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Abstract: - One of the worries still present in the development of embedded systems is about the confidentiality 
of its sensitive data. Since those systems could be arranged in unprotected areas, an attacker, with physical 
access to their devices, may disclosure its sensitive data, e.g. cryptographic keys, by reverse engineering means. 
Although there are solutions to protect such cryptographic keys, they are usually costly. Therefore, this paper 
proposes different methods to protect cryptographic keys of embedded systems based on software protection 
techniques taking into account the attacker’s reverse engineering perspective. We conducted a case study that 
shows the difficulty to disclosure cryptographic keys hidden by the proposed methods. 
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1 Introduction 
The cost reduction of hardware components and the 
evolution of information systems have allowed the 
widespread use of embedded systems. Those 
systems are being used to bring safety, reliability 
and efficiency to distinct kinds of applications, such 
as flight control systems, automotive monitoring 
systems and so on [1]. However, despite the several 
benefits provided by the emergence of embedded 
systems, there are many challenges to be faced, 
particularly, in terms of the security of its inner 
sensitive data. 

Since the embedded system could be arranged in 
unprotected areas, i.e. without being under 
surveillance, those devices are susceptible to Man-
Et-The-End (MATE) attacks [2]. Those attacks 
happen when attackers, after capturing one of those 
devices, try to compromise it through reverse 
engineering or by tampering the hardware itself or 
the embedded software. For instance, an attacker 
may perform reverse engineering on the embedded 
software in order to discover its sensitive data, such 
as its cryptographic keys [3].  

One example of MATE attack to disclosure 
cryptographic keys can be found on [4], which finds 
the cryptographic key performing an entropy 
analysis. In general, cryptographic algorithms are 
used to provide confidentiality, integrity, 
authentication and non-repudiation. Although not all 
cryptographic algorithms are used to achieve all the 
mentioned goals, the critical element of all of them 
is its cryptographic keys. For example, such 
algorithms could be used to make data unclear for 
people without permissions in order to keeping its 

confidentiality. However, if the used cryptographic 
keys are disclosure, the encoded data could be 
revealed. So, the effectiveness of cryptographic 
algorithms depends on the secrecy of the used 
cryptographic key. 

One possible solution to protect cryptographic 
keys is using a trusted platform module (TPM) [5]. 
Such solution consists of a microcontroller capable 
to securely store a small amount of data. Although it 
can be considered a good solution, the cost of TPM 
may preclude its use, mainly when the financial 
resources of projects are limited. For example, in the 
embedded system scenario, it may be desirable to 
create cheaper solutions instead of use a TPM to 
protect cryptographic keys since the cost to build 
each device must to be low. It is also important to 
note the addition of a TPM will lead to redesign of 
the hardware architecture of the embedded system. 

A way to protect cryptographic keys without 
using a TPM is to use data obfuscation. Data 
obfuscation is a class of code transformations that 
converts an initial data representation into other 
representation that reveals less information about it 
[6]. Data obfuscation could be considered a cheap 
pathway to enhance cryptographic key protection 
because it tries to hinder reverse engineering 
without increasing the financial cost of embedded 
system projects. This is because data obfuscation 
consists of simple code transformations that require 
more time and effort to the attacker understand the 
obfuscated data. 

In general, data obfuscation could be broadly 
classified as static and dynamic [6]. When it is 
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static, the data representation remains intact during 
runtime, independently of the user input or the 
environment where the software is running. On the 
other hand, when it is dynamic, the software itself 
changes its own data representation during runtime. 
In this case, i.e. when the data representation is 
changed dynamically, it is required more time and 
effort for the attacker understands such dynamic 
obfuscated data compared to data obfuscated 
statically. This happens because when an attacker 
looks at statically obfuscated data, he sees a difficult 
representation to analyze, but every time the 
software runs, he sees the same data representation, 
which is not true when it is used dynamic data 
obfuscation due the data representation will be 
different each time the software runs.  

While defense methods are implemented to make 
difficulty to the attacker perform reverse 
engineering, new attack strategies to break them are 
created. Thus, it is necessary to consider what the 
attacker can do with the available code analysis 
tools during the development of defense methods. 
Assuming that, this paper proposes methods based 
on software protection techniques to protect 
cryptographic keys taking into account the 
attacker’s perspective. Such methods are presented 
in an incremental way considering different 
attacker’s strategies. We evaluate our methods 
through a case study, which shows the difficulty to 
disclosure cryptographic keys in terms of the time to 
do it. 

The remainder of this paper is organized as 
follows: section 2 presents the related works; the 
section 3 presents in details the methods to protect 
cryptographic keys considering different attacker’s 
strategies; the section 4 presents our case study and, 
finally, the section 5 presents our final remarks and 
future work. 

2 Related Works 
Since hardware solutions are more expensive than 
software solutions, we describe mainly software-
based papers. Despite not all papers present 
proposals to protect exclusively cryptographic keys, 
they could be used to that purpose. 

McGregor and Lee [7] propose architectural 
enhancements for general-purpose processors that 
protect cryptographic keys. They describe modest 
hardware modifications combined with a trusted 
software library that allows protected cryptographic 
operation, i.e. devices perform encryption and 
decryption using a secret cryptographic key. For 
such, it is proposed to store such cryptographic key 
in the processor. However, different from such 

proposal, the presented paper proposed a 
cryptographic key protection method that does not 
require a special hardware. 

Hu et. al. [8] describe a software encryption 
method to protect software intellectual property. 
Since the security of the encrypted software relies 
on the secrecy of the key, this paper proposes to 
protect it by a key protection scheme, which hides 
the cryptographic key into the encrypted code. 
Despite this method is similar to ours, we focusing 
only on protect cryptographic keys, without 
encrypting the whole software, which could 
demands unnecessary computation resources.  

3 Hiding Cryptographic Keys 
In this section, we present methods to protect 
cryptographic keys based on software protection 
techniques taking into account the strategies that the 
attacker could perform to disclosure cryptographic 
keys. These methods are described incrementally in 
order to make easier to the reader understand what 
the countermeasure could be applied against each 
attacker strategy. 

Considering that an attacker is motivated to 
discover cryptographic keys inner the software of 
embedded systems, he could have different 
strategies to achieve his goal. However, for all 
strategies, we made two assumptions. The first 
assumption is that the attacker should be capable of 
getting the binary code from the disk or memory 
card of the captured device, which contains the 
software to be compromised. The second 
assumption, except for the entropy analysis, that the 
software should be at a higher-level representation 
rather than the binary code. For this, the attacker 
could use a disassembler tool to translate the binary 
code into the assembly code (notation to represent 
machine code) or go further and use a decompiler 
tool to create a representation on a high-level 
programming language, such as c, in order to make 
easier to analyze the software. 

Despite the attacker could use at ease all 
available tools, including static and dynamic tools, 
according on the strategy that he will use, only the 
last method (Dynamic Camouglage Keys) tries to 
hinder strategies to disclosure cryptographic keys 
that count on dynamic code analysis tools. 

3.1 Moving Keys to Code Segment 
Since the attacker is dealing with an ordinary code, 
which generally is composed by two segments: (i) 
code segment, usually containing program 
instructions, and (ii) data segment, commonly used 
to store data; and no defense mechanism is used to 
protect its cryptographic keys, an attacker could 
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perform two strategies to find out cryptographic 
keys contained in the data segment: string analysis 
and pattern-matching analysis.  

In the first strategy, string analysis, the attacker 
simply examines the data segment content, pursuing 
of variable or constant names related to 
cryptography. Although this strategy can be 
considered quite naïve, it is still useful when no 
method is used to protect cryptographic keys. 

On the other hand, once it is used cryptographic 
algorithms from known cryptographic libraries, the 
attacker could use a pattern-matching analysis 
towards to disclosure its cryptographic keys. In such 
strategy, the attacker examines predetermined 
positions in the data segment, where cryptographic 
keys are possibly disposed to be, whereas the 
elements of known cryptographic libraries usually 
are stored in the same positions. 

The method proposed in this work to prevent 
against string and pattern-matching analysis is 
moving the cryptographic key from the data 
segment to the code segment, in areas that never 
gets executed (dead execution spots) in order to 
maintain the software behavior. This can be done 
through code transformations that manipulate the 
software control flow. For instance, it is possible to 
create dead execution spots using code obfuscation 
techniques, such as call obfuscation, return 
obfuscation or false return obfuscation combined 
with control flow manipulation [9]. Thus, moving 
the cryptographic key to a dead execution spot may 
lead disassemblers to translate it as program 
instructions.  

When cryptographic keys are translated as 
program instructions, the generated assembly code 
does not represent the real code and, thus, the 
analysis upon that code will not be reliable. In 
addition, if the assembly code is not reliable, errors 
will be propagated to the decompilation because the 
decompilation depends on the code generated by a 
disassembler. Therefore, the analysis upon the 
decompiled code will not be reliable too. 

The algorithm 1 describes the steps of our 
proposal to prevent against string analysis and 
pattern-matching analysis. Such algorithm receives 
the following information as input: program 𝒫, 
cryptographic key 𝒦 and the size of the respective 
cryptographic key ℓ𝓁; and returns 𝒫!!, the program 
whose cryptographic key was moved to a certain 
dead executions spot into the code segment. The 
first step of this algorithm is getting candidate 
instruction addresses (𝒞!"#$%#) containing 
instructions that may be obfuscated by an 
obfuscation technique 𝓉 from an obfuscation 
techniques set 𝒯. In the following, one instruction 

address from 𝒞!"#$%# (s) has to be randomly chosen 
in order to create a dead execution spot in there. For 
such, the CreateDeadExecutionSpot function 
applies code transformations dictated by 𝓉 on s to 
create a dead execution spot capable to store the 
cryptographic key whose size is ℓ𝓁. Finally, 𝒦 is 
moved to the dead execution spot in s through the 
function MoveKey. 
Input:   Program  𝒫;  cryptography  key  𝒦,  key  size  ℓ𝓁  
Output:   Program  𝒫!!  
1. /*  Getting  candidate  instructions  (𝒞!"#$%#)  that  could  be  

obfuscated  in  order  to  create  a  dead  execution  spot  */  
2. 𝒞!"#$%#   ←   ∅  
3. For  each  instruction    𝒾 ∈   𝒫  
4.             If  𝒾  may  be  obfuscated  by  technique  𝓉 ∈ 𝒯  
5.                         𝒞!"#$%# ←   𝒞!"#$%# ∪   𝒾  
6.             End  If  
7. End  For  
8. /*   Choosing   randomly   the   instruction   address   (𝑠)  

where  one  dead  execution  spot  will  be  created  */  
9. 𝑠   ←  GetRandomElement(𝒞!"#$%#)  
10. /*  Creating  a  dead  execution   spot   in  𝑠  whose   size   is  ℓ𝓁  

using  a  certain  obfuscation  technique  𝓉  
11. 𝒫! ←  CreateDeadExecutionSpot  (𝒫, 𝑠,𝓉,ℓ𝓁)  
12. /*  Moving  𝒦  to  the  dead  execution  spot  at  𝑠  */  
13. 𝒫!! ←  MoveKey(𝒫! ,𝒦,  𝑠)  
Algorithm 1: Proposed algorithm to move cryptographic keys 
to dead execution spots into the code segment.  

3.2 Splitting Keys 
If an attacker was not able to find out a 
cryptographic key in the data segment, using the 
previous strategies (string and pattern-matching 
analysis), he must to concentrate his effort on 
searching it on the code segment. For such, he could 
use an entropy analysis. 

In the entropy analysis, the attacker calculates 
the entropy of the code segment in order to obtain 
an indication of where the cryptographic key is 
located. In a simplistic way, the entropy could be 
understood as a measure of random or disorder [10]. 
Generally the entropy of an ordinary code segment 
is low. This is because program instructions are 
represented by a limited set of bytes that do not 
change drastically among different program 
instructions. However, when a cryptographic key is 
stored in the code segment, it disturbs the entropy of 
the code segment because cryptographic keys are 
represented by random bytes, which makes the 
entropy higher on the position where the 
cryptographic key is located [4]. Thus, the entropy 
could help the attacker to identify possible candidate 
positions in the code segment where the 
cryptographic keys could be.  
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In order to prevent against entropy analysis, we 
propose to split the cryptographic key into a certain 
number of parts and store them in smaller dead 
execution spots instead of simply moving the entire 
cryptographic key to a single dead execution spot. 
Therefore, the entropy of the code segment could 
not indicate one possible candidate position in the 
code segment where the cryptographic key could be. 
Input:   Program  𝒫;  cryptography  key  𝒦,  operand  size  𝓃  
Output:   Program  𝒫!!  
1. 𝒞!"#$%#   ←   GetCandidateInstructions(𝒫)  
2. /*  Splitting  𝒦  in  𝓃  sized  parts  */  
3. 𝒦!"#$% ←    SplitCryptographicKey(𝒦,  𝓃)  
4. /*   Choosing   the   instruction   addresses   (𝒮!"#$%)   from  

𝒞!"#$%#  where  dead  execution  spots  should  be  created  to  
store  each  part  of  𝒦  */  

5. 𝒮!"#$%   ←  GetRandomElements(𝒞!"#$%#,  𝑠𝑖𝑧𝑒𝑜𝑓(𝒦!"#$%))  

6. /*   Creating   dead   execution   spots   capable   to   store  
cryptographic  key  parts  of  𝓃  size  */  

7. ∀  𝑠! ∈ 𝒮!"#$%:    
            𝒫! ←  CreateDeadExecutionSpot  (𝒫, 𝑠! ,  𝓉,𝓃)  

8. /*  Moving   each   part   of  𝒦   to   one   of   the   created   dead  
execution  spots  */  

9. ∀  𝑘!   ∈   𝒦!"#$%   ∧   ∀  𝑠!   ∈   𝒮!"#$%:      
            𝒫!! ←  MoveKey(𝒫! , 𝑘! ,  𝑠!)  

10. /*  Embed  the  reconstruct  cryptographic  key  routine  ℛ  
to  𝒫!!  and  insert  calls  to  ℛ  before  program  instructions  
that  refers  to  𝒦  */  

11. 𝒫!!   ←   𝒫!   ∪   ℛ  
12. For  each  instruction  𝒾 ∈   𝒫!!  
13.             If  𝒾  refers  𝒦  
14.                         insert  call  to  ℛ  in  𝒾 − 1  
15.             End  If  
16. End  For  
Algorithm 2: Proposed algorithm to split the cryptographic key 
in parts and store each part to a dead execution spot  

Algorithm 2 describes the steps of the proposed 
method to prevent against the entropy analysis 
strategy. Such algorithm receives as input the 
program 𝒫, the cryptographic key 𝒦 and the 
operand size 𝓃; and returns 𝒫!!, the program whose 
cryptographic key is partitioned and its parts are 
moved to various dead execution spots in the code 
segment. First, 𝒞!"#$%# is got from 𝒫 by the function 
GetCandidateInstructions as in the algorithm 1. 
After that, the SplitCryptographicKey function 
partitions 𝒦 into operand size 𝓃 parts. In the 
following, the function GetRandomElements 
chooses instruction addresses from 𝒞!"#$%# to create 
the required number of dead execution spots. Next, 
each part of the cryptographic key (𝑘!) is moved to 
one of the created dead execution spots by the 
function MoveKey. Finally, in order to ensure that 
the correct cryptographic key will be used, it is 

necessary to insert a reconstruct cryptographic key 
routine (ℛ) to reconstruct all the parts of the 
cryptographic key that are distributed in the code 
segment before each program instruction that uses 
the respective cryptographic key. 
3.3 Camouflaging Key as False Instructions 
When the previously presented strategies, including 
entropy analysis, could not help the attacker to 
know possible candidate positions in the code 
segment where the cryptographic key could be, the 
attacker may investigate the code segment for 
garbage bytes (garbage bytes investigation). 

As garbage bytes are bytes that do not represent 
any program instruction, then it is possible that such 
bytes could be part of a certain cryptographic key 
that was moved from the data segment to the code 
segment. 

Once an attacker finds several garbage bytes in 
the code segment, he could combine all of them in 
order to construct the used cryptographic key. 
Besides combining all the garbage bytes demands 
time, an attacker with time and dedication always 
could reveal the desired cryptographic key and the 
only thing to do is slow down such attacker.  

The proposed method in our work to counter 
garbage bytes investigation is camouflaging all 
cryptographic key parts into false instructions, 
which are instruction composed by a random 
opcode combined with one cryptographic key part 
that will look like the operand of such instruction.  

The number of false instructions depends on the 
operand size and the cryptographic key size. After 
splitting the cryptographic key into operand size 
parts and combine they with random opcodes, it is 
necessary to create the required number of dead 
execution spots to store all generated false 
instructions. Notice that each false instruction may 
have different sizes because they have different 
opcodes. So, it is necessary to create dead execution 
spots having different sizes. 

Algorithm 3 describes the steps of the proposed 
method to prevent against previous strategies and 
garbage byte investigation. Algorithm 3 receives as 
input the program 𝒫, the cryptographic key 𝒦 and 
the operand size 𝓃; and returns 𝒫!", the program 
whose cryptographic key is camouflaged in false 
instructions that are distributed in the code segment, 
being difficulty to the attacker distinguish between 
them and actual instructions. The only difference 
between this algorithm and algorithm 2 are the steps 
to create false instructions and to create dead 
execution spots since such spots have to store false 
instructions instead of cryptographic key parts. 
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After splitting the cryptographic key 𝒦 into 𝓃 
sized parts, for each cryptographic key part k, it is 
performed the following steps to create false 
instructions: (i) generation of a random byte that 
represents a valid opcode by the function 
RandomOpcode and (ii) attaching it with k, which 
will be translated as the operand of such instruction. 
Next, before moving each false instruction in 
𝑓𝑎𝑙𝑠𝑒!"#$%# to a dead execution spot, it is necessary 
to ensure that such spot is capable to store a false 
instruction (𝑓!), i.e. whose size is sizeof(𝑓!). Notice 
that all false instructions are moved randomly to the 
available dead execution spots. Finally it is 
embedded the reconstruction cryptographic key 
routine to the program and calls to it. 
Input:   Program  𝒫;  cryptography  key  𝒦,  operand  size  𝓃  
Output:   Program  𝒫!!!  
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←  SplitCryptographicKey(𝒦,𝓃)  
3. /*  Creating  false  instructions  */  
4. 𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   ∅  
5. For  each  𝑘  ∈   𝒦!"#$%  
6.             𝑓   ←   RandomOpcode() ∘ 𝑘    
7.             𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   𝑓𝑎𝑙𝑠𝑒!"#$%#   ∪ 𝑓      
8. End  For  
9. /*  Moving  false  instructions  to  dead  execution  spot  */  
10. 𝒮!"#$% ←  GetRandomElements(𝒞!"#$%#,  𝑠𝑖𝑧𝑒𝑜𝑓(𝒦!"#$%))  

11. ∀  𝑓!   ∈   𝑓𝑎𝑙𝑠𝑒!"#$%#   ∧   ∀  𝑠!   ∈   𝒮!"#$%:      
12.             𝒫! ←  CreateDeadExecutionSpot(𝒫, 𝑠! ,  𝓉,𝑠𝑖𝑧𝑒𝑜𝑓(𝑓!))  

            𝒫!!  ←  MoveFalseInstruction(𝒫! , 𝑓! ,  𝑠!)  
13. 𝒫!!!   ←   𝒫!! ∪   ℛ  
14. 𝒫!"   ←  InsertCallsToReconstructRoutine(𝒫!!! ,  𝒦)  
Algorithm 3: Proposed algorithm to hide cryptographic key 
parts into false instructions 

3.4 Inserting Garbage Instructions 
Considering that an attacker knows that all 
cryptographic key parts are camouflaged in false 
instructions, his strategy to reveal such 
cryptographic key is examine the code segment in 
pursuit of dead execution spots containing false 
instructions (dead execution spots investigation). 
Thus, we propose to counter such strategy by 
increasing the time and effort to reveal the 
cryptographic key through adding garbage 
instructions, which are random program 
instructions also stored in dead execution spots. This 
increases the time and effort to reveal cryptographic 
key because the attacker must to combine more 
operands, i.e. operands of false instructions and the 
operands of garbage instructions, whereas it is 
difficulty to the attacker distinguish one kind of 
instruction from another. 

Algorithm 4 describes the steps of the proposed 
method that camouflages cryptographic key parts 
into false instructions and randomly adds garbage 
instructions on the code segment. Such algorithm 
receives as input the program 𝒫, the cryptographic 
key 𝒦, the operand size 𝓃, number of garbage 
instructions 𝓂; and returns 𝒫!", the program whose 
cryptographic key is hidden in false instruction and 
has garbage instructions distributed in the code 
segment, requiring to the attacker more time and 
effort to reveal such cryptographic key since it is 
difficulty to distinguishes from what instructions the 
operand part must to be extracted in order to 
reconstruct the right cryptographic key. 
Input:    Program  𝒫;   cryptography   key  𝒦,   operand   size  𝓃,  
number  of  garbage  instructions  𝓂  
Output:   Program  𝒫!"  
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←  SplitCryptographicKey(𝒦,𝓃)  
3. 𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   CreateFalseInstructions(𝒦!"#$%)  
4. /*Creating  garbage  instructions*/  
5. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ←   ∅  
6. While  sizeof(𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#)  <  𝓂  
7.             𝑔   ←   RandomOpcode() ∘ RandomOperand()    
8.             𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ←   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ∪ 𝑔      
9. End  While  
10. /*Creating   dead   execution   spots   to   hold   false   and  

garbage   instructions   and   moving   such   instructions   to  
there  */  

11. ℳ   ← 𝑆𝑖𝑧𝑒𝑂𝑓 𝒦!"#$% +   𝓂  
12. 𝒮!"#$%   ←  GetRandomElements(𝒞!"#$%#,  ℳ)  

13. ∀  𝑓!   ∈   𝑓𝑎𝑙𝑠𝑒!"#$%#   ∧   ∀  𝑠!   ∈   𝒮!"#$%:        
      𝒫! ←  CreateDeadExecutionSpot(𝒫, 𝑠! ,  𝓉,sizeof(𝑓!)  )  
      𝒫!! ←  Move(𝒫! , 𝑓! ,  𝑠!)  

14. ∀  𝑔!   ∈   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ∧   ∀  𝑠!   ∈   𝒮!"#$%:  
      𝒫!!! ←  CreateDeadExecutionSpot(𝒫!! , 𝑠! ,  𝓉,  𝑔!)  
      𝒫!" ←  Move(  𝒫!!! ,𝑔! ,  𝑠!)  

15. 𝒫!   ←      𝒫!"   ∪   ℛ  
16. 𝒫!"   ←  InsertCallsToReconstructRoutine(𝒫! ,  𝒦)  
Algorithm 4: Proposed algorithm to hide cryptographic key 
parts into false instructions and add garbage instructions 

The differences between this algorithm and 
algorithm 3 are: (i) the steps to create garbage 
instructions that do not exist in the previous 
algorithm and (ii) the number of dead execution 
spots that should be created. After getting the 
candidate instructions (𝒞!"#$%#) and creating the 
false instructions by the function 
SplitCryptographicKey, this algorithm creates 
garbage instructions until it is created 𝓂 garbage 
instructions. Each garbage instruction is created by 
combining random bytes, which represents a valid 
opcode, with random bytes that represents a valid 
operand. Next it is created the required number of 
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dead execution spots, which is the number of parts 
of the cryptographic key (𝑆𝑖𝑧𝑒𝑂𝑓 𝒦!"#$% ) more 
the number of garbage instructions 𝓂. Then both 
false and garbage instructions are randomly moved 
to the created dead execution spots and finally, the 
reconstruction cryptographic key routine is attached 
to the program and calls to it are inserted. 
3.5 Dynamically Camouflage Keys 
The previously proposed methods try to hinder 
reverse engineering considering that the attacker 
only uses static analysis tools. However, such 
methods are not effective when he uses dynamic 
analysis tools, such as debuggers and emulators.  

The fist strategy that takes advantage of static 
software is the program diffing. This strategy 
depends on the attacker has two or more copies of 
the same software and the cryptographic key in each 
copy be different. In this case, the attacker could 
reveal cryptographic keys by comparing the copies 
whereas each copy is equivalent except on the 
positions where the cryptographic is stored. Thus, 
examining the positions that are not equivalent, the 
attacker could easily reveal cryptographic keys.  

The other strategy that takes advantage of static 
software is the recurrent attacks. The goal of this 
strategy is compromise the largest possible number 
of devices. Assuming a scenario where there are 
many devices containing identical software within 
it, once an attacker could find out the position where 
the cryptographic key is located, he may create a 
script to remotely read such position on other 
devices, where the cryptographic key is expected to 
be, in order to find out new cryptographic keys 
without analyze the software of all devices. 

The countermeasure proposed in this work to 
prevent against such strategies is attaching to the 
embedded software an obfuscation engine that 
dynamically camouflages all parts of the 
cryptographic key in different false instructions and 
create random garbage instructions. Notice that the 
obfuscation engine could move both instructions to 
different program address in order to make it more 
difficult to identify such instructions.  

The obfuscation engine could prevent against 
program diffing because the copy contained in each 
device is different since the software changes 
periodically differently and not only in the positions 
where the cryptographic key is. So, there are many 
positions in the code that are different, making 
difficult to know cryptographic key position by 
simply comparing two or more software. 
Furthermore, the obfuscation engine hinders 
recurrent attacks because it provides software 
diversity, i.e. the software within each device is 

different. Thus, the attacker could not take 
advantage of previous knowledge (cryptographic 
key location) to discover new cryptographic keys to 
propagate an attack for other devices. 

The algorithm 5 describes the steps of the 
proposed method to counter program diffing and 
recurrent attacks. Such algorithm receives the 
following information as input: program 𝒫, 
cryptographic key 𝒦, the operand size 𝓃, the 
number of garbage instructions 𝓂 and returns 𝒫!" 
containing an obfuscation engine capable to embed 
an obfuscation engine that periodically hides 
cryptographic key in false instructions and inserts 
garbage instructions in different ways, by changing 
its shape and its location. In order to ensure that 
each device has distinct software, it is necessary to 
use schemes that gets intrinsic features of the device 
where the software is embedded, such as Physical 
unclonable Function (PUF) [11]. 
Input:    Program  𝒫;   cryptography   key  𝒦;   operand   size  𝓃,  
number  of  garbage  instructions  𝓂  
Output:   Program  𝒫!"  
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←  SplitCryptographicKey(𝒦,𝓃)  
3. 𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   CreateFalseInstructions(𝒦!"#$%)  
4. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ←   CreateGarbageInstructions(𝓂)  
5. ℳ   ← 𝑆𝑖𝑧𝑒𝑂𝑓 𝒦!"#$% +   𝓂  
6. 𝑆!"#$%   ←  GetRandomElements(𝒞!"#$%#,  ℳ)  
7. 𝒫! ←  CreateDeadExecutionSpots(𝒫, 𝑆!"#$%  )  

8. 𝒫!!   ← 𝑀𝑜𝑣𝑒(𝒫!, 𝑓𝑎𝑙𝑠𝑒!"#$%#   ∪   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#,𝒮!"#$%)  
9. 𝒫!!!   ←      𝒫!!   ∪   ℛ  
10. 𝒫!!   ←  InsertCallsToReconstructRoutine(𝒫′′′,  𝒦)  
11. /*   Filling   Obfuscation   Engine  𝒪   with   information   that  

allows  it  to  run  */  
12. 𝒪 ← 𝒪 ∪   𝒞!"#$%# ∪   𝑆!"#$%   ∪   𝑓𝑎𝑙𝑠𝑒!"#$%#   ∪   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#        

13. /*   Embed   𝒪   to  𝒫!"  and   insert   calls   to   𝒪   at   randomly  
different  positions  in  the    software  */  

14. 𝒫!   ←   𝒫!"   ∪   𝒪  
15. 𝒫!" ←  insertCallsToObfuscatorEngine(𝒫!)  
Algorithm 5: Proposed algorithm to embed the obfuscation 
engine into a program 

The steps of algorithm 5 are similar to the 
algorithm 4 except for the steps to embed the 
obfuscation engine 𝒪. This is done to guarantee that 
before 𝒪 runs for the first time, the software will be 
different for each device. Thus, until the line 10 is 
reached, the algorithm 5 behaves as algorithm 4. 
After this line, the algorithm 5 fills 𝒪 with the 
following information in order to ensure that it 
behaves as expected: 𝒞!"#$%#, 
𝑓𝑎𝑙𝑠𝑒!"#$%#,  𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# and 𝑆!"#$%. 𝒞!"#$%# is 
required to the 𝒪 knows where new dead execution 
spots could be created; 𝑆!"#$% is proved to 𝒪 in 
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order that it knows the dead execution spots where 
is located false and garbage instructions. Finally, 
must to know 𝑓𝑎𝑙𝑠𝑒!"#$%# and  𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# in 
order to know what kind of instruction is in each 
dead execution spots informed by 𝑆!"#$%. The last 
steps of this algorithm are responsible to embed the 
𝒪 and inserts instructions that calls it randomly in 
different positions in the software. 

During the execution of 𝒪, it creates new false 
and garbage instructions, which could be stored in 
new dead execution spots or simply moved among 
the existing ones. For this, 𝒪 randomly chooses n 
false instructions and m garbage instructions to be 
modified in this moment. In the following, it is 
chosen how many false and garbage instructions 
should be modified in its shape, in its locations or 
both. Then it is performed the respective steps to do 
such actions, i.e. the steps to create new false and 
garbage instructions, the steps to create new dead 
execution spots and the steps to move false and 
garbage instructions to new locations. Finally, 
before 𝒪 returns the control flow to the software, it 
ensures that the addresses of dead execution spots 
are known and what kind of instruction is stored in 
each of them.  

4 Case Study 
In this section, we present a case study showing the 
difficulty to disclosure a cryptographic key. After 
applying each of the proposed methods, it is 
presented how the difficulty increases. 

Since there is not an absolute metric to evaluate 
software protection methods in the literature, we 
propose an effort metric (𝐸), which measures the 
difficulty to achieve a goal, such as disclosure 
cryptographic keys. This metric is expressed as 
𝐸 = 𝑇!×𝛼!!

!!! , where 𝑇! is a time-based factor, 
which represents the time required to the attacker to 
perform a certain task; and 𝛼! is a constant factor 
that weights the difficulty to the attacker to perform 
the task related to the time-based factor. 

For our experiments, we used the rijndael 
application of an embedded benchmark suite, called 
MiBench [12]. This application is an 
implementation of the AES symmetric cipher to 
ARM vendor devices [13]. In its original form, such 
application does not have any method to prevent it 
against reverse engineering.  

The first strategy to disclosure its cryptographic 
keys is the string analysis. Considering that the 
attacker knew nothing about the rijndael application 
a priori, he could examining its code with IDA 
PRO, a commercial multi-processor disassembler 
and debugger [14] in order to find out its 
cryptographic key in the data segment (.rodata). 

Figure 1 shows that it is possible since the 
cryptographic key used in this application could be 
found after identify the string CRYPTO_KEY 
stored at the program address 0x020311FC. For 
such, the attacker must to spend the effort 
𝐸 = 𝑇!×𝛼!, where 𝑇! is the time to examine an 
element in the data segment and 𝛼! is related to the 
data segment size and the number of strings in it. 

 
Figure 1. Cryptographic key revealed by string analysis 

The first countermeasure, as described in 
subsection 3.1, to protect the rijndael application 
consists in moving the cryptographic key to the code 
segment, more specifically in a dead execution spot. 
In our experiments, we create a dead execution spot 
in the code segment of the rijndael application 
through call obfuscation. A way to perform call 
obfuscation in ARM is described on [9].  
.data  
crypto_key:          .word          0xFFFF  

.text  
main:  
1. bl  foo  
2. mul  r1,  r0,#2  
3. bl  bar  
4. div  r1,0,#3  
foo:  
1. stmdb  sp!,{r4-­‐r11}  
2. add  r0,r0,#1  
3. ldmia  sp!,  {r4-­‐r11}  
4. ret  

.text  
main:  
1. add  lr,pc,#4  
2. ldr  pc,=foo  
3.  0xFFFF  
4. mul  r1,  r0,#2  
5. bl  bar  
6. div  r1,0,#3  
foo:  
1. stmdb  sp!,{r4-­‐r11}  
2. add  r0,r0,#1  
3. ldmia  sp!,  {r4-­‐r11}  
4. ret  

(a)   (b)  
Figure 2. Original code sample (a) and obfuscated code (b)  

Figure 2 shows an example that shows how to 
create a dead execution spot in ARM architecture 
using call obfuscation. For such, the call instruction 
‘bl foo’ at line 1 on column (a) is replaced by the 
following two instructions at the lines 1 and 2 on 
column (b): ‘add lr, pc, # 4’ and ‘ldr pc, = foo’. The 
first instruction (‘add lr, pc, # 4’) is responsible to 
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save the return address, in this case, the new address 
of the instruction ‘mul r1, r0, # 2’ to the lr register, 
which is used, as standard, to store the return 
address. Then, the second instruction (‘ldr pc, = 
foo’) updates the pc register with the address of the 
first instruction of foo. Thus, it is created a dead 
execution in the line 3 of column (b) capable to 
store 4 bytes. In this example, the bytes of (0xFFFF) 
of the crypto_key is moved from the data segment 
(.data) to the created dead execution spot. 

The dead execution spot of the rijndael 
application was created in the program address 
0x020234C8. In the Figure 3 could be seen the bytes 
of the cryptographic key in such dead execution 
spot. Notice that not all bytes were translated as 
program instructions, some of them are showed as 
garbage bytes. 

 
Figure 3. Entropy calculation 

Despite the movement of the cryptographic key 
to the code segment is effective against string 
analysis, such method is not effective against 
entropy analysis. To perform the entropy analysis, 
he created a script in the IDA PRO to calculate for 
each code block of 1024 bytes the Shannon entropy 
[10]. After calculate the entropy for all code blocks, 
it is calculated the entropy mean and the entropy 
variance. Finally, if the entropy of a code block is 
greater than the entropy mean more the entropy 
variance. Then the first program address of such 
code block is returned. Also, in the Figure 3, is 
shown the possible candidate program address 
where the cryptographic key could be located, 
which are the program addresses of the code block, 
whose entropy is greater than the entropy mean 
(0,13040864204) more the entropy variance 
(0,0181771936).  

After examining each candidate program 
address, the attacker is able to find out the 
cryptographic key stored in the code segment since 
one of such candidates is the program address 
0x020234C8, i.e. the program address where the 
cryptographic key is located. The effort to 

disclosure such cryptographic key using the entropy 
analysis strategy is 𝐸 = 𝑇!×𝛼!, where 𝑇! is the time 
to examine each candidate program address and 𝛼! 
is a constant factor that depends on the attacker’s 
capacity to create the script to calculate the entropy 
and the number of possible candidate program 
address that were found by such script. Notice that 
the attacker has performed the string analysis before 
the entropy analysis, then the total effort to 
disclosure the desired cryptographic key is 
𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼! 

The second countermeasure to protect the 
cryptographic key, described in the subsection 3.2, 
is split the cryptographic key and store each part in a 
distinct dead execution spot, which is randomly 
disposed in the code segment. In this case, the script 
that calculates the entropy does not return any 
possible candidate program address. Thus, the 
cryptographic key could not been disclosure by 
entropy analysis. 

When the entropy analysis could not help the 
attacker, he could use the garbage bytes 
examination, i.e. examine the code segment for 
garbage bytes. Such bytes appear in the code 
segment because disassemblers cannot make the 
correspondence between these bytes with a certain 
program instruction. On the other hand, such bytes 
could also be incorrectly translated, as program 
instructions. It happens when an assumption used by 
disassemblers are not followed. For example, when 
disassemblers detect a call instruction, they assume 
that the return address is the subsequent address 
after the call instruction. However, since the return 
address is manipulated to redirect the control flow to 
other program address, disassemblers still translates 
the bytes located at return address that they consider 
as real program instructions. 

The effort to disclosure cryptographic key using 
garbage examination is 𝐸 = 𝑇!×𝛼! +   𝑇!×𝛼!, 
where 𝑇! is the time to find out one garbage byte, 𝛼! 
the constant factor related to the number of parts of 
the cryptographic key, 𝑇! is the time to combine the 
collected garbage bytes in a certain order and 𝛼! 
dictate the number of combinations, which depends 
on the number of garbage bytes found in the code 
segment. Notice that some parts of the 
cryptographic key will not be translated as garbage 
instructions, such strategy could not be absolutely 
effective. 

Next, to counter the attacker to find out garbage 
bytes, it is applied the method described in the 
subsection 3.3. Assuming that the attacker knows 
that the cryptographic key parts are camouflaged as 
false instructions, he could try to identify them in 
the code segment. However, distinguish the false 
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instructions from actual instructions is difficult 
because false instructions do not have a format that 
differentiate the actual instructions. Thus, the 
attacker should try to identify all the dead execution 
spots in the code segment (dead execution 
investigation) before combine the operand part of 
the false instructions.  

One way to identify dead execution spots is by 
analyzing the control flow. However, to perform 
such analysis, it is necessary to generate the Control 
Flow Graph (CFG) of the program and since the 
CFG depends on the assembly code created by 
disassemblers and the method to create dead 
execution spots could infringe certain disassembler 
assumptions, the CFG created could not be trusted, 
making difficulty to identify such dead execution 
spots. 

The effort to find out cryptographic key by dead 
execution investigation is 𝐸 =   𝑇!×𝛼! +   𝑇!×𝛼!. 
Such effort depends on to identify the dead 
execution spots among all program instructions in 
the code segment and the time to combine the 
cryptographic key parts (𝑘1,  𝑘2 ,  𝑘3,…,  𝑘n) since the 
false instructions could be disorderly arranged in the 
code segment. In this effort, 𝑇! is the time to find 
out one dead execution spot, 𝛼! depends on the 
number of dead execution spots and the attacker’s 
capacity to identify dead execution spots, which is 
difficult because it could be created using several 
code manipulations. In addition, 𝑇! is the time to 
combine the operand bytes of each false instruction 
in a certain order and 𝛼! dictate the number of 
combinations, which depends on the number of dead 
execution spots found in the code segment. 

If an attacker discovers all the dead execution 
spots, and consequently, the false instructions, the 
proposed solution was adding garbage instructions 
also in dead execution spots in order to increase the 
time to disclosure the cryptographic key. Thus the 
effort to do this is 𝐸 =   𝑇!×𝛼! +   𝑇!×𝛼! +   𝑇!×𝛼!. 
Beyond such effort must to consider the time to find 
out false instructions, it has to consider the time to 
find out garbage instructions (𝑇!) and its respective 
constant factor (𝛼!). Similarly as the distinction 
between false instructions is difficulty, the 
distinction between false and garbage instructions 
also is difficulty. For instance, to reconstruct the 
cryptographic key 𝒦, the attacker must to discover 
the false instructions among n + m dead execution 
spots whereas m is the number of garbage 
instructions and n the number of false instructions. 

In order to prevent against program diffing and 
recurrent attacks, it is applied the last method, 
described in the subsection 3.5. Since the 
obfuscation engine change randomly the software 

running on each device, a comparison of attack can 
be made impossible. This is because each copy of 
software is different, since the n key parts are 
arranged in different places and in different 
directions false. However, if only the false 
statements changed, the obfuscation engine could 
give indications of the location of these keys. 
However, the obfuscation engine also generates 
garbage statements at run time. Thus when 
comparing copies of two different devices, it does 
not help the attacker to locate a cryptographic key as 
the software are very different and the effort to 
understand the differences compares the effort to 
analyze the two copies altogether. 

Software obfuscation diversity provided by the 
engine is also useful to contain recurrent attacks. 
This is because the software is constantly changing 
and therefore cannot take advantage an earlier attack 
to compromise the same device in the future or 
commit other devices that have the same software. 
.data  
crypto_key:          .word          0xFFFF  

.text  
main:  
1. bl  foo  
2. mul  r1,  r0,#2  
3. bl  bar  
4. div  r1,0,#3  
foo:  
1. stmdb  sp!,{r4-­‐r11}  
2. add  r0,r0,#1  
3. ldmia  sp!,  {r4-­‐r11}  
4. ret  

.text  
main:  
1. add  lr,pc,#4  
2. ldr  pc,=foo  
3.  0xFFFF  
4. mul  r1,  r0,#2  
5. bl  bar  
6. div  r1,0,#3  
foo:  
1. stmdb  sp!,{r4-­‐r11}  
2. add  r0,r0,#1  
3. ldmia  sp!,  {r4-­‐r11}  
4. ret  

(a)   (b)  
Figure 2. code examples that show two samples created by 
obfuscation engine operation 

The Fig. 4 presents an example that shows how 
the code of an application changes due to operation 
of the obfuscation engine at two different times T1 
and T2 respectively shown in Fig 2 (a) and Figure 2 
(b). In T1, a part of a cryptographic key (0xE0C7) is 
camouflaged in the false statement 'addeq r8, r4, # 
199' on a snippet of non-executable code created 
through a obfuscation call. In T2, 0xE0C7 is 
camouflaged within the false instruction 'subne r8, 
r4, # 199'. Such instruction is stored in a snippet of 
non-executable code created using an obfuscation 
return [3,13]. For this, the ret instruction of the 
function bar is replaced by the instructions 'add r3, 
lr, # 4' and 'r3 b', able to manipulate the flow of 
control in order to create a dead execution spot 
between the function call 'bl bar' and 'div r8, r4, # 
199' instruction. 
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5 Conclusion 
In this work, we present methods to protect 
cryptographic keys by hiding them into the code 
segment. Such methods could be considered 
appropriate for embedded systems because it 
decreases the risk disclosure by reverse engineering, 
without financial costs. For future works, we would 
increment the cryptographic key protection with 
anti-debugging and anti-emulation techniques in 
order to prevent against dynamic analysis tools. 
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