
Towards A Design Measurement Context for Software
Coupling and Cohesion Requirements

KHALED ALMAKADMEH, KHALID T. AL-SARAYREH
Department of Software Engineering

Hashemite University
Zarqa 13115, Jordan

khaled.almakadmeh@hu.edu.jo, khalidt@hu.edu.jo

KENZA MERIDJI
Department of Software Engineering

Petra University
Amman 11196, Jordan
kmeridji@uop.edu.jo

Abstract— Cohesion and coupling are often mentioned together; this can be explained as they represent or share
similar concepts. The review of literature shows that a key element for both cohesion and coupling is the number
of interactions between components. This paper proposes a new measurement method that accommodates
different views of the most important design concepts of cohesion and coupling and setup typical scenarios to
illustrate how to use the method concepts with practical software artifacts.

Keywords:Coupling, Cohesion, Software Measurement, ISO1971, COSMIC

1. Introduction

The concept of cohesion is frequently linked with
coupling. Even if they could be interpreted as separate
concepts, one often needs to measure coupling in
order to evaluate cohesion. Indeed, this problem is
pointed out by Lethbridge and Anquetil [1]. Counsell
et al. says, any measure of cohesion which uses
parameters of class methods, the attributes cannot
avoid including a high degree of coupling to other
classes [2]. They also add that Comprehension of
class cohesion is largely an exercise in comprehension
of class coupling [2].

Furthermore, cohesion can be seen from two main
perspectives. First, cohesion can be generally defined
as how the elements making up a module are related
[3]. Another interpretation considers the functional
point of view, which is a crisp abstraction of a concept
or feature from the problem domain [4]. In [4],
different methods used to express cohesion: structural
and semantic metrics, information theory-based, slice-
based, and knowledge-based & approaches using data
mining. The most common type is the structural
metrics. The idea behind this paradigm is that class
variables are referred and shared between methods,
which in turn influences the degree of cohesion. It is
mainly based on the relationships between methods of

a class. They argue that all structural metrics capture
the same aspects of cohesion data flow between the
methods of a class [4].

We did a review of some papers discussing the
measurement of cohesion and/or coupling. The main
objective was to find similar key concepts for
cohesion or coupling. It is said that software design
principles are key notions considered fundamental to
many different software design [3]. Most notably, the
measures of coupling and cohesion are part of these
and are also recognized as key concepts of design. In
order to measure a software design, we will focus on
these two major design concepts.

While it is recognized that high cohesion and low
coupling can lead to a good software design, the
separation and redefinition of these concepts or
related terms could change how we perceive design.
Accordingly, no assumption will be made about good
or bad values for these concepts. In fact, that is more
the role of the interpretation phase, which can analyze
the output values of the measurement methods and
suggest adjustments.

Facts for both cohesion and coupling:
• The measure of cohesion seems to be dependent of

coupling [1, 2].

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 111

mailto:khaled.almakadmeh@hu.edu.jo
mailto:khalidt@hu.edu.jo
mailto:kmeridji@uop.edu.jo

• A collaboration of objects may include one type of
class or different classes participating together [5].

• Some basic properties have been proposed for
cohesion and coupling measures [6].

This paper is divided into five sections; section 2

presents the review of the literature; section 3 presents
the measurement objectives; section 4 presents the
characterization of the mesurand. Finally, section 5
concludes the paper findings.

2. Related Work

Briand et al. [7] proposed four cohesion properties
that a valid measure should support, arguing that a
measure must be supported by some underlying
theory. The four cohesion properties defined are one
of the more recent proposals to characterize cohesion
in a reasonably intuitive and rigorous manner [8].

These four properties are: non-negativity and
normalization (greater than 0 and less than a fixed
value), null value and maximum value, monotonicity
and merging of unconnected classes [9].

Concerning the coupling measure, Briand et al. [7]
also defined the properties that should be validated;
such measure should be nonnegative and null when no
relationships between modules exist. Further, when
new relationships are created, coupling should not
decrease. On the other hand, when modules are
merged, it can only decrease the coupling, since inter-
module relationships may have been removed [6]. The
goal of these properties is to allow better comparison
of the measurement values for cohesion and coupling.

Marcus et al. [4] proposed a way to measure the
model type of cohesion; a class that represents a
single, semantically meaningful concept. To measure
type of cohesion, they suggest that the responsibilities
associated with the classes have to be recorded in the
code through identifiers and comments. By analyzing
the semantic information in the code, they can find the
measure of cohesion. Authors in [4] defined a
conceptual similarity between methods and the
cohesion as the average of all values of conceptual
similarity in the methods of the class.

Stevens, Myers and Constantine [10] defined an
association-based cohesion on an ordinal scale and
categorized several types of cohesion. Byung-Kyoo
and Bieman [11] used these definitions as a base for a
measure of design and code cohesion.

In order to measure the cohesion of a design,
Byung-Kyoo and Bieman [11] models the data, the
control dependencies relationships between input and
output by an input-output dependence graph (IODP).
Data dependence is defined if there is a “definition-

use” or “use-definition” relation. A variable has a
control dependency on another if the value of the
latter determines if the first statement will be
performed or not. There are other special types of
dependences defined. In this case, the measurement
method is called the DLC (design level cohesion).
The cohesion level of the module is the weakest
(lowest) of all the pairs of methods.

Byung-Kyoo and Bieman [11] also uses functional
cohesion and defines three measures based on data
slices. The data slice of a variable is the sequence of
data tokens which have a dependence relationship
with that variable. Moreover, glue tokens are data
tokens common to more than one data slice, while
superglue tokens are common to every data slice of a
module. Using that technique, Weak Functional
Cohesion (WFC) can be expressed as the number of
glue tokens divided by the total number of tokens in a
method. The Strong Functional Cohesion (SFC) is the
ratio of superglue tokens on the total number of data
tokens in a method. Finally, authors in [11] proposed
another measure, which is called Design-Level
Functional Cohesion (DFC); for such measure, IODG
includes dependency relationships between input and
output components. The cohesiveness of the ith
component of a module is defined as the number of
outputs in a dependency relation with the ith
component divided by the number of outputs in the
module’s IODG. According to this study [11], the
measures explored represent different aspects of
cohesion. Namely, the connections, the isolated
components and the essential components (connected
with all methods outputs).

The majority of existing cohesion metrics capture
class cohesion in terms of connections exists among
members within a class [5]. To address this problem,
Badri et al. [5] introduced a new parameter Common
Objects Parameters which is described as methods
having a same object as parameter. They argue that
methods can be functionally related even if they do
not share any instance variables. Two types of
collaboration levels are then presented; the first
collaboration level implies that several objects,
belonging to different classes, participate to realize
the functionality. The other collaboration level refers
to a collaboration of methods within the same class,
using objects as instance variables or by passing
arguments.

Makela et al. [12] criticize the widely-spread
LCOM lack of cohesion metric and its variations.
They propose to consider an external view of
cohesion, which is defined as how other classes use
the features of another class [12]. Since the client
classes often use only a subset of all methods, some
methods should be excluded in the cohesion measure.

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 112

Authors in [12] explain that LCOM value is
affected by these kinds of methods that do almost
nothing. For example, if a class contains a lot of
getters and setters methods, the LCOM metric will
give an erroneous bad cohesion. In this case, the
proposed metric ELCOM would have a low internal
cohesion but a high external cohesion. This is because
clients tend to use the same key methods, which
would use all the instance variables of the class;
ELCOM is higher if the number of instance variables
used by client classes is greater. Also, LCOM tends to
be affected by the size of the class. Counsell et al. [2]
has shown that the size, as defined by the number of
methods of a class, is a confounding factor. Counter-
intuitively, small classes are not necessary more
cohesive than larger ones. The idea is to classify
methods as special or normal. Special methods are
access (only reads from or write to an attribute),
delegation (delegate a message to another object).

Authors in [12] also include constructors and
destructors which initialize or de-initialize essential
attributes of the class. Since it has been demonstrated
that these special methods do not influence cohesion,
they need to be excluded from the calculation. A class
member dependence graph is built and this abstract
model is composed of four types of relationships
(represented as edges): read, write, call and flow
dependencies among these nodes. A node can be of
two types: a normal method or an attribute. The
dependence degree is then expressed in terms of the
number of attributes or methods that the node depends
on. The cohesion of the class is the average of the
dependency degrees of all normal methods and
attributes.

Misic et al. [13] introduce the notion of coherence,
which is similar to the functional cohesion. It is
defined as how well its members contribute towards a
common, externally defined purpose or objective [13].
This measure is one of the few measures that can
actually be applied early in the software development
cycle and is focused on the customer. The authors in
[13] argue that cohesion is to be measured against the
yardstick of the objective, purpose, or function of a
software module this purpose is to be found outside
the module. Therefore, cohesion has to be an external
property. They also suggest that other measures such
as coupling could be used to assess the internal
organization.

The read and write range and scope definitions are
then explained. An object can potentially be written
by other objects (write scope), but only some of them
really write to that object (write range or suppliers).
Similarly, the set of all objects that can potentially
read (or use) another object is the read scope. The set

of objects that actually read (or use) another object is
the read range (also called clients).

At this point, it is possible to express the
coherence of one client object as the ratio between the
number of objects writing that client object and the
number of objects in the boundary considered. This
ratio can also be seen as the proportion of objects in
the boundary set that are writing to the client object.
The coherence of the boundary as a whole is the
average of these ratios, for all clients. Coherence has a
value of zero when all clients use only one object of a
set S and has the maximum value when each client
uses all objects of S. In addition, it is possible to focus
on either external or internal coherence, by restricting
the reference set S accordingly.

Counsell et al. [2] defines the HD metric which
uses the Hamming Distance to measure cohesion.
They build a matrix of (m) × (p), where m is the
number of methods and p is the number of different
parameters in all methods of the class. The cell value
of the matrix, assigned for each method, takes a value
of one if the method uses the parameter type in its
parameter list. Otherwise, it is set to zero.

3. Measurement Objectives

Cohesion and coupling are often mentioned
together; maybe because they represent or share
similar concepts. In fact, this is reflected in the
literature. While several authors consider internal and
external views for cohesion [12, 13, and 14], the
distinctions between coupling and external cohesion is
less clear. In addition, in order to evaluate the
cohesion of a component, one often needs to measure
coupling [1, 2].

Any design supports some quality requirements.
For example, one design can be easier to adapt to
changes than another. In the current context, the study
of quality attributes is separated from requirements of
design. While a complete design supports quality
properties, measurement methods for design and
quality in general are different. For the rest of this
paper, the focus will be only on the measurement of
the quality of a design.

In this context, the objective of the measurement is
to propose a measurement method for cohesion.
Whenever possible, the synthesis of the literature
summarized in section 4 will guide the design of the
measurement method, while taking several constraints
into account for the current work. For instance, the
measure should help to estimate design requirements
early in the software development lifecycle. Also, the
design of the measure should be customer-centric and
not from the developer point of view. Few measures
are valid early development cycle and focus on the

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 113

customer point of view. In fact, most measures
proposed in the literature try to analyze the code of
software [15] that takes place in the implementation
phase and mostly concerns the developers. It can be
assumed that a good internal design will affect
positively the end users of the software. the main
objective will be seeking an enlarged consensus and
this will remain the priority in case of conflicts with
other constraints. Whenever possible, the generality of
the proposed model will be preserved.

Cohesion is not the only criterion to evaluate the
quality of a design but it is a major one. Coupling is
also a critical property of a software design but it will
not be considered for the scope of this paper.
However, since cohesion and coupling share some
concepts, additional information is given informally
to guide future research.

4. Characterize the Measured

According to the synthesis of a few papers
concerning cohesion, presented in section 2, some key
concepts appear frequently and can help to define the
concept of cohesion. Every measure of cohesion
considers the interactions between a class and its
attributes or methods. The concept of collaboration
between objects is also present. In addition, internal
and external views of cohesion are often mentioned.

4.1 Definitions

The terms on which the meta-model will be built are
defined in this subsection.
Software Design: the process of defining architecture,
components, interfaces and other characteristics of a
system or component and the result of that process
[16] a software design (the result) must describe how
software is decomposed and organized into
components and the interfaces between those
components [3].
Component: one of the parts that make up a system.
A component may be hardware or software and may
be subdivided into other components [16]. Note: the
terms “module,” “component,” and “unit” are often
used interchangeably or defined to be sub-elements
of one another in different ways depending upon the
context. The relationship of these terms is not yet
standardized [16].
Interface: “hardware or software component that
connects two or more other components for the
purpose of passing information from one to the other
[16].
Message: information exchanged on an interface.
Attribute: characteristic of an item; for example, the
item's color, size, or type [16].

Cohesion: how the elements making up a module are
related [3].
Coupling: strength of relationships between modules
[3].

4.2 Meta-Model

The decomposition of any system creates
components and subcomponents. Layers, modules,
classes and functions (or methods) are examples of
components in software. However, when defined at a
higher level of abstraction, a component becomes
more of a boundary than a concrete component. For
this reason, some components may exhibits properties
but the boundaries do not have attributes, for they
exist only to regroup other components.

The functionality of the software is distributed
among the components making up the system. Figure
1 below illustrates the main concepts for the
measurement of the cohesion for any component.

Component

Legend:

a1
a2
a3
...
an

an
Attribute

Interface Messagemessage1

Component C1

msg1

Subcomponent 1

Subcomponent 2

Subcomponent ...

Subcomponent n

Figure 1 A component and its attributes

Any component can support any number of
attributes or characteristics. In addition, a component
can have no attributes, depending on the context. In a
cohesive component, the interactions between the
component, its attributes and subcomponents are
conceptually related. A greater number of interactions
between a component and its elements contribute to
enhance the cohesion of the component. Therefore,
the mesurand for the cohesion of a component is the
number of interactions between the component, its
attributes and subcomponents.

As of now, it is not clear if the cohesion depends
on the distribution of the interactions or the number of
interactions. We consider the number of interactions.
In that case, an attribute could be used proportionally

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 114

more than the others, and the component could still be
cohesive. However, when considering the cohesion of
a whole collaboration of objects, as it will be seen
later, the number of interactions seems to become
more relevant than its distribution.

In order to evaluate the number of interactions, the
concept of data groups, used in COSMIC [17] is used.
For instance, the attributes of a component form a
data group. Cohesion of a component can be
expressed as the number of data movements between
its attributes and subcomponents.

4.3 Numerical Assignement Rules

The interactions within a component describe its
internal data movements. A first set of data
movements is the interactions between the component
and its attributes. For instance, a component can read
or change (write) one or several of its attributes. The
second set of data movements represents interactions
between the component and its subcomponents. A
component can use some of its subcomponents to
realize the functionality of the software.

Internal component interactions (CFP)
= data movements between its attributes (CFP)
+ data movements between its subcomponents (CFP)

In addition, the subcomponents interactions need

to be taken into account. Thus, the total interactions
within a component are the internal interactions
added to the interactions occurring inside all of the
subcomponents. Since a subcomponent is also a
component; such definitions is applied recursively.

Component interactions (CFP)
= Internal component interactions (CFP)
+ Subcomponents interactions (CFP)

The subcomponents can be classified as related or
unrelated subcomponents; the related subcomponents
are those participating in the internal component
interactions. For instance, if a subcomponent uses or
depends on an attribute or another subcomponent,
that subcomponent is related to its parent component.
Otherwise, the subcomponent is said to be unrelated,
which means the subcomponent is independent of the
others.

Once subcomponents have been classified, it is
possible to evaluate the component interactions and
they can be added together. When evaluating the
interactions of the related components, only the
subset of related subcomponents is considered. All of

the subcomponents interactions can also be counted,
whether they are related or not.

Interactions of a set of components (CFP)
= ∑ Component interactions (CFP)

Cohesion ratio =

Internal component interactions (CFP) +
Related subcomponents interactions (CFP)

Internal component interactions (CFP) +
All subcomponents interactions (CFP)

The measure of a cohesion is then on a ratio scale

and can take any value between 0 and 1. The cohesion
ratio of a component can be seen as the proportion of
its related functionality.

If a component has no interactions between its
attributes and subcomponents, then the cohesion ratio
is 0. The cohesion ratio is undefined if there are no
subcomponents and no interactions between its
attributes. In that case, the cohesion cannot be
evaluated. When a component has no subcomponents,
the cohesion ratio is 1 since the component forms a
self-contained entity that is entirely independent.
Moreover, if all the interactions between components
are related, the cohesion ratio raises up to 1.

The components should be located within the same
layer, since different layers can involve different
kinds of technologies, and it would be harder to
compare the values of the measurements. All
measurements must be done using the same level of
granularity in order to be comparable. In addition, the
same procedure rules needs to be applied to compare
cohesion using similar criteria. Depending on the
level of details of the specifications documents, more
precise interactions can be captured between
components of the system.

5. Conclusion

The current work tried to find the key design
concepts were and how they were defined in the
literature. Two key design concepts were identified:
cohesion and coupling. The review of literature shows
that a key element for both cohesion and coupling is
the number of interactions between components. Also,
it has been found that the measure of cohesion mostly
depends on coupling.

A measurement method for cohesion was
proposed. Some typical scenarios were presented to
better illustrate how to use the meta-model with
practical software artifacts. For instance, the

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 115

methodology to measure the cohesion of several types
of components was described.

There is a probability that a collaboration of
objects refer to similar concepts, since the objects
work together to accomplish a related functionality.
Hence, the measure of the cohesion of a collaboration
of objects could be appropriate in object-oriented
systems. Further study could try to experiment with
the proposed measurement method and adjust it. Also,
the same process could be done for coupling, in the
hope to reveal more clear differences between the key
concepts in a software design.

6. References

[1] T. Lethbridge, N. Anquetil. Experiments with
Coupling and Cohesion Metrics. Online-resource:
www.site.uottawa.ca/~tcl/papers/metrics/ExpWithCo
uplingCohesion.html

[2] S. Counsell, E. Mendes, S. Swift, Comprehension
of object-oriented software cohesion: the empirical
quagmire. Proceedings of the 10th International
Workshop on Program Comprehension, Paris, France,
2002, pp.33-42.

[3] P. Bourque and R.E. Fairley, Guide to the
Software Engineering Body of Knowledge, Version
3.0, IEEE Computer Society Press, 2014.

[4] A. Marcus, D. Poshyvanyk, The conceptual
cohesion of classes. Proceedings of the 21st IEEE
International Conference on Software Maintenance –
ICSM'05, Budapest, Hungary, 2005, pp. 133-142.

[5] L. Badri, M. Badri and G. A. Badara, “Revisiting
Class Cohesion: An Empirical Investigation on
Several Systems”, Journal of Object Technology, Vol.
7, No. 6, 2008, pp. 55-75.

[6] L. C. Briand, J. Daly, V. Porter et J. Wust, A
comprehensive empirical validation of design
measures for object-oriented systems. Proceedings of
the 5th International Software Metrics Symposium,
Bethesda, Maryland, 1998, pp. 43-53.

[7] L. C Briand, S. Morasca et V. R. Basili, Property-
based software engineering measurement. IEEE
Transactions on Software Engineering, Vol. 22, No. 1,
1996, pp. 68-86.

[8] Z. Yuming, B. Xu, J. Zhao and H. Yang. ICBMC:
An Improved Cohesion Measure for Classes.
Proceedings of the International Conference on
Software Maintenance. Monteal, Canada, 2002, pp.
44-53.

[9] C. Zhenqiang, Y. Zhou, B. Xu, J. Zhao and H.
Yang, A Novel Approach to Measuring Class
Cohesion based Dependence Analysis. Proceedings of
International Conference on Software Maintenance,
Montreal, Canada, 2002, pp. 377-384.

[10] W. Stevens, G. Myers and L. Constantine,
Structured design, IBM Systems Journal, No. 2, 1974,
pp.115 -139.

[11] K. Byung-Kyoo and J. M. Bieman, Design-level
cohesion measures: derivation, comparison, and
applications. Proceedings of 20th International
Computer Software and Applications Conference,
Seoul, Korea, 1996, pp. 92-97.

[12] S. Makela, V. Leppanen, Client based Object-
Oriented Cohesion Metrics, 31st Annual International
Computer Software and Applications Conference,
Beijing, China, 2007, pp. 743-748.

[13] V. B. Misic, Cohesion is structural, coherence is
functional: different views, different measures.
Proceedings of the 7th International Software Metrics
Symposium, London, England, 2001, pp. 135-144.

[14] T. Zhou, B. Xu, L. Shi, Y. Zhou and L. Chen,
Measuring Package Cohesion Based on Context.
IEEE International Workshop on Semantic
Computing and Systems, Huangshan, China, 2008,
pp. 127-132.

[15] L. Stein, S. Gholston, P. Farrington and J.
Fortune. 2006. A Knowledge-Based Cohesion Metric
for Object-Oriented Software. Online-resource:http://
www.dcc.ufla.br/infocomp/artigos/v5.4/art06.pdf

[16] Institute of Electrical & Electronics Engineers,
IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610.12-1990.

[17] International Organization for Standardization,
ISO19761: A Functional Size Measurement Method –
COSMIC, Geneva, Switzerland, 2011.

Recent Advances in Computer Science

ISBN: 978-1-61804-297-2 116

http://www.site.uottawa.ca/~tcl/papers/met%20rics/%20ExpWithCouplingCohesion.html
http://www.site.uottawa.ca/~tcl/papers/met%20rics/%20ExpWithCouplingCohesion.html
http://www.dcc.ufla.br/infocomp/art%20igos/v5.4/art06.pdf
http://www.dcc.ufla.br/infocomp/art%20igos/v5.4/art06.pdf

