Comparison of Different Methods for Numerical Approximation of Static Characteristics of McKibben Pneumatic Artificial Muscle

JÁN PITEĽ, MÁRIA TÓTHOVÁ, STELLA HREHOVÁ, ALENA VAGASKÁ
Department of Mathematics, Informatics and Cybernetics
Technical University of Košice
Bayerova 1, 080 01 Prešov
SLOVAKIA
jan.pitel@tuke.sk, maria.tothova@tuke.sk, stella.hrehova@tuke.sk, alena.vagaska@tuke.sk

Abstract: - Pneumatic artificial muscles exhibit highly non-linear static characteristics especially due to inherent properties of their materials and compressibility of air. Therefore, it is difficult to control them without adequate modeling and simulation. The paper deals with the numerical approximation of the static characteristics of McKibben pneumatic artificial muscle. The muscle force dependence on the muscle contraction and pressure in the muscle was approximated using available software tools as Matlab Curve Fitting and Microsoft Excel and three obtained functions are expressed and shown for comparison in the paper.

Key-Words: - numerical approximation, static characteristic, pneumatic artificial muscle

1 Introduction
Pneumatic artificial muscles (PAMs) belong to the group of non-conventional actuators which have great potential in mechatronic [1] and biomedical [2], [3] applications due to an advantageous power to weight ratio, high stiffness, structural simplicity, natural compliance and self-dampening. When compressed air is supplied inside PAM its elastic tube has tendency to expand in the radial direction, whereas a contraction occurs in the axial direction and thus the tensile force is generated. This force is characterized by highly non-linear responses [4]. The principle of PAM is described in more details for example in [5], [6], [7].

McKibben artificial muscle is the most used type of PAM. An intensive attention has been and still is paid to modified version of this muscle and its applications by various companies such as Bridgestone Corporation of Japan (Rubbertuator Muscle), Festo in Germany (DMSP/MAS Fluidic Muscles), Shadow Robot Company (Shadow Air Muscle) and Merlin Systems Corporation in United Kingdom (Humaniform Muscle).

2 Static Characteristics and Geometric Parameters of PAM
The static characteristic of PAM represents the relation (a function) between the muscle force F and muscle contraction κ (under a constant muscle pressure p) regardless the time factor.

PAMs manufactured by FESTO are now the most popular and commercially available and therefore static characteristics of fluidic muscles of this company were used for approximation. These characteristics of PAM type FESTO MAS-20-200N in a working range between 0 % and 25 % of the muscle contraction (which is recommended by FESTO catalogue [8]) are shown in Fig. 1.

Fig. 1 Static characteristics of PAM type FESTO MAS-20-200N

PAMs consists of the inner elastic tube inserted into the non-extensible fibers which define an expansion in the context of increasing pressure. Typical materials used for the tube are latex and silicone rubber, fibers are made typically of nylon. The tube is connected to the terminals at both ends of muscle through which the mechanical energy is
transferred to the load. These terminals are most often made of metallic materials. The commercially available PAM MAS-20-200N by FESTO differs slightly from the general McKibben type muscle. The fibers of the fluidic muscle are knit into the tube, offering easy assembly compared to conventional designs of muscle [9]. Then the main geometric parameters of PAM in Fig. 2 are the initial muscle length l_0, the initial angle α_0, the initial radius in the middle of the muscle r_0, the actual muscle length l, the actual angle α, the actual radius in the middle of the muscle r, number N wrapped of single fibers and the half nylon thread length L.

Figure 2 Correlation between geometric parameters of PAM

3 Approximation of Static Characteristics of PAM

There are several basic approximation functions for description of static characteristics of PAM which are the subject of many works [9], [10], [11], [12], [13]. Following there are presented three possible ways of numerical approximation of static characteristics of PAM using the given measured data.

3.1 Approximation Using an Analytical Modeling of PAM

On the basis of physical laws (law of energy conservation, Bernoulli equation, etc.) and the geometric parameters of PAM (Fig. 2), relation of the static characteristics was derived [14]:

$$F(p, \kappa) = \pi \cdot r_0^2 \cdot p \left(\frac{3}{\tan^2 \alpha_0} \cdot \frac{l^2}{l_0^2} - \frac{1}{\sin^2 \alpha_0} \right).$$

Equation (1) does not include impact of the muscle membrane on the pressure change; it was assumed that the maximal contraction will be the same for the different pressures. In order to balance the relation between pressure p and contraction κ, the member $\varepsilon(p)$ was added to (1). This new member was suitable for higher pressures p but there were always the differences between the experimentally obtained values and the theoretical model for smaller pressure p in relation to contraction κ. In order to obtain the approximation for small values of pressure, member $\mu(\kappa)$ was also added to equation (1). After substituting new members and using relation for the contraction $\kappa = (l_0/l)/\alpha_0$, it can be obtained [15]:

$$F(p, \kappa) = \mu(\kappa) \cdot \pi \cdot r_0^2 \cdot p \left(a \cdot (1 - \varepsilon(p)) \cdot \kappa^2 - b \right),$$

where values $a = 3/\tan^2 \alpha_0$, $b = 1/\sin^2 \alpha_0$ depend on the parameters of PAM (for our type of PAM: $a = 5.4$, $b = 2.8$, $r_0 = 10$ mm).

The following functions are used to achieve the best approximation of the muscle curve:

$$\varepsilon(p) = a_\varepsilon \cdot e^{-p} - b_\varepsilon,$$

$$\mu(\kappa) = a_\kappa \cdot e^{-\kappa \cdot c_\kappa} - b_\kappa.$$

Coefficients a_ε, b_ε, a_κ, b_κ, c_κ were found by the least squares method using Matlab Curve Fitting Toolbox. The obtained values of these coefficients are shown in Table 1.

Table 1 The values of coefficients from (3) and (4)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_ε</td>
<td>0.000754</td>
</tr>
<tr>
<td>b_ε</td>
<td>0.109800</td>
</tr>
<tr>
<td>a_κ</td>
<td>-0.002630</td>
</tr>
<tr>
<td>b_κ</td>
<td>-0.010850</td>
</tr>
<tr>
<td>c_κ</td>
<td>0.407100</td>
</tr>
</tbody>
</table>

Figure 3 Force-contraction relation approximated by (2) for various pressures in the muscle
Fig. 4 F calculated in correlation with F measured for Fig. 3

Fig. 3 presents the static characteristics of Fluidic Muscle type MAS-20-200N (Fig. 1) obtained by approximation and they were created using (2) in Microsoft Excel.

To describe the nature and force of the relation between the calculated results and the specified by FESTO, regression and correlation analysis were used with achieved coefficient of correlation $R^2 = 0.976 \rightarrow R = 0.9879$ (Fig. 4).

3.2 Approximation Deducted from the Maximum Force of PAM

The muscle force as a function $F(p, \kappa)$ of the muscle contraction for different pressures in the muscle can be deducted from the maximum muscle force F_{max}.

Note that if the muscle contraction is constant, the muscle force depends almost linearly on the pressure. However, the proportionality factor decreases with increasing contraction.

Then, the result of the muscle force is defined as follows [16]:

$$F(p, \kappa) = F_{\text{max}}(\kappa) - (p_{\text{max}} - p) \cdot \left(\frac{a_0 - a_1 \kappa}{a_2} \right), \quad (5)$$

where p_{max} is the maximum and p is the actual pressure in muscle. Coefficients a_0 [N], a_1 [N·m$^{-1}$], a_2 [Pa] were found using Matlab Curve Fitting Toolbox. The maximum force F_{max} as a function of the muscle contraction is introduced by a fourth-order polynomial function for the response at the maximum pressure $p_{\text{max}} = 600$ kPa [16]:

$$F_{\text{max}}(\kappa) = b_0 + b_1 \kappa + b_2 \kappa^2 + b_3 \kappa^3 + b_4 \kappa^4, \quad (6)$$

where coefficients b_0, b_1, b_2, b_3, b_4 were also found using Matlab Curve Fitting Toolbox. All coefficients from (5) and (6) are shown in Table 2.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>-499,4000</td>
</tr>
<tr>
<td>a_1</td>
<td>-17,1200</td>
</tr>
<tr>
<td>a_2</td>
<td>-182,8000</td>
</tr>
<tr>
<td>b_0</td>
<td>1686,000</td>
</tr>
<tr>
<td>b_1</td>
<td>-162,6000</td>
</tr>
<tr>
<td>b_2</td>
<td>12,7700</td>
</tr>
<tr>
<td>b_3</td>
<td>-0,6203</td>
</tr>
<tr>
<td>b_4</td>
<td>0,0107</td>
</tr>
</tbody>
</table>

The result of approximation of the static characteristics of Fluidic Muscle type MAS-20-200N (Fig. 1) is in Fig. 5. They were created using (5), (6) in Microsoft Excel. Fig. 6 describes relation between the calculated result and the specified by FESTO. The coefficient of correlation $R^2 = 0.9975 \rightarrow R = 0.9987$ was found by using regression and correlation analysis.
3.3 Approximation Using a Polynomial Function

The third method applied for approximation of static characteristics of PAM (Fig. 1) was a polynomial approximation. In order to approximate these static characteristics with good accuracy, a fifth-order polynomial function of two variables was used. This polynomial function contains twenty-one coefficients and its form is as follows:

\[
F(\kappa, p) = a_{00} + a_{10} \cdot \kappa + a_{01} \cdot p + a_{20} \cdot \kappa^2 + a_{11} \cdot \kappa \cdot p + \\
+ a_{02} \cdot p^2 + a_{30} \cdot \kappa^3 + a_{21} \cdot \kappa^2 \cdot p + a_{12} \cdot \kappa \cdot p^2 + \\
+ a_{03} \cdot p^3 + a_{40} \cdot \kappa^4 + a_{31} \cdot \kappa^3 \cdot p + a_{22} \cdot \kappa^2 \cdot p^2 + \\
+ a_{13} \cdot \kappa \cdot p^3 + a_{32} \cdot \kappa^3 \cdot p^2 + a_{30} \cdot \kappa^5 + a_{41} \cdot \kappa^4 \cdot p + \\
+ a_{14} \cdot \kappa^3 \cdot p^2 + a_{23} \cdot \kappa^2 \cdot p^3 + a_{15} \cdot \kappa \cdot p^4 + a_{05} \cdot p^5.
\]

(7)

The values of all coefficients in (7) were determined also using Matlab Curve Fitting Toolbox and they are shown in Table 3.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{00}</td>
<td>40.6700</td>
</tr>
<tr>
<td>a_{10}</td>
<td>-97.7700</td>
</tr>
<tr>
<td>a_{01}</td>
<td>2.2540</td>
</tr>
<tr>
<td>a_{20}</td>
<td>16.3100</td>
</tr>
<tr>
<td>a_{11}</td>
<td>-0.1464</td>
</tr>
<tr>
<td>a_{02}</td>
<td>0.0036</td>
</tr>
<tr>
<td>a_{30}</td>
<td>-1.2970</td>
</tr>
<tr>
<td>a_{21}</td>
<td>0.0047</td>
</tr>
<tr>
<td>a_{12}</td>
<td>-4.78E-05</td>
</tr>
<tr>
<td>a_{03}</td>
<td>-1.10E-05</td>
</tr>
<tr>
<td>a_{40}</td>
<td>0.0470</td>
</tr>
</tbody>
</table>

Table 3 The values of coefficients from (7)

Fig. 7 Force-contraction relation approximated by (7) for various pressures in the muscle

The static characteristics generated by Fluidic Muscle type MAS-20-200N (Fig. 1) and approximated using (7) were created again in MS Excel and they are shown in Fig. 7. Relation between the calculated result and the specified by FESTO describes Fig. 8. Coefficient of correlation $R^2 = 0.9994 \rightarrow R = 0.9997$ is approaching to the maximum value of correlation (strongest, $R = 1$).

4 Results of Comparison and Conclusion

The muscle force dependence on the muscle contraction and pressure in the muscles was approximated for modified version of McKibben PAM produced by Festo Company. Three different approximation functions were tested for possible approximation of the given static characteristics of Fluidic Muscle type MAS-20-200N (Fig. 1). Analyses were carried out in Matlab Curve Fitting Toolbox environment and obtained results of approximation were shown using Microsoft Excel. Different approaches using an analytical modeling (presented in section 3.1), results of experimental modeling (presented in section 3.2) and only numerical approximation (presented in section 3.3) were used for comparison.

Firstly, the results of approximation using an analytical modeling of PAM (Fig. 3) were compared and the achieved correlation coefficient was $R = 0.9879$. As it can be seen from Fig. 4 there is a significant difference especially for higher values of the muscle force.

Secondly, the results of approximation deducted from the maximum force of PAM were compared and the achieved correlation coefficient was $R = 0.9987$. As it can be seen from Fig. 5 when compared to Fig. 1 the difference is mainly for the mean values of the muscle contraction.
The best approximation results were reached using a fifth-order polynomial function of two variables with twenty-one coefficients (the achieved correlation coefficient $R = 0.9997$) and the function (7) with the values of coefficients in Table 3 was used in dynamic modeling of one DoF (Degree of Freedom) PAM-based pneumatic antagonistic actuator using modified Hill’s muscle model [17].

Acknowledgment

The research work is supported by the Project of the Structural Funds of the EU, title of the project: Research and development of intelligent nonconventional actuators based on artificial muscles, ITMS code: 26220220103.

References:

