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Abstract: - This paper is an overview of three spline approaches of degree one, two and three. It represents the 

review and comparative study of Linear, conic and cubic splines for the vectorization of outlines of the planar 

images. It has various phases including extracting outlines of images, detecting corner points from the detected 

outlines, and curve fitting. The idea of simulated annealing has been incorporated to optimize the shape 

parameters in the description of the conic and cubic splines. In addition, a straightforward approach has also 

been used for linear spline case because of having no degree of freedom. The methods ultimately produce 

optimal results for the approximate vectorization of the digital contours obtained from the generic shapes. 

Demonstrations and a comparative study of linear, conic and cubic splines make the essential parts of the paper.   
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1 Introduction 
Capturing and vectorizing outlines of images is one 

of the important problems of computer graphics, 

vision, and imaging. Various mathematical and 

computational phases are involved in the whole 

process. This is usually done by computing a curve 

close to the data point set [3-5, 23-25]. 

Computationally economical and optimally good 

solution is an ultimate objective to achieve the 

vectorized outlines of images for planar objects. 

The representation of planar objects in terms of 

curves has many advantages. For example, scaling, 

shearing, translation, rotation and clipping 

operations can be performed without any difficulty. 

Although a good amount of work has been done in 

the area [10-16, 35], it is still desired to proceed 

further to explore more advanced and interactive 

strategies. Most of the up-to-date research has 

tackled this kind of problem by curve subdivision 

or curve segmentation. Curve segmentation is 

advantageous in a way that it gives a rough 

geometry of the shape. Approaches used to achieve 

this task, in the literature, are polygonal 

approximations [8, 13], circular arc approximations 

[10, 15, 17, 18, 22] and approximations using 

cubics or higher order spline functions [2, 14, 24-

25]. 

A non-parametric dominant point detection 

algorithm was proposed in [8], it used the dominant 

points for polygonization of digital curves. The 

problem with polygonal approximation is that these 

approaches are rarely used for shape analysis. A 

combination of line segments and circular arcs for 

object approximation is used in [17, 18]. A scheme 

to construct a curvature continuous conic spline is 

proposed in [15]. This approach presented the conic 

spline curve fitting and fairing algorithm using 

conic arc scaling. The smoothing is done by 

removing unwanted curvature extrema. Similar 

algorithms for data fitting by arc spline curves are 

presented in [22]. A method for segmentation of 

curves into line segments and circular arcs by using 

types of breakpoints is proposed in [10]. Advantage 

of this technique is that it is threshold free and 

transformation invariant. Five categories of 

breakpoints have been defined. The line and conic 

segmentation and merging is based on these 

breakpoints. 

Least square fitting is mostly adopted in 

approximations, which uses splines and higher 

order polynomials. Some approaches are based on 

active contour models known as snakes. These 

techniques are also based on parameterization. 

Enhancement to the scheme by adjusting both 

number and positions of control points of the active 

spline curve is shown in [14]. This scheme is based 

on curve approximation using iterative 

optimization with B-spline curve by squared 

distance minimization.  
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Another way, other than parametric form, is to 

use implicit form of the polynomial. Curve 

reconstruction problem is solved by approximating 

the point clouds using implicit B-spline curve [12]. 

The authors have used trust region algorithm in 

optimization theory as minimization heuristics. 

Techniques described for fitting implicitly defined 

algebraic spline curves and surfaces to scattered 

data by simultaneously approximating points and 

associated normal vectors are proposed in [19, 20, 

21]. 
This work is a presentation of three approaches 

using linear, conic, and cubic interpolations [42-44]. 
The linear interpolant approach is straight forward. 
However, the conic and cubic approaches are 
inspired by an optimization algorithm based on 
simulated annealing (SA) by Kirkpatrick et. al. [26]. 
It motivates the author to an optimization technique 
proposed for the outline capture of planar images. 
In this paper, the data point set represents any 
generic shape whose outline is required to be 
captured. We present an iterative process to achieve 
our objective. The algorithm comprises of various 
phases to achieve the target. First of all, it finds the 
contour [25-30] of the gray scaled bitmap images. 
Secondly, it uses the idea of corner points [1-7] to 
detect corners. That is, it detects the corner points 
on the digital contour of the generic shape under 
consideration. These phases are considered as 
preprocessing steps. Linear, conic, and cubic 
interpolants are then used to vectorize the outline. 
The idea of simulated annealing (SA) [26] is used to 
fit a conic and a cubic spline which pass through the 
corner points. It globally optimizes the shape 
parameters in the description of the conic and cubic 
splines to provide a good approximation to the 
digital curves. In case of poor approximation, the 
insertions of intermediate points are made as long as 
the desired approximation or fit is achieved. 

In most of the cases, corner points are not 

enough to approximate the digital object and hence 

some more points are also needed. These points are 

known as break points as they are used to break a 

segment for better approximation. For onwards 

discussion, the set of corner points together with 

the break points will be called as the set of 

significant points. In the fourth phase of the 

proposed algorithm, for each iteration, we will 

insert a point as knot in every piece (if needed) in a 

manner that the distance, d, of the computed point 

on the spline curve and its corresponding contour 

point is greater than a threshold ε. This process 

increases the set of significant points and hence 

needs multilevel coordinate search to be employed 

again for the updated set of significant points to fit 

an optimal spline curve. This process continues 

until it rectifies the solution and helps towards the 

objective optimization in a global fashion. We stop 

the iterative process when all d’s are less than ε. 

The proposed spline method, using multilevel 

coordinate search, ultimately produces optimal 

results for vectorizing the digital contour of the 

generic shapes. It provides an optimal fit as far as 

curve fitting is concerned. 

The organization of the paper is as follows, 

Section 2 discusses about pre-processing steps 

which include finding the boundary of planar 

objects and detection of corner points. Section 3 is 

about the interpolant forms of linear, conic, and 

cubic spline curves. Section 4 briefly introduces 

about the Simulated Annealing heuristic. Overall 

methodology of curve fitting is explained in 

Section 5, it includes the idea of knot insertion as 

well as the algorithm design for the proposed 

vectorization schemes. Algorithms for the schemes 

are devised in Section 6. Demonstration of the 

schemes as well as comparative study is presented 

in Section 7. Finally, the paper is concluded in 

Section 8. 

 

 

2 Preprocessing 
The proposed schemes start with finding the 
boundary of the generic shape and then using the 
output to find the corner points. The image of the 
generic shapes can be acquired either by scanning 
or by some other mean. The aim of boundary 
detection is to produce an object’s shape in 
graphical or non-scalar representation. Chain codes 
[27], in this paper, have been used for this purpose. 
Demonstration of the method can be seen in Figure 
1(b) which is the contour of the bitmap image 
shown in Figure 1(a). 

 

   
(a) (b) (c) 

 

Fig. 1. Pre-processing Steps: (a) Original Image, 

(b) Outline of the image, (c) Corner points 

achieved. 

 
Corners, in digital images, give important clues 

for the shape representation and analysis. These are 
the points that partition the boundary into various 
segments. The strategy of getting these points is 
based on the method proposed in [1]. The 
demonstration of the algorithm is made on Figure 
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1(b). The corner points of the image are shown in 
Figure 1(c).  
 

 

3 Curve Fitting and Spline 
The motive of finding the corner points, in Section 

2, was to divide the contours into pieces. Each 

piece contains the data points in between two 

subsequent corners inclusive. This means that if 

there are m corner points cp1, cp2, …, cpm then there 

will be m pieces pi1, pi2, …, pim. We treat each 

piece separately and fit the spline to it. In general, 

the i
th
 piece contains all the data points between cpi 

and cpi+1 inclusive. After breaking the contour of 

the image into different pieces, we fit the spline 

curve to each piece. To construct the parametric 

spline interpolant on the interval ],[ 0 ntt , we have 

m
i RF  , ni ,......,1,0 , as interpolation data, at 

knots ti, ni ,......,1,0 .  

 

 

3.1 Linear Spline 
The curve fitted by a linear spline is a candidate of 
best fit, but it may not be a desired fit. This leads to 
the need of introducing some extra treatment in the 
methodology. This section deals with a form of 
linear spline. It introduces parameters t’s in the 
description of linear spline defined as follows: 
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and Pi and Pi+1 are corner points of the i

th
 piece. 

 
 

3.2 Conic Spline 
The curve fitted by a conic spline is a candidate of 
best fit, but it may not be a desired fit. This leads to 
the need of introducing some shape parameters in 
the description of the conic spline. This section 
deals with a form of conic spline. It introduces 
shape parameters u’s in the description of conic 
spline defined as follows: 
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Di and Di+1 are the corresponding tangents at corner 
points Pi and Pi+1 of the i

th
 piece. The tangent 

vectors are calculated as follows: 
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Obviously, the parameters ui's, when equal to 1, 

provide the special case of quadratic spline. 
Otherwise, these parameters can be used to lose or 
tighten the curve. This paper proposes an 
evolutionary technique, namely simulated annealing 
(SA), to optimize these parameters so that the curve 
fitted is optimal. For the details of SA approach, the 
reader is referred to [29]. 

 
 

3.3 Generilized Cubic Spline 
The cubic spline is defined as follows: 
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Equation (4) can be rewritten as: 

 

  1,3,2,1,0, )()()()()(|
1 
 iiiiiiitt FtRtRVtRFtRtP

ii

   (5) 

where 

  






















,)(

),1(3)(

,)1(3)(

,)1()(

3
,3

2
,2

2
,1

3
,0

ttR

tttR

tttR

ttR

i

i

i

i

             (6) 

 

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 130



 

 

 

The functions Rj,i, j = 0,1,2,3 are Bernstein Bézier 

like basis functions, such that 

 
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From the Bernstein-Bézier theory it follows that the 

curve segment  1,|
ii ttP lies in the convex hull of the 

control points {Fi, Vi, Wi, Fi+1} and is variation 

diminishing with respect to the control polygon 

joining these points. 

To get the control points  1,,, iiii FWVF , we 

make use of a Bernstein-Bézier representation 

where we can impose the Hermite interpolation 

conditions: 

 

ii FtP )(  and ii DtP  )( , ni ,......,1,0     (8) 

 

where Fi and Fi+1 are corner points of i
th
 piece. Di 

and Di+1 are the corresponding tangents at corner 

points.  

To construct the parametric C
1
 cubic spline 

interpolant on the interval ],[ 0 ntt  we have m
i RF 

, ni ,......,1,0 , as interpolation data, at knots ti, 

ni ,......,1,0 . The derivatives m
i RD   can be 

found out by the imposition of C
1
 constraints on the 

piecewise cubic form. The C
1
 constraints can be 

written as: 

)()(  
ii tPtP . 

The tangent vectors are calculated as in Eqn. (3). 

 

The cubic curve fitted is a candidate of best fit, 

but it may not be a desired fit. This leads to the 

need of introducing some shape parameters in the 

description of the cubic spline. Thus, one needs to 

deal with  a more generalized form of cubic spline. 

Let us introduce two parameters v and w in the 

description of cubic spline defined as follows: 

 

1
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Obviously, the parameters vi's and  wi's, when equal 

to 1/3, provide the special case of cubic spline in 

Eqn. (5). Otherwise, these parameters can be used 

to lose or tight the curve. This paper proposes an 

evolutionary technique, namely simulated 

annealing (SA), to optimize these parameters so 

that the curve fitted is optimal. 

 

 

4 Simulated Annealing (SA) 
Simulated annealing (SA) [26] is a global 

optimization method based on the Monte Carlo 

method. It works on the analogy of the energy in an 

n-body system where the material is cooled to 

lower temperatures gradually to result in a perfect 

crystal structure. The perfect crystal structure is 

attained by having minimum energy in the material. 

This analogy translates to the optimization done in 

simulated annealing in finding a solution that has 

the lowest objective function value. The solution 

space is all the possible solutions. The current 

solution is the present state of the material. The 

algorithm iteratively tries to change the state of the 

material and check whether it has improved. The 

material’s state is changed slightly to find a 

neighboring state i.e. a close solution value in the 

solution space. It is possible that all neighboring 

states of current states are worse solutions. The 

algorithm allows going to a worse state with a 

certain probability. This probability decreases as 

the algorithm iterations proceed. Finally, it only 

allows a change in state if it is strictly better than 

the current solution. Details of SA theory can be 

found in [25, 29]. A detailed description of the 

mapping of the SA technique on the proposed 

problem is given in the next section. 
 

 

5 Proposed Approach for 

Vectorization 
The proposed approach to the curve problem is 

described here in detail. It includes the phases of 

problem matching with SA using conic and cubic 

splines, description of parameters used for SA, 

curve fitting, and the overall designs of algorithms. 

 

 

5.1 Problem Mapping 
This section describes about the SA formulation of 

the current problem in detail. Our interest is to 

optimize the values of cubic curve parameters v and 

w (parameters u in the case of conic curve) such 

that the defined curve fits as close to the original 

contour segments as possible. We use SA for the 

optimization of these parameters for the fitted 

curves. Hence the dimensionality of the solution 

space is 2 for cubic curves and 1 for conic curves. 

Each state in the SA solution space represents a 

pair of values for v and w for cubics (and value of u 

for conics).  
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We start with an initial state that is a given pair 

of v and w values for cubics (and value of u for 

conics). A starting temperature is also chosen 

arbitrarily. This temperature is an inherent internal 

parameter of SA and has no significance or 

mapping on our problem. The algorithm maintains 

a record of the best state ever reached throughout 

the algorithm run. This is the pair of v and w values 

for cubics (and value of u for conics) that has given 

the best curve fitting so far. This best solution gets 

updated whenever the algorithm finds a better 

solution. The algorithm iteratively looks for 

neighboring states that may or may not be better 

than the current one. These neighboring states are v 

and w values for cubics (and value of u for conics) 

that are slightly different from the current pair of v 

and w values for cubics (and value of u for conics). 

The cooling rate in SA is the factor affecting the 

likelihood of selecting a neighboring pair of v and 

w values for cubics (and value of u for conics) that 

gives a curve fitting worse than the current pair of v 

and w values for cubics (and value of u for conics). 

Note that we apply SA independently for each 

segment of a contour that we have identified using 

corner points. SA is applied sequentially on each of 

the segments, generating an optimized fitted curve 

for each segment. The algorithm is run until the 

maximum allowed time is reached, or an optimal 

curve fitting is attained. 

 

5.1.1 Initialization 

 
Once we have the bitmap image of a generic shape, 

the boundary of the image can be extracted using 

the method described in Section 2. After the 

boundary points of the image are found, the next 

step is to detect corner points as explained in 

Section 2. This corner detection technique assigns a 

measure of ‘corner strength’ to each of the points 

on the boundary of the image. This step helps to 

divide the boundary of the image into n segments. 

Each of these segments is then approximated by 

interpolating splines described in Sections 3.2 and 

3.3. The initial solution of spline parameters v and 

w for cubics (and u for conics) are randomly 

selected within the range [-1, 1]. 

 

5.1.2 Curve Fitting 

 
After an initial approximation for the segment is 

obtained, better approximations are obtained 

through SA to reach the optimal solution. We 

experiment with our system by approximating each 

segment of the boundary using the conic splines of 

Section 3.2 and generalized cubic splines of 

Section 3.3.  

The conic spline method is a variation of the 

quadratic spline. It provides greater control on the 

shape of the curve and also efficient to compute. 

The tangents, in the description of the spline, are 

computed using the arithmetic mean method 

described in Eqn. (3). Each boundary segment is 

approximated by the spline. The shape parameter u, 

in the conic spline, provides greater flexibility over 

the shape of the curve. These parameters are 

adjusted using SA to get the optimal fit.  

The generalized cubic spline method, explained 

in Sectionn3.3, is a variation of the well-known 

Hermite cubic spline. This modified Hermite cubic 

spline provides greater control on the shape of the 

curve and is also efficient to compute. The 

tangents, in the description of the spline, are 

computed using the arithmetic mean method 

described in Eqn. (3). Each boundary segment is 

approximated by the spline. The shape parameters. 

v and w in the cubic spline provide greater 

flexibility over the shape of the curve. These 

parameters are adjusted using SA to get the optimal 

fit.  
Since, the objective of the paper is to come up 

with optimal techniques which can provide decent 
curve fit to the digital data. Therefore, the interest 
would be to compute the curve in such a way that 
the sum square error of the computed curve with the 
actual curve (digitized contour) is minimized. 
Mathematically, the sum squared distance is given 
by:  

    1,...,1,0,,,)( 1,
1

2
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 nitttPuPS iiji
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jijiii
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where  

Pi,j = (xi,j, yi,j),    j = 1,2,…,mi ,  (12) 

 
are the data points of the ith segment on the 
digitized contour. The parameterization over t's is in 
accordance with the chord length parameterization. 
Thus the curve fitted in this way will be a candidate 
of best fit.  

Once an initial fit for a particular segment is 

obtained, the parameters of the fitted curve v's and 

w's for cubics (u’s for conics) are adjusted to get 

better fit. Here, we try to minimize the sum squared 

error of Eqn. (11). Using SA, we try to obtain the 

optimal values of the curve parameters. We choose 

this technique because it is powerful, yet simple to 

implement and as shown in Section 6, performs 

well for our purpose. 
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5.1.3 Segmentation using Intermediate 

Points 
For some segments, the best fit obtained through 

iterative improvement may not be satisfactory. In 

that case, we subdivide the segment into smaller 

segments at points where the distance between the 

boundary and parametric curve exceeds some 

predefined threshold. Such points are termed as 

intermediate points. 

 

6 The Algorithms 
We can summarize all the phases from digitization 

to optimization discussed in the previous sections. 

The algorithms of the proposed schemes are 

contained on various steps. Algorithm 1 of Section 

6.1 explains the mechanism for the computation of 

linear curve. Curve manipulation methodology with 

conics and cubics, using SA, has been laid down in 

Algorithm 2 of Section 6.2. 

 

 

6.1 Algorithm 1 for Linear Interpolant 
The summary of the algorithm, designed for optimal 
curve design using linear interpolant, is as follows:  

Step AG1.1:  Input the image.  

Step AG1.2:  Extract the contours from the 

image in Step AG1.1.  

Step AG1.3:  Compute the corner points from 

the contour points in Step AG1.2 using the 

method in Section 2.  

Step AG1.4:  Fit the linear spline curve method 

of Section 3.1 to the corner points achieved in 

Step AG1.3.  

Step AG1.5:  IF the curve, achieved in Step 

AG1.4, is optimal then GO To Step AG1.8, 

ELSE locate the appropriate intermediate points 

(points with highest deviation) in the undesired 

curve pieces.  

Step AG1.6:  Enhance and order the list of 

corner and intermediate points achieved in Step 

AG1.3 and AG1.5.  

Step AG1.7:  GO TO Step AG1.4.  

Step AG1.8:  STOP.  

 

 

6.2 Algorithm 2 for Conic (Cubic) 

Interpolant 
The summary of the algorithm, designed for optimal 
curve design using conic or cubic interpolants, is as 
follows:  

Step AG2.1:  Input the image.  

Step AG2.2:  Extract the contours from the 

image in Step AG2.1.  

Step AG2.3:  Compute the corner points from 

the contour points in Step AG2.2 using the 

method in Section 3.2 for conics (Section 3.3 for 

cubics).  

Step AG2.4:  Compute the derivative values at 

the corner / intermediate points.  

Step AG2.5:  Compute the best optimal values of 

the shape parameters ui’s for conics (vi’s and wi’s 

for cubics) using SA.  

Step AG2.6:  Fit the spline curve method of 

Section 3.2 for conics (of Section 3.3 for Cubics) 

to the corner / intermediate points achieved in 

Step AG2.2.  

Step AG2.7:  IF the curve, achieved in Step 

AG2.6, is optimal then GO To Step AG2.10, 

ELSE locate the appropriate intermediate points 

(points with highest deviation) in the undesired 

curve pieces.  

Step AG2.8:  Enhance and order the list of the 

corner / intermediate points achieved in Step 

AG2.3 and AG2.7.  

Step AG2.9:  GO TO Step AG2.4.  

Step AG2.10:  STOP.  

 

 

6.3 SA Parameters Used 
SA requires an initial guess for the solution. It is 
this starting state parameter that affects the 
performance of the algorithm. If the starting 
solution is very near the optimal solution, it is more 
likely to find the optimal solution readily than if the 
starting solution is distant from the optimal solution. 
Another important parameter for SA is the 
temperature. This parameter can be started 
arbitrarily at any value since the algorithm 
decreases it gradually until it reaches its minimum 
value. The rate at which the temperature decreases 
during the running of the algorithm is determined 
by another parameter: the cooling rate. This is a 
constant parameter initialized at the beginning, and 
is used to update the temperature after a certain 
interval of time.  

The maximum time allowed for the algorithm 

is a static parameter set in the beginning. Since SA 

does not terminate unless it exhausts its allotted 

time, care needs to be given while setting this 

parameter. If it is too high, then even if the 

algorithm reaches an optimal solution, it will not 

return unless the maximum time allowed is 

reached. There is another internal constant that 

determines how long it takes before the 

temperature is updated. This duration is also 

variable and is adjusted with the updation variable. 

Table 1 shows the SA parameter settings that we 

have used for our curve fitting optimization 

problem. 
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Table 1. Parameter Settings for SA. 

SA parameters Values 

Range of input 

parameters v and w for 

cubic (and u for conic) 

[-1,1] 

Fitness Function 

Optimization Target 

0 (function 

minimization) 

Dimension of problem 

(number of inputs to SA) 

2 for cubic (1 for 

conic) 

Weight given to global 

search vs local search 
20 

Maximum number of 

iterations (epochs) 
200 

Stopping relative error 

(if distance from optima 

is less than this, the 

algorithm terminates) 

1e-4 

Initial Set of Solution 

Points 

Corner-points and 

Mid-points of 

solution space 

Number of Steps in 

Local Search 
50 

 
The above mentioned schemes and the 

algorithms have been implemented and tested for 
various images. Reasonably quite elegant results 
have been observed as can be seen in the following 
Section of demonstrations.  
 
 

7 Demonstration 
The proposed curve scheme has been implemented 
successfully in this section. We evaluate the 
performance of the system by fitting parametric 
curves to different binary images.  

Figure 2 shows the implementation results of the 
two algorithms for the image “Plane” in Figure 1(a). 
Figures 2(a) and 2(b) are the results for the linear 
scheme, respectively, without and with insertion of 
intermediate points. Similarly, Figures 2(c) and 2(d) 
are the results for the conic scheme, respectively, 
without and with insertion of intermediate points. 
Cubic Curve Fitting without Intermediate Points 
and with Intermediate Points are shown in Figures 
2(e) and 2(f) respectively. 

Figures 3 shows the implementation results of an 
image of an Arabic Language word “Lillah ( )”. 
Figures 3(a) and 3(b) are respectively its outline and 
outline together with the corner points detected. 
Figures 3(c) and 3(d) are the results for the linear 
scheme, respectively, without and with insertion of 
intermediate points. Similarly, Figures 3(e) and 3(f) 

are the results for the conic scheme, respectively, 
without and with insertion of intermediate points. 
Cubic Curve Fitting without Intermediate Points 
and with Intermediate Points are shown in Figures 
3(g) and (h) respectively. 

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
 

Fig. 2. Curve Fittings on an extracted outline of a 

plane (a) Linear Curve Fitting Without 

Intermediate Points (b) Linear Curve Fitting With 

Intermediate Points (c) Conic Curve Fitting 

Without Intermediate Points (d) Conic Curve 

Fitting With Intermediate Points (e) Cubic Curve 

Fitting Without Intermediate Points (f) Cubic 

Curve Fitting With Intermediate Points. 

Table 2. Test images, contours and corner point 

details of outlines. 

Image Nam

e 

# of 

Contou

rs 

# of 

Contour 

Points 

# of 

Initial 

Corne

r 

Points 

 

Lilla

h 
2 [1522+161] 14 

 

Plan

e 
3 

[1106+61+8

3] 
31 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
 

Fig. 3. Curve Fittings on an extracted outline of 

arabic word ‘Lillah’ font image (a) Extracted 

Outline (b) Initial Corner Points (c) Linear Curve 

Fitting Without Intermediate Points (d) Linear 

Curve Fitting With Intermediate Points (e) Conic 

Curve Fitting Without Intermediate Points (f) 

Conic Curve Fitting With Intermediate Points (g) 

Cubic Curve Fitting Without Intermediate Points 

(h) Cubic Curve Fitting With Intermediate Points 

 
One can see that the approximation is not 

satisfactory when it is achieved over the corner 
points only. This is specifically due to those 
segments which are bigger in size and highly curvy 
in nature. Thus, some more treatment is required for 
such outlines. This is the reason that the idea to 
insert some intermediate points is demonstrated in 
the algorithms. It provides excellent results. The 
idea of how to insert intermediate points is not 
explained here due to limitation of space. It will be 
explained in a subsequent paper. 
 

Table 3. Comparison of number of initial corner 

points, intermediate points and total time taken (in 

seconds) for conic interpolation approaches. 

Image 

#
 o

f 
In

te
rm

ed
ia

te
 

P
o

in
ts

 i
n

 L
in

ea
r 

In
te

rp
o

la
ti

o
n

 

Total Time Taken 

For Linear 

Interpolation 

W
it

h
o

u
t 

In
te

rm
ed

ia
te

 

P
o

in
ts

 

W
it

h
 

In
te

rm
ed

ia
te

 

P
o

in
ts

 

Lillah.bmp 29 2.827 3.734 

Plane.bmp 24 7.735 8.39 

 

Table 4. Comparison of number of initial corner 

points, intermediate points and total time taken (in 

seconds) for conic interpolation approaches. 

Image 

#
 o

f 
In

te
rm

ed
ia

te
 

P
o
in

ts
 i

n
 C

o
n

ic
 

In
te

rp
o
la

ti
o
n

 

Total Time Taken 

For Conic 

Interpolation 

W
it

h
o
u

t 

In
te

rm
ed

ia
te

 

P
o
in

ts
 

W
it

h
 

In
te

rm
ed

ia
te

 

P
o
in

ts
 

Lillah.bmp 14 19.485 48.438 

Plane.bmp 31 20.953 49.356 

 
 

Table 5. Comparison of number of initial corner 

points, intermediate points and total time taken (in 

seconds) for cubic interpolation approaches. 

 

Image 

#
 o

f 
In

te
rm

ed
ia

te
 

P
o

in
ts

 i
n

 C
u

b
ic

 

In
te

rp
o

la
ti

o
n

 

Total Time Taken For 

Cubic Interpolation 

W
it

h
o

u
t 

In
te

rm
ed

ia
te

 

P
o

in
ts

 

W
it

h
 

In
te

rm
ed

ia
te

 

P
o

in
ts

 

Lillah.bmp 35 308.479 749.511 

Plane.bmp 13 179.786 286.033 

 
Tables 2, 3, 4 and 5 summarize the experimental 

results for different bitmap images. These results 
highlight various information including contour 
details of images, corner points, intermediate points, 
total time taken for linear, conic interpolation 
approaches. Table 2 demonstrates test images, their 
contour and corner point details of outlines. Tables 
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3, 4 and 5 exhibit comparisons of number of initial 
corner points, intermediate points and total time 
taken (in seconds) for linear, conic,  and cubic 
interpolation approaches respectively. One can have 
the following observations here: 

 Some of the outlines of images need more 
intermediate points than the others to have 
satisfactory fit. It happens when initial 
(default) outline fit is too loose and away 
from its actual outline. Or, it happens when 
initial (default) outline fit is much bigger in 
size from its actual outline. 

 Increase in intermediate points is also 
proportionally related to the higher 
accuracy of the approximation of outline fit. 

 Achievement of higher accuracy of the 
approximation of outline fit is also 
proportionally related to high amount of 
time consumed for each of the linear, conic, 
and cubic approaches. 

 

Table 6. Comparison of objective function values 

for linear, conic and cubic interpolation 

approaches. 

 

Imag
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Objective Function Values for: 

Linear 
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Interpolatio
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Lilla

h.bm

p 

2234

0.42

23 

124

0.77

78 

2819

2.15

57 

165

4.45

14 

1808

7.74

40 

138

4.47

51 

Plan

e.bm

p 

3302

.254

2 

113

7.18

15 

4153

.535

6 

125

0.61

42 

2911

.484

1 

120

5.16

47 

 

 

Table 7. Comparison of number of function calls 

taken by SA for conic and cubic interpolation 

approaches with and without intermediate points. 

 

Image 

# of Function Calls taken by SA for: 

Conic 

Interpo

lation 

Withou

t 

Interme

diate 

Points 

Conic 

Interpo

lation 

With 

Interme

diate 

Points 

Cubic 

Interpo

lation 

Withou

t 

Interme

diate 

Points 

Cubic 

Interpo

lation 

With 

Interme

diate 

Points 

Lillah.

bmp 

10611 165864 22703 53062 

Plane.

bmp 

27392 150035 38211 53108 

 

 

Tables 6 and 7 summarize some further 

experimental results. These results explain 

comparison of objective function values (Table 6) 

and number of iterations (Table 7). It is convenient 

to see, in Table 6, that higher objective function 

values take place when the schemes are 

implemented without inserting the intermediate 

points. This also indicates that the accuracy of 

approximation is not high without inserting the 

intermediate points. Hence, the higher accuracy of 

the outline capture is proportionally related to 

lower value of objective functions in each of the 

linear, conic, and cubic approaches. 

Table 7 reflects that the higher number of 

function calls take place when each of the approach 

is implemented with inserting the intermediate 

points. This also indicates that when the accuracy 

of approximation is high, the number of function 

calls is also high. Hence, the higher accuracy of the 

outline capture is proportionally related to higher 

number of function calls in each of the linear, 

conic, and cubic approaches. 

One can observe from the Tables 2-7 that linear 

spline fit is computationally most economical as 

compared to its conic and cubic spline techniques. 

This is mainly due to the fact that SA methodology 

is part of the conic and cubic approximations, but 

not the linear approximation. However, it is worth 

noting that conic and cubic approximations are 

comparatively smoother than their linear 

interpolation counterpart. It is also mentionable that 

cubic approach, with or without intermediate 

points, provides more accurate approximation as 

compared to its conic counterpart. 

 
 

8 Conclusion 
Two optimization techniques are proposed for the 
outline capture of planar images. First technique 
uses simply a linear interpolant and a straight 
forward method based on distribution of corner and 
intermediate points. Second technique uses the 
simulated annealing to optimize a conic spline to 
the digital outline of planar images. By starting a 
search from certain good points (initially detected 
corner points), an improved convergence result is 
obtained. The overall technique has various phases 
including extracting outlines of images, detecting 
corner points from the detected outline, curve 
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fitting, and addition of extra knot points if needed. 
The idea of simulated annealing has been used to 
optimize the shape parameters in the description of 
a conic spline introduced. The methods ultimately 
produce optimal results for the approximate 
vectorization of the digital contours obtained from 
the generic shapes. The schemes provide optimal 
fits with efficient computation cost as far as curve 
fitting is concerned. The proposed algorithms are 
fully automatic and require no human intervention. 
The two proposed approaches of linear and conic 
splines have been compared to the cubic spline 
which also uses the idea of simulated annealing to 
optimize the shape parameters in the description of 
a cubic spline. A detailed comparative study and 
analysis have been developed for the three 
approaches. As a future study and continuation of 
the problem, the author is also thinking to apply the 
proposed methodologies for surface models in 3D. 
This work is in progress to be published as a 
subsequent work. 
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