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Abstract: - This paper studies the effect of g-jitter on free convection flow of a viscous and incompressible 

micropolar fluid near the forward stagnation point of a two-dimensional symmetric body resulting from a step 

change in its surface temperature. The transformed non-similar boundary layer equations are solved 

numerically by an implicit finite-difference scheme known as the Keller-box method. The skin friction, rate of 

heat and mass transfer has been studied for the effect of amplitude of modulation, frequency of oscillation and 

micropolar parameters. The numerical results are given for the values of the Prandtl number Pr = 0.7 and 

Schmidt number Sc = 0.94. A comparison with the earlier published results for Newtonian fluid (K = 0) shows 

a very good agreement. 

 

 

Key-Words: - g-Jitter; Free convection; Micropolar fluid; Keller-box; Heat and mass transfer 

 

1 Introduction 
The studies on non-Newtonian fluids have gained 

considerable importance due to its great diversity in 

their physical structure and mainly used in many 

sciences, engineering, industrial, biomedical 

engineering, and technological applications. The 

examples of non-Newtonian fluids are blood, 

drilling mud, certain oils, shampoo, paints, and 

ketchup. One of the non-Newtonian fluids is 

micropolar fluid which is exhibit microscopic 

effects arising from the local structure and micro-

motions of the fluid elements. Eringen [1, 2] was the 

first who introduce the theory of micropolar fluids 

that describes microrotation as well as microinertia 

effects. Then, Wilson [3] introduced the concept of 

boundary layer approximation in micropolar fluids 

past surfaces. He obtained the appropriate two-

dimensional boundary layer equations using an 

order-of-magnitude argument and neglecting certain 

microinertia terms. An excellent analysis about 

micropolar fluid mechanics has been obtained by 

Ariman et al. [4] and Kim and Lee [5] which is 

provided the analytical studies on 

magnetohydrodynamics (MHD) oscillatory flow of 

a micropolar fluid over a vertical porous plate, and 

the effects of non-zero values of micro-gyration 

vector on the velocity and temperature fields across 

the boundary layer. There have also been a number 

of studies which consider the problems of steady 

state boundary layer flow of micropolar fluids near 

the two-dimensional stagnation points [6-9]. 

 

Obviously, the presence of temperature gradient and 

gravitational field yields buoyancy convective flows 

in many situations. However, in space, the gravity 

effect is suppressed singularly while buoyancy 

effect also reduces which is enhancing the 

properties and performance of materials such as 

crystals [10]. Recent technological implications 

have given rise to increased interest in oscillating 

natural and mixed convection driven by g-jitter 

forces associated with microgravity. g-Jitter or 

periodical gravity modulation can be defined as the 

inertia effects due to quasi-steady, oscillatory or 

transient accelerations arising from crew motions 

and machinery vibrations in parabolic aircrafts, 

space shuttles or other microgravity environments. 

Problem involving the effect of periodical gravity 

modulation with various physical effects and body 

have been studied extensively by many authors and 

can be found in the papers by Amin [11], Farooq 

and Homsy [12], Li [13], and Chamkha [14]. Beside 
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this paper, Rees and Pop [15] also studied the 

behaviour of g-jitter induced free convection flow of 

a viscous fluid near the forward stagnation point of 

a two-dimensional symmetric body resulting from a 

step change in its surface temperature. Later, Rees 

and Pop [16] extended their work to show the effect 

of g-jitter on free convection embedded in a porous 

medium near a stagnation point, then followed by 

Sharidan et al. [17], studied the effect of g-jitter on 

the unsteady free convection boundary layer flow of 

a micropolar fluid near a two-dimensional 

stagnation point. Motivated by the above studies, 

objective of the present work is to investigate the g-

jitter induced free convection boundary layer flow 

near a two-dimensional stagnation point in 

micropolar fluid and considering the analysis on 

heat and mass transfer. Since the effect of g-jitter is 

considered, following Rees and Pop [15] and 

Sharidan et al. [17], the gravitational field is 

depended on time, where  g t  is the magnitude of 

the gravity direction in a downward direction and 

can be defined as, 

   0 1 cosg t g a t    k
               

(1) 

where 0g  is the time-averaged value of the 

gravitational acceleration acting along the direction 

on the unit vector k which is oriented in the upward 

direction, a is a scaling parameter, which gives the 

magnitude of the gravity modulation relative to 0g , 

t is the time and   is the frequency of oscillation of 

the g-jitter flow. If 1a  , then the forcing may be 

seen as a perturbation of the mean gravity. Since the 

governing equations of this problem are non-linear, 

this kind of forcing leads to the phenomenon of 

streaming, where a time-periodic forcing with zero 

means produces a periodic response consisting of a 

steady-state solution with a non-zero mean and 

time-dependent fluctuations involving higher 

harmonics [10].  

 

The coupled nonlinear partial differential equations 

are solved numerically using a finite-difference 

scheme, known as the Keller-box method which is 

described in the book by Cebeci and Bradshaw [18]. 

The effect of the micropolar parameter, K on the 

reduced skin friction, heat and mass transfer 

coefficients are investigated in detail. A comparison 

with the earlier published result done by Rees and 

Pop [15] for a Newtonian f1uid (K = 0) is made and 

found to agree favourably. 

 

 

 

 

2 Governing Equations 
Consider the unsteady free convection boundary 

layer near a two-dimensional symmetric body 

immersed in a viscous and incompressible 

micropolar fluid with uniform ambient temperature, 

T  and concentration, C . Fig. 1 illustrates the 

physical model and coordinate system of the 

problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Physical model and coordinate system 

 

It is assumed that, at time 0t  , the temperature 

and concentration of the body surface are suddenly 

increased to the constant values of wT  and wC , 

where wT T and wC C . It is further assumed 

that a time-dependent body force in accordance with 

Eqn. (1) acts on the fluid and, as a result of volume 

expansion, fluid motion will exist. Under the usual 

boundary layer and Boussinesq approximations, the 

governing equations are given by (See [15]), 

 
Continuity equation: 
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Energy equation: 
2

2

T T T T
u v

t x y y


   
  

   
(5) 

Concentration equation: 

 

2

2

C C C C
u v D

t x y y
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  

   
  

 (6) 

 
subject to the following initial and boundary 

conditions, 

0 : 0, 0,

         ,   for any ,

0 : 0, ,

         , on 0

0, ,  , 0 as 

w

w

t u v N

T T C C x y

t u v T T
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y

u T T C C N y
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 
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

    

 (7)

     

where x  and y  are the Cartesian coordinates along 

the surface of the body and normal to it, 

respectively, u  and v are the velocity components 

along x  and y  – axes, n is a constant and 0 1n  , 

T  is the fluid temperature, C  is the fluid 

concentration, D is mass diffusivity, N  is the 

microrotation component normal to the plane ( ), yx

, j is the microinertia density, ( ) sinS x    denotes 

a shape function, where   is angle between the 

outward normal from the body surface and the 

downward vertical and  ,  , , , ,T and C  are 

the  density, kinematic viscosity, vortex viscosity, 

spin gradient viscosity, thermal and concentration 

expansion coefficients respectively. Following Rees 

and Bassom [19], the spin gradient viscosity   is 

assumed to be a constant given by, 

( / 2) (1 / 2)j K j                (8) 

where   is the dynamic viscosity and K =  /  is 

the material parameter. Eqn. (8) is appealed to allow 

the field equations to predict the correct behaviour 

in the limiting case when microstructure effects 

become negligible, and the microrotation 

component N  reduces to the angular velocity. 

Then, the following non-dimensional variables are 

introduced, 
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(9)      

where l  is a characteristic length and 
3 2

0 ( ) /T wGr g T T l    is the Grashof number. 

By substituting (9) into (2) – (6), the following set 

of non-dimensional equations are obtained. 
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2
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  
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(14) 

where Pr / 
 
is the Prandtl number, /Sc D  is 

Schmidt number and ( ) / ( )c w T wC C T T       

is the buoyancy ratio.  

 

The initial and boundary conditions become, 
0 : 0, 0,  0,

            0 for any ,

0 : 0, 1,  1,

            on 0

0, 0, 0, 0 as 

t u v

N x y

t u v
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
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

    

(15) 

 

 

3 Solution Procedure 
In order to solve (10) – (14) for the case of 

stagnation point, we introduced an appropriate 

transformation in the following form, 

( , ), ( , ), ( , )

( , ), ( )

x f t y t y t y

N xh t y S x x

      

         
(16) 

where  is the stream function which is defined as 

yu  /  and xv  / ,             (17) 

which is fully satisfied (10). By taking t   and 

substituting (16) into (11) to (14), the following 

governing equations are obtained, 
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with the initial and boundary conditions (15) 

become 

 

2

2

0 : 0 for any

0 : 0, 1,  1,   on 0

              

0, 0, 0, 0 as 

f h y

f
f y

y

f
h n

y

f
h y

y

  

  

 

    


     




 




    



(22) 

The physical quantities of primary interest are wall 

skin friction, the local Nusselt and Sherwood 

numbers are defined as, 

2 2
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where k is the thermal conductivity and the skin 

friction w  , heat, qw and mass transfers, mw  are 

given by 
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Using (9) and (16), we get 
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4 Results and Discussion 
Eqn. (18) to (21) corresponding to boundary 

conditions (22) are solved numerically using a finite 

difference scheme known as Keller-box method. 

This method has been found to be a very suitable in 

dealing with nonlinear parabolic problems and 

practically used by many researchers such as Rees 

and Pop [16], Sharidan et al. [17] and Kasim et al 

[20]. In all results quoted here were obtained using 

uniform grids in both the   and y  directions, where 

the grid sizes are 0.01   and 0.02y  . 

Convergence criterion was set to 10
-6 

which gives 

accuracy to five decimal places and satisfaction of 

the outer boundary condition is achieved by 

considering the boundary layer thickness, 10y  . 

 

The detailed results are for the amplitude of 

modulation a in the range 0 1a  , frequency of 

oscillation 0.2,  1,  5  , micropolar parameter 

0,K  and 1, buoyancy ratio 1  , Prandtl number 

Pr 0.7 , and Schmidt number 0.94Sc   for both 

strong concentration ( 0)n   and weak 

concentration ( 1 2)n  .  

 

Table 1. Values of the mean heat transfer rate, 

 0  for K=0 (Newtonian fluid) and 0.n   

 

  0  

 

a 

Rees and Pop [15] Present 

0.2   5   0.2   5   

0.0 0.37023 0.37023 0.37022 0.37022 

0.2 0.36938 0.37023 0.36963 0.37022 

0.4 0.36735 0.37021 0.36788 0.37021 

0.6 0.36400 0.37019 0.36483 0.37019 

0.8 0.35902 0.37016 0.36020 0.37015 

1.0 0.35186 0.37012 0.35344 0.37012 

 

Table 1 represents the direct comparison of the 

present values for mean heat transfer rate,  0  

with the numerical results reported earlier by Rees 

and Pop [15] for the case of Newtonian fluid, 

0.K  The results obtained shows a very good 

agreement which can be concluded that the 

numerical method work efficiently for this present 

problem. The variation with time of local wall heat 

transfer is integrated numerically over one period to 

obtain the values of mean heat transfer rate. 

 

Table 2 presents the values of mean skin friction, 

 0F  , heat,  0  and mass transfer rates,  * 0  
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for different values of amplitude of modulation a for 

both weak concentration ( 1 2)n   and strong 

concentration ( 0)n   respectively. It can be seen 

from Table 2 that, the range values of mean skin 

friction, heat and mass transfer rate decrease with an 

increasing of a. These results also show that the 

values of mean skin friction, heat and mass transfer 

rate for strong concentration are much lower than 

those for weak concentration. 

 

The effect of micropolar parameter on the velocity 

and angular velocity (microrotation) profiles at 

strong concentration, ( 0)n   are presented in Fig. 2 

and 3. It is interesting to note that, both velocity and 

angular velocity decrease near the plate while they 

increase away from the plate which satisfies the 

boundary conditions for the increasing of 

micropolar parameter. 

 

Fig. 4 and 5 respectively show the velocity and 

angular velocity profiles for different values of n. In 

this paper, the case 0n   corresponds to the 

boundary condition, where (0) 0h   indicating the 

no-spin condition and called as strong interaction 

[7]. Meanwhile, the case 1 2n   corresponds to 

zero antisymmetric part of the stress tensor and the 

case 1n   suggested by [21] is used for the 

modeling of turbulent boundary layer flow. It is 

observed that the velocity profile increases near the 

plate but twist the pattern between 2 3y   where 

the profile start to decrease and become zero far 

away from the plate. Further, from Fig. 5, it is noted 

that the angular velocity profile gradually decreases 

for different values of n. 

 

Fig. 6 to 11 illustrate the variation of reduced skin 

friction,  2 2,0f y  , heat transfer coefficient, 

 ,0 y    and mass transfer coefficient, 

 ,0 y    for different values of amplitude of 

modulation a , frequency of oscillation   and 

micropolar parameter K  at the fixed values of 

Prandtl number Pr 0.7 , Schmidt number 

0.94Sc   and buoyancy ratio 1  . All figures 

shows that the effect of increasing a is giving an 

almost proportional increase in the variation of 

 2 2,0f y  ,  ,0 y   , and  ,0 y   . 

It is also observed that, as   increases, the range 

values of    2 2,0 ,  ,0f y y      , and  

 ,0 y    are decreased. Finally, the effect of 

micropolar parameter K indicates that as the values 

of K increases, the values of  2 2,0f y  , 

 ,0 y   , and  ,0 y    are decreased. 

These results are due to the fact that an increase of 

K leads to increase the total viscosity of the fluid 

flow, thus decreasing the reduced skin friction, heat 

and mass transfer coefficients. 

 

 

5 Conclusion 
In this paper, the problem of g-jitter induced free 

convection of heat and mass transfer flow near a 

two-dimensional stagnation point in micropolar 

fluid has been numerically investigated. The 

numerical solutions presented for different values of 

the governing parameters are obtained by using 

Keller-box method. Eqn. (18) to (21) corresponding 

to boundary conditions (22) are solved numerically 

using a finite difference scheme known as Keller-

box method. We have examined the effects of 

amplitude of modulation, frequency of oscillation 

and micropolar parameter on the variation of 

reduced skin friction, heat and mass transfer 

coefficients. We also investigated the effects of 

micropolar parameter, K and the ratio between the 

microrotation and skin friction, n on the velocity 

and angular velocity profiles. Comparison of the 

results show that the present results agree very well 

with the previous published results reported by Rees 

and Pop [15] for Newtonian case, 0K  .   
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APPENDIX 

Table 2. Values of the mean skin friction,  0F   heat,  0  and mass transfer rates,  * 0  for 0.2   and  

K=1 with different values of n. 

 

  0F    0   * 0  

a 0n   1 2n   0n   1 2n   0n   1 2n   

0.0 0.89490 1.05270 0.39331 0.40879 0.45195 0.47037 

0.4 0.88981 1.04645 0.39068 0.40601 0.44895 0.46718 

0.8 0.87295 1.02574 0.38183 0.39656 0.43885 0.45637 

1.0 0.85939 1.00894 0.37373 0.38781 0.42965 0.44641 

 

  
Fig. 2 Velocity profile,  0f   at 0n  and various 

values of K. 

Fig. 3 Angular velocity profile,  0h  at 0n   and 

various values of K. 

  
Fig. 4 Velocity profile,  0f   at 1K  and various 

values of n. 

Fig. 5 Angular velocity profile,  0h  at 1K   and 

various values of n. 
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Fig. 6 Variations of reduced 

skin friction with   for K=0, 

n=0 and different values of a 

and  . 

Fig. 7 Variations of heat 

transfer coefficient with   for 

K=0, n=0 and different values 

of a and  . 

Fig. 8 Variations of mass 

transfer coefficient with   for 

K=0, n=0 and different values of 

a and  . 

 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5



a=0, 0.2,....,1

 = 0.2

0 0.5 1 1.5 2

0.3

0.35

0.4

0.45

0.5



a=0, 0.2,....,1

 = 0.2

0 0.5 1 1.5 2

0.35

0.4

0.45

0.5

0.55

0.6



a=0, 0.2,....,1

 = 0.2

0 0.5 1 1.5 2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2



a=0, 0.2,....,1

 = 1

0 0.5 1 1.5 2
0.4

0.41

0.42

0.43

0.44

0.45

0.46



 = 1

a=0, 0.2,....,1

0 0.5 1 1.5 2
0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53



a=0, 0.2,....,1

 = 1

0 0.5 1 1.5 2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9



a=0, 0.2,....,1

 = 5

0 0.5 1 1.5 2

0.4305

0.431

0.4315

0.432

0.4325

0.433

0.4335

0.434



 = 5

a=0, 0.2,....,1

0 0.5 1 1.5 2

0.4975

0.498

0.4985

0.499

0.4995

0.5

0.5005

0.501



a=0, 0.2,....,1

 = 5

Advances in Mathematics and Statistical Sciences

ISBN: 978-1-61804-275-0 261



 
2

2
, 0

f

y





  

2

,0
y








  
2

,0
y








 

   
Fig. 9a Fig. 10a Fig.11 

   
Fig. 9b Fig. 10b Fig. 11b 

   
Fig. 9c Fig. 10c Fig. 11c 

   
Fig. 9 Variations of reduced 

skin friction with   for K=1, 

n=0 and different values of a 

and  . 

Fig. 10 Variations of heat 

transfer coefficient with   for 

K=1, n=0 and different values 

of a and  . 

Fig. 11 Variations of mass 

transfer coefficient with   for 

K=1, n=0 and different values of 

a and  . 
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