
project decision-making process (e.g. waiver
approval, residual risk acceptance).

• The adequacy of the hazard and risk control
measures applied are formally verified in order to
support safety validation and risk acceptance;

• Approval obtained from the relevant authorities.
ISO series [9] defined Safety specifications as
equipment/system design features, performance
specifications, and training that reduce the potential
for human or machine errors or failures that cause
injury or death within the constraints of operational
effectiveness, time, and cost throughout the
equipment/system life cycle as well as describe the
Safety Plan as the approach and methods for
conducting safety analysis and assessing the risk to
operators, the system, the environment, or the public.

ISO standards [7-9] list the Safety measurements
to assess the level of risk of harm to people, business,
software, property or the environment in a specified
context of use. It includes the health and safety of

the both the user and those affected by use, as well as
unintended physical or economic consequences.

The IEEE Standard for Software Safety described
software safety as falls into one or more of the
following categories:
• Software whose inadvertent response to stimuli,

failure to respond when required, response out-
of-sequence, or response in combination with
other responses can result in an accident

• Software that is intended to mitigate the result of
an accident

• Software that is intended to recover from the
result of an accident

However, neither ECSS nor IEEE series propose a
way to measure such these safety requirements, while
ISO 25021 presents measures of the outcome of
safety management as a quality of the software
product quality, not of the safety requirements that
have to be built into the software thereby not
allowing for measuring the functional size of such
software safety requirements: without measurement it
is of course challenging to take such an NFR as a
quantitative input in an estimation process or in
productivity benchmarking.

This paper reports on the work carried out to
define safety requirements on the basis of
international standards and on the safety
requirements foundation results in the academia.

3. The Proposed Quality Procedure Model

This section illustrates the proposed

procedure [10-16] for building a quality model for
safety requirement as follows:

3.1 A Definition of Safety Requirements

• The safety requirements are defined as system
state where an acceptable level of risk is not
exceeded with respect to fatality [3-6].

• The safety defined as human or machine errors or
failures that cause injury or death within the
constraints of operational effectiveness, time, and
cost throughout the equipment/system life cycle
[3-6].

• The safety is the levels of risk of harm to people,
business, software, property or the environment
in a specified context of use [7-9].

• Safety is a freedom from software hazards or a
systematic approach to reducing software risks
[7-9].

3.2 Types of Safety Requirements

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 201

This section illustrates the types of safety
requirements as follows:
• Safety mandatory categories
− Catastrophic hazards

o Loss of life, life-threatening or
permanently disabling injury or
occupational illness, loss of an element
of an interfacing manned flight system.

o Loss of launch-site facilities or loss of
system.

o Severe detrimental environmental
effects.

− Critical hazards
o Temporarily disabling but not life-

threatening injury, or temporary
occupational illness.

o Major damage to flight systems or loss or
major damage to ground facilities.

o Major damage to public or private
property.

o Major detrimental environmental effects.
• Safety non-mandatory categories

− Marginal hazards
o Minor injury, minor disability, minor

occupational illness, or minor system or
environmental damage.

− Negligible hazards
o Less than minor injury, disability,

occupational illness, or less than minor
system or environmental damage.

3.3 Safety Requirement Entities

This section illustrates the safety requirements entities
as follows:
External entities of Safety
• Software Safety Functions
• Safety Failure Mechanism
• Safety Switching of Redundant items
Internal entities Safety
• Safety Related Software
• Safety Levels of Software Integration
• Safety Audit Software
• Control Software Hazards
• Critical Software Catastrophic

3.4 Identification of the Entity types of Safety

This section illustrates the entity types of safety
requirements and as follows:
• Entity Type 1: Software Safety Functions

− Each software safety function shall receive or
send with at least one functional process
from/to safety related software.

Figure 1: Software Safety Functions

• Entity Type 2: Safety Failure Mechanism
− Each failure mechanism could send with at

least one functional process to one or more
safety levels of software integration.

Figure 2: Safety Failure Mechanism

• Entity Type 3: Safety Switching of Redundant

items
− Each failure mechanism could send or/and

receive with at least one functional process to
one or more items in safety audit software.

− Each failure mechanism could send or/and
receive with at least one functional process to
check one or more items in redundancy status
information.

Figure 3: Safety Switching of Redundant items

• Entity Type 4: Safety Related Software

− Each safety related software shall receive
or/and send with at least one functional
process from/to software failure data group.

− Each safety related software shall receive
or/and send with at least one functional
process from/to the allocated failure in the
safety levels of software integrations.

Figure 4: Safety Related Software

• Entity Type 5: Safety Levels of Software
Integration.

Software Safety
Functions

Safety Related
Software

Safety Failure
Mechanism

Safety Levels of Software
Integration

Redundancy Status
Information

Safety Switching of
Redundant items

Safety Audit
Software

Safety Levels of Software
Integration

Safety Related Software

Software Failure

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 202

− Each safety level of software integration shall
receive or/and send with at least one
functional process from/to fault tolerance
data group.

− Each safety level of software integration shall
receive or/and send with at least one
functional process from/to safety related
software to allocated the fault.

− Each safety level of software integration shall
receive or/and send with at least one
functional process from/to safety software
audit data to check the integration with
data.

Figure 5: Safety Levels of Software Integration.

• Entity Type 6: Safety Audit Software
− Each safety audit software shall receive

or/and send with at least one functional
process from/to redundancy status
information.

− Each safety audit software shall receive
or/and send with at least one functional
process from/to safety levels of software
integration.

Figure 6: Safety software audit data.

• Entity Type 7: Control Software Hazards
− Each safety control software hazards shall

receive or/and send with at least one
functional process from/to failure tolerance
data group to control this kind of faults.

− Each safety control software hazards shall
receive or/and send with at least one
functional process from/to software failure
data group to control this kind of error.

− Each safety control software hazards shall
receive or/and send with at least one
functional process from/to critical software

catastrophic to check if the defect is harm or
not.

Figure 7: Control Software Hazards.

• Entity Type 8: Critical Software Catastrophic
− Each safety critical software catastrophic

shall receive or/and send with at least one
functional process from/to failure tolerance
data group to check this kind of faults before
exchange processes with critical software
catastrophic.

− Each safety critical software catastrophic
shall receive or/and send with at least one
functional process from/to redundancy status
information data group to check if the critical
situation are caused by redundant data or not.

− Each safety critical software catastrophic
shall receive or/and send with at least one
functional process from/to control software
hazards to identify the source and the degree
of the defects.

Figure 8: Critical Software Catastrophic

3.5 Model of the Requirements for safety

requirements

In the following design of the safety requirements
model:
• Entity type 1 can be used to measure the

external safety for the software safety functions
from the received/send data movement from/to
safety related software such as software
operation, design and configuration risk- see-
figure 9.

Critical Software
Catastrophic

Control Software
Hazards

Failure Tolerance

Software Failure

Control Software
Hazards

Critical Software
Catastrophic

Failure Tolerance

Redundancy Status
Information

Safety Software
Audit data

Safety Related
Software

Safety Levels of
Software Integration

Fault Tolerance

Safety Audit Software

Redundancy Status
Information

Safety Levels of Software
Integration

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 203

• Entity type 2 can be used to measure the
external safety for the safety failure mechanism
from the received/send data movement from/to
safety levels of software integration such as loss
of operation, failure detection and failure
isolation - see-figure 9.

• Entity type 3 can be used to measure the
external safety for the safety switching of
redundant items from the received/send data
movement from/to safety software audit data and
redundancy status of information such as
duplicate or corrupted data - see-figure 9.

• Entity type 4 can be used to measure the internal
safety for the safety related software from the
received/send data movement from/to software
failure data group list and safety levels of
software integration such as loss of operation,
failure detection and failure isolation - see-figure
9.

• Entity type 5 can be used to measure the internal
safety for the safety levels of software integrity
from the received/send data movement from/to
software failure tolerance data group list and
safety related software safety software audit data
- see-figure 9.

Figure 9. A Quality Requirements Safety Model

• Entity type 6 can be used to measure the internal

safety for the safety software audit data from the
received/send data movement from/to safety
levels of software integrity and redundancy status
information data group list - see-figure 9.

• Entity type 7 can be used to measure the internal
safety for the control software hazards from the
received/send data movement from/to failure
tolerance data group list and critical software
catastrophic - see-figure 9.

Safety Levels of Software Integration
(Entity Type 5)

Safety Related Software
 (Entity Type 4)

Software Safety
Functions

(Entity Type 1)

Failure
Detection

Failure
Isolation

Loss
Operation

Software
Configuration

Risk

Software
 Design

Risk

Software
Operation

Risk

Safety Audit Software
 (Entity Type 6)

Control
Software
Hazards

 (Entity Type 7)

Critical
Software

Catastrophic

(Entity Type 8)

Safety Failure
Mechanism

(Entity Type 2)

Safety Switching of
Redundant items
(Entity Type 3)

External Safety

Internal
Safety

Boundary

Redundancy
Status

Information

Failure
Tolerance

Software
Failure

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 204

• Entity type 8 can be used to measure the internal
safety for the critical software catastrophic from
the received/send data movement from/to failure
tolerance data group list and control software
hazards - see-figure 9.

4. Conclusion

This paper introduced a procedure for measuring
requirements for internal and external safety required
for system safety requirement. This included a
proposed generic model for safety requirement using
standard based identification of three set of
international standards, this model is independent of
the software type or languages in which these safety
requirements will be implemented.

It is important to remark that the design
measurement procedure for safety requirements for
the embedded software have been developed to apply
the measurement methods defined by academia to the
safety requirements in order to obtain the quality of
the software-safety as a separate piece of a software
in early stages of the software development process.

The advantages and the limitations of the
model are left as a future work to enhance the
proposed model and to applicable to use it in the
industry.

Furthermore, the main contribution of this
paper is the proposed generic safety requirements
model of the safety requirements. The proposed
generic model is considered as kind of a a standard-
based model that is being used for the measurement
of the software-safety.

The proposed generic model of the software-
safety requirements is a bridge between the system
and software functional requirements to provide a
basis for both describing in a standard way and in the
future for the measurement of the functional size of
the software based on the set of definitions and
concepts of system safety requirements in European
international standards as follows: The interrelations
between the internal and external requirements of
safety are defined, for example each process between
the internal and external safety requirements and in
the future to measure the functional size of software
safety requirements for the all functional processes
(internally and externally)

References

[1] L. Chung and J. do Prado Leite, "On Non-

Functional Requirements in Software Engineering,"
in Conceptual Modeling: Foundations and
Applications, Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, vol. 5600, pp. 363-
379, 2009.

[2] W. Ma, L. Chung, and K. Cooper, "Assessing
Component’s Behavioral Interoperability
Concerning Goals," in On the Move to Meaningful
Internet Systems: OTM 2008 Workshops, Lecture
Notes in Computer Science, Springer Berlin /
Heidelberg, pp. 452-462, 2008.

 [3] ECSS-E-40-Part-2B, Space Engineeing:Software-
part 2 Document Requirements Definitions,
European Cooperation for Space Standardization,
The Netherlands, 2005.

[4] ECSS-ESA, Tailoring of ECSS, Software
Engineering Standards for Ground Segments, Part
C: Document Templates, ESA Board of
Standardization and Control (BSSC), 2005.

[5] ECSS-E-ST-10C, Space engineering: System
engineering general requirements, Requirements &
Standards Division Noordwijk, The Netherlands,
2009.

[6] ECSS-Q-ST-80C, Space Product Assurance:
Software Product Assurance, Requirements &
Standards Division Noordwijk, The Netherlands,
2009.

[7] ISO/IEC-2502n, Software Engineering -- Product
Quality -- Part 1: Quality Model 2502, International
Organization for Standardization,Geneva
(Switzerland), 2012.

 [8] ISO 24765, "Systems and software engineering
vocabulary," British Standards Institution, 2008.

[9] ISO 2382-1, "Information technology -- Vocabulary
-- Part 1: Fundamental terms," International
Standards for Business, Government and Society,
1993.

 [10] Abran, A., K. T. Al-Sarayreh, and J. J. Cuadrado-
Gallego, " A Standards-based Reference Framework
for System Portability Requirements", Computer
Standards and Interface, Elsevier, 2013.
http://dx.doi.org/10.1016/j.csi.2012.11.003

 [11] Al-Sarayreh, K. T., A. Abran and and J. J. Cuadrado-
Gallego," A Standards-based model of system
maintainability requirements", Journal of Software:
Evolution and Process, John Wiley & Sons, Ltd,
2012. http://dx.doi.org/10.1002/smr.1553

 [12] K. T. Al-Sarayreh, A. Abran, and J. J. Cuadrado-
Gallego, "Measurement Model of Software
Requirements Derived from System Portability
Requirements," 9th International Conference on
Software Engineering Research and Practice (SERP
2010), Las Vegas, USA, pp. 553-559, 2010.

[13] K. T. Al-Sarayreh and A. Abran, "A Generic Model
for the Specification of Software Interface
Requirements and Measurement of Their Functional
Size," 8th ACIS International Conference on
Software Engineering Research, Management and
Applications, SERA 2010, Montreal, Canada, pp.
217-222, 2010.

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 205

http://dx.doi.org/10.1016/j.csi.2012.11.003

[14] K. T. Al-Sarayreh and A. Abran, "Measurement of
Software Requirements Derived from System
Reliability Requirements," 24th European
Conference on Object-Oriented Programming
(ECOOP 2010), ACM Digital Library, Maribor,
Slovenia, 2010.

[15] K. T. Al-Sarayreh and A. Abran, "Specification and
Measurement of System Configuration Non
Functional Requirements," 20th International
Workshop on Software Measurement &

International Conference on Software Measurement,
IWSM/Metrikon/Mensura, Stuttgart, Germany, pp.
141-156, 2010.

[16] A. Abran, K. T. Al-Sarayreh, and J. J. Cuadrado-
Gallego "Standards-based Model for the
Specification and Measurement of Maintainability
Requirements," 22nd International Conference on
Software Engineering and Knowledge Engineering
(SEKE 2010), Redwood City, California, USA, pp.
153-158, 2010.

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 206

