
Hiding Cryptographic Keys of Embedded Systems

RAFAEL COSTA1, 2, DAVIDSON BOCCARDO2, LUCI PIRMEZ1,2, LUIZ FERNANDO RUST2
Federal University of Rio de Janeiro1, National Institute of Metrology, Quality and Technology2

BRAZIL
rafaelcosta@ppgi.ufrj.br, {drboccardo, lfrust}@inmetro.gov.br, luci@nce.ufrj.br

Abstract: - One of the worries still present in the development of embedded systems is about the confidentiality
of its sensitive data. Since those systems could be arranged in unprotected areas, an attacker, with physical
access to their devices, may disclosure its sensitive data, e.g. cryptographic keys, by reverse engineering means.
Although there are solutions to protect such cryptographic keys, they are usually costly. Therefore, this paper
proposes different methods to protect cryptographic keys of embedded systems based on software protection
techniques taking into account the attacker’s reverse engineering perspective. We conducted a case study that
shows the difficulty to disclosure cryptographic keys hidden by the proposed methods.

Key-Words: - Security, Embedded Systems, Data Hiding

1 Introduction
The cost reduction of hardware components and the
evolution of information systems have allowed the
widespread use of embedded systems. Those
systems are being used to bring safety, reliability
and efficiency to distinct kinds of applications, such
as flight control systems, automotive monitoring
systems and so on [1]. However, despite the several
benefits provided by the emergence of embedded
systems, there are many challenges to be faced,
particularly, in terms of the security of its inner
sensitive data.

Since the embedded system could be arranged in
unprotected areas, i.e. without being under
surveillance, those devices are susceptible to Man-
Et-The-End (MATE) attacks [2]. Those attacks
happen when attackers, after capturing one of those
devices, try to compromise it through reverse
engineering or by tampering the hardware itself or
the embedded software. For instance, an attacker
may perform reverse engineering on the embedded
software in order to discover its sensitive data, such
as its cryptographic keys [3].

One example of MATE attack to disclosure
cryptographic keys can be found on [4], which finds
the cryptographic key performing an entropy
analysis. In general, cryptographic algorithms are
used to provide confidentiality, integrity,
authentication and non-repudiation. Although not all
cryptographic algorithms are used to achieve all the
mentioned goals, the critical element of all of them
is its cryptographic keys. For example, such
algorithms could be used to make data unclear for
people without permissions in order to keeping its

confidentiality. However, if the used cryptographic
keys are disclosure, the encoded data could be
revealed. So, the effectiveness of cryptographic
algorithms depends on the secrecy of the used
cryptographic key.

One possible solution to protect cryptographic
keys is using a trusted platform module (TPM) [5].
Such solution consists of a microcontroller capable
to securely store a small amount of data. Although it
can be considered a good solution, the cost of TPM
may preclude its use, mainly when the financial
resources of projects are limited. For example, in the
embedded system scenario, it may be desirable to
create cheaper solutions instead of use a TPM to
protect cryptographic keys since the cost to build
each device must to be low. It is also important to
note the addition of a TPM will lead to redesign of
the hardware architecture of the embedded system.

A way to protect cryptographic keys without
using a TPM is to use data obfuscation. Data
obfuscation is a class of code transformations that
converts an initial data representation into other
representation that reveals less information about it
[6]. Data obfuscation could be considered a cheap
pathway to enhance cryptographic key protection
because it tries to hinder reverse engineering
without increasing the financial cost of embedded
system projects. This is because data obfuscation
consists of simple code transformations that require
more time and effort to the attacker understand the
obfuscated data.

In general, data obfuscation could be broadly
classified as static and dynamic [6]. When it is

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 329

static, the data representation remains intact during
runtime, independently of the user input or the
environment where the software is running. On the
other hand, when it is dynamic, the software itself
changes its own data representation during runtime.
In this case, i.e. when the data representation is
changed dynamically, it is required more time and
effort for the attacker understands such dynamic
obfuscated data compared to data obfuscated
statically. This happens because when an attacker
looks at statically obfuscated data, he sees a difficult
representation to analyze, but every time the
software runs, he sees the same data representation,
which is not true when it is used dynamic data
obfuscation due the data representation will be
different each time the software runs.

While defense methods are implemented to make
difficulty to the attacker perform reverse
engineering, new attack strategies to break them are
created. Thus, it is necessary to consider what the
attacker can do with the available code analysis
tools during the development of defense methods.
Assuming that, this paper proposes methods based
on software protection techniques to protect
cryptographic keys taking into account the
attacker’s perspective. Such methods are presented
in an incremental way considering different
attacker’s strategies. We evaluate our methods
through a case study, which shows the difficulty to
disclosure cryptographic keys in terms of the time to
do it.

The remainder of this paper is organized as
follows: section 2 presents the related works; the
section 3 presents in details the methods to protect
cryptographic keys considering different attacker’s
strategies; the section 4 presents our case study and,
finally, the section 5 presents our final remarks and
future work.

2 Related Works
Since hardware solutions are more expensive than
software solutions, we describe mainly software-
based papers. Despite not all papers present
proposals to protect exclusively cryptographic keys,
they could be used to that purpose.

McGregor and Lee [7] propose architectural
enhancements for general-purpose processors that
protect cryptographic keys. They describe modest
hardware modifications combined with a trusted
software library that allows protected cryptographic
operation, i.e. devices perform encryption and
decryption using a secret cryptographic key. For
such, it is proposed to store such cryptographic key
in the processor. However, different from such

proposal, the presented paper proposed a
cryptographic key protection method that does not
require a special hardware.

Hu et. al. [8] describe a software encryption
method to protect software intellectual property.
Since the security of the encrypted software relies
on the secrecy of the key, this paper proposes to
protect it by a key protection scheme, which hides
the cryptographic key into the encrypted code.
Despite this method is similar to ours, we focusing
only on protect cryptographic keys, without
encrypting the whole software, which could
demands unnecessary computation resources.

3 Hiding Cryptographic Keys
In this section, we present methods to protect
cryptographic keys based on software protection
techniques taking into account the strategies that the
attacker could perform to disclosure cryptographic
keys. These methods are described incrementally in
order to make easier to the reader understand what
the countermeasure could be applied against each
attacker strategy.

Considering that an attacker is motivated to
discover cryptographic keys inner the software of
embedded systems, he could have different
strategies to achieve his goal. However, for all
strategies, we made two assumptions. The first
assumption is that the attacker should be capable of
getting the binary code from the disk or memory
card of the captured device, which contains the
software to be compromised. The second
assumption, except for the entropy analysis, that the
software should be at a higher-level representation
rather than the binary code. For this, the attacker
could use a disassembler tool to translate the binary
code into the assembly code (notation to represent
machine code) or go further and use a decompiler
tool to create a representation on a high-level
programming language, such as c, in order to make
easier to analyze the software.

Despite the attacker could use at ease all
available tools, including static and dynamic tools,
according on the strategy that he will use, only the
last method (Dynamic Camouglage Keys) tries to
hinder strategies to disclosure cryptographic keys
that count on dynamic code analysis tools.

3.1 Moving Keys to Code Segment
Since the attacker is dealing with an ordinary code,
which generally is composed by two segments: (i)
code segment, usually containing program
instructions, and (ii) data segment, commonly used
to store data; and no defense mechanism is used to
protect its cryptographic keys, an attacker could

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 330

perform two strategies to find out cryptographic
keys contained in the data segment: string analysis
and pattern-matching analysis.

In the first strategy, string analysis, the attacker
simply examines the data segment content, pursuing
of variable or constant names related to
cryptography. Although this strategy can be
considered quite naïve, it is still useful when no
method is used to protect cryptographic keys.

On the other hand, once it is used cryptographic
algorithms from known cryptographic libraries, the
attacker could use a pattern-matching analysis
towards to disclosure its cryptographic keys. In such
strategy, the attacker examines predetermined
positions in the data segment, where cryptographic
keys are possibly disposed to be, whereas the
elements of known cryptographic libraries usually
are stored in the same positions.

The method proposed in this work to prevent
against string and pattern-matching analysis is
moving the cryptographic key from the data
segment to the code segment, in areas that never
gets executed (dead execution spots) in order to
maintain the software behavior. This can be done
through code transformations that manipulate the
software control flow. For instance, it is possible to
create dead execution spots using code obfuscation
techniques, such as call obfuscation, return
obfuscation or false return obfuscation combined
with control flow manipulation [9]. Thus, moving
the cryptographic key to a dead execution spot may
lead disassemblers to translate it as program
instructions.

When cryptographic keys are translated as
program instructions, the generated assembly code
does not represent the real code and, thus, the
analysis upon that code will not be reliable. In
addition, if the assembly code is not reliable, errors
will be propagated to the decompilation because the
decompilation depends on the code generated by a
disassembler. Therefore, the analysis upon the
decompiled code will not be reliable too.

The algorithm 1 describes the steps of our
proposal to prevent against string analysis and
pattern-matching analysis. Such algorithm receives
the following information as input: program 𝒫,
cryptographic key 𝒦 and the size of the respective
cryptographic key ℓ𝓁; and returns 𝒫!!, the program
whose cryptographic key was moved to a certain
dead executions spot into the code segment. The
first step of this algorithm is getting candidate
instruction addresses (𝒞!"#$%#) containing
instructions that may be obfuscated by an
obfuscation technique 𝓉 from an obfuscation
techniques set 𝒯. In the following, one instruction

address from 𝒞!"#$%# (s) has to be randomly chosen
in order to create a dead execution spot in there. For
such, the CreateDeadExecutionSpot function
applies code transformations dictated by 𝓉 on s to
create a dead execution spot capable to store the
cryptographic key whose size is ℓ𝓁. Finally, 𝒦 is
moved to the dead execution spot in s through the
function MoveKey.
Input: Program 𝒫; cryptography key 𝒦, key size ℓ𝓁
Output: Program 𝒫!!
1. /* Getting candidate instructions (𝒞!"#$%#) that could be

obfuscated in order to create a dead execution spot */
2. 𝒞!"#$%# ← ∅
3. For each instruction 𝒾 ∈ 𝒫
4. If 𝒾 may be obfuscated by technique 𝓉 ∈ 𝒯
5. 𝒞!"#$%# ← 𝒞!"#$%# ∪ 𝒾
6. End If
7. End For
8. /* Choosing randomly the instruction address (𝑠)

where one dead execution spot will be created */
9. 𝑠 ← GetRandomElement(𝒞!"#$%#)
10. /* Creating a dead execution spot in 𝑠 whose size is ℓ𝓁

using a certain obfuscation technique 𝓉
11. 𝒫! ← CreateDeadExecutionSpot (𝒫, 𝑠,𝓉,ℓ𝓁)
12. /* Moving 𝒦 to the dead execution spot at 𝑠 */
13. 𝒫!! ← MoveKey(𝒫! ,𝒦, 𝑠)
Algorithm 1: Proposed algorithm to move cryptographic keys
to dead execution spots into the code segment.

3.2 Splitting Keys
If an attacker was not able to find out a
cryptographic key in the data segment, using the
previous strategies (string and pattern-matching
analysis), he must to concentrate his effort on
searching it on the code segment. For such, he could
use an entropy analysis.

In the entropy analysis, the attacker calculates
the entropy of the code segment in order to obtain
an indication of where the cryptographic key is
located. In a simplistic way, the entropy could be
understood as a measure of random or disorder [10].
Generally the entropy of an ordinary code segment
is low. This is because program instructions are
represented by a limited set of bytes that do not
change drastically among different program
instructions. However, when a cryptographic key is
stored in the code segment, it disturbs the entropy of
the code segment because cryptographic keys are
represented by random bytes, which makes the
entropy higher on the position where the
cryptographic key is located [4]. Thus, the entropy
could help the attacker to identify possible candidate
positions in the code segment where the
cryptographic keys could be.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 331

In order to prevent against entropy analysis, we
propose to split the cryptographic key into a certain
number of parts and store them in smaller dead
execution spots instead of simply moving the entire
cryptographic key to a single dead execution spot.
Therefore, the entropy of the code segment could
not indicate one possible candidate position in the
code segment where the cryptographic key could be.
Input: Program 𝒫; cryptography key 𝒦, operand size 𝓃
Output: Program 𝒫!!
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. /* Splitting 𝒦 in 𝓃 sized parts */
3. 𝒦!"#$% ← SplitCryptographicKey(𝒦, 𝓃)
4. /* Choosing the instruction addresses (𝒮!"#$%) from

𝒞!"#$%# where dead execution spots should be created to
store each part of 𝒦 */

5. 𝒮!"#$% ← GetRandomElements(𝒞!"#$%#, 𝑠𝑖𝑧𝑒𝑜𝑓(𝒦!"#$%))

6. /* Creating dead execution spots capable to store
cryptographic key parts of 𝓃 size */

7. ∀ 𝑠! ∈ 𝒮!"#$%:
 𝒫! ← CreateDeadExecutionSpot (𝒫, 𝑠! , 𝓉,𝓃)

8. /* Moving each part of 𝒦 to one of the created dead
execution spots */

9. ∀ 𝑘! ∈ 𝒦!"#$% ∧ ∀ 𝑠! ∈ 𝒮!"#$%:
 𝒫!! ← MoveKey(𝒫! , 𝑘! , 𝑠!)

10. /* Embed the reconstruct cryptographic key routine ℛ
to 𝒫!! and insert calls to ℛ before program instructions
that refers to 𝒦 */

11. 𝒫!! ← 𝒫! ∪ ℛ
12. For each instruction 𝒾 ∈ 𝒫!!
13. If 𝒾 refers 𝒦
14. insert call to ℛ in 𝒾 − 1
15. End If
16. End For
Algorithm 2: Proposed algorithm to split the cryptographic key
in parts and store each part to a dead execution spot

Algorithm 2 describes the steps of the proposed
method to prevent against the entropy analysis
strategy. Such algorithm receives as input the
program 𝒫, the cryptographic key 𝒦 and the
operand size 𝓃; and returns 𝒫!!, the program whose
cryptographic key is partitioned and its parts are
moved to various dead execution spots in the code
segment. First, 𝒞!"#$%# is got from 𝒫 by the function
GetCandidateInstructions as in the algorithm 1.
After that, the SplitCryptographicKey function
partitions 𝒦 into operand size 𝓃 parts. In the
following, the function GetRandomElements
chooses instruction addresses from 𝒞!"#$%# to create
the required number of dead execution spots. Next,
each part of the cryptographic key (𝑘!) is moved to
one of the created dead execution spots by the
function MoveKey. Finally, in order to ensure that
the correct cryptographic key will be used, it is

necessary to insert a reconstruct cryptographic key
routine (ℛ) to reconstruct all the parts of the
cryptographic key that are distributed in the code
segment before each program instruction that uses
the respective cryptographic key.
3.3 Camouflaging Key as False Instructions
When the previously presented strategies, including
entropy analysis, could not help the attacker to
know possible candidate positions in the code
segment where the cryptographic key could be, the
attacker may investigate the code segment for
garbage bytes (garbage bytes investigation).

As garbage bytes are bytes that do not represent
any program instruction, then it is possible that such
bytes could be part of a certain cryptographic key
that was moved from the data segment to the code
segment.

Once an attacker finds several garbage bytes in
the code segment, he could combine all of them in
order to construct the used cryptographic key.
Besides combining all the garbage bytes demands
time, an attacker with time and dedication always
could reveal the desired cryptographic key and the
only thing to do is slow down such attacker.

The proposed method in our work to counter
garbage bytes investigation is camouflaging all
cryptographic key parts into false instructions,
which are instruction composed by a random
opcode combined with one cryptographic key part
that will look like the operand of such instruction.

The number of false instructions depends on the
operand size and the cryptographic key size. After
splitting the cryptographic key into operand size
parts and combine they with random opcodes, it is
necessary to create the required number of dead
execution spots to store all generated false
instructions. Notice that each false instruction may
have different sizes because they have different
opcodes. So, it is necessary to create dead execution
spots having different sizes.

Algorithm 3 describes the steps of the proposed
method to prevent against previous strategies and
garbage byte investigation. Algorithm 3 receives as
input the program 𝒫, the cryptographic key 𝒦 and
the operand size 𝓃; and returns 𝒫!", the program
whose cryptographic key is camouflaged in false
instructions that are distributed in the code segment,
being difficulty to the attacker distinguish between
them and actual instructions. The only difference
between this algorithm and algorithm 2 are the steps
to create false instructions and to create dead
execution spots since such spots have to store false
instructions instead of cryptographic key parts.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 332

After splitting the cryptographic key 𝒦 into 𝓃
sized parts, for each cryptographic key part k, it is
performed the following steps to create false
instructions: (i) generation of a random byte that
represents a valid opcode by the function
RandomOpcode and (ii) attaching it with k, which
will be translated as the operand of such instruction.
Next, before moving each false instruction in
𝑓𝑎𝑙𝑠𝑒!"#$%# to a dead execution spot, it is necessary
to ensure that such spot is capable to store a false
instruction (𝑓!), i.e. whose size is sizeof(𝑓!). Notice
that all false instructions are moved randomly to the
available dead execution spots. Finally it is
embedded the reconstruction cryptographic key
routine to the program and calls to it.
Input: Program 𝒫; cryptography key 𝒦, operand size 𝓃
Output: Program 𝒫!!!
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey(𝒦,𝓃)
3. /* Creating false instructions */
4. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← ∅
5. For each 𝑘 ∈ 𝒦!"#$%
6. 𝑓 ← RandomOpcode() ∘ 𝑘
7. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← 𝑓𝑎𝑙𝑠𝑒!"#$%# ∪ 𝑓
8. End For
9. /* Moving false instructions to dead execution spot */
10. 𝒮!"#$% ← GetRandomElements(𝒞!"#$%#, 𝑠𝑖𝑧𝑒𝑜𝑓(𝒦!"#$%))

11. ∀ 𝑓! ∈ 𝑓𝑎𝑙𝑠𝑒!"#$%# ∧ ∀ 𝑠! ∈ 𝒮!"#$%:
12. 𝒫! ← CreateDeadExecutionSpot(𝒫, 𝑠! , 𝓉,𝑠𝑖𝑧𝑒𝑜𝑓(𝑓!))

 𝒫!! ← MoveFalseInstruction(𝒫! , 𝑓! , 𝑠!)
13. 𝒫!!! ← 𝒫!! ∪ ℛ
14. 𝒫!" ← InsertCallsToReconstructRoutine(𝒫!!! , 𝒦)
Algorithm 3: Proposed algorithm to hide cryptographic key
parts into false instructions

3.4 Inserting Garbage Instructions
Considering that an attacker knows that all
cryptographic key parts are camouflaged in false
instructions, his strategy to reveal such
cryptographic key is examine the code segment in
pursuit of dead execution spots containing false
instructions (dead execution spots investigation).
Thus, we propose to counter such strategy by
increasing the time and effort to reveal the
cryptographic key through adding garbage
instructions, which are random program
instructions also stored in dead execution spots. This
increases the time and effort to reveal cryptographic
key because the attacker must to combine more
operands, i.e. operands of false instructions and the
operands of garbage instructions, whereas it is
difficulty to the attacker distinguish one kind of
instruction from another.

Algorithm 4 describes the steps of the proposed
method that camouflages cryptographic key parts
into false instructions and randomly adds garbage
instructions on the code segment. Such algorithm
receives as input the program 𝒫, the cryptographic
key 𝒦, the operand size 𝓃, number of garbage
instructions 𝓂; and returns 𝒫!", the program whose
cryptographic key is hidden in false instruction and
has garbage instructions distributed in the code
segment, requiring to the attacker more time and
effort to reveal such cryptographic key since it is
difficulty to distinguishes from what instructions the
operand part must to be extracted in order to
reconstruct the right cryptographic key.
Input: Program 𝒫; cryptography key 𝒦, operand size 𝓃,
number of garbage instructions 𝓂
Output: Program 𝒫!"
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey(𝒦,𝓃)
3. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← CreateFalseInstructions(𝒦!"#$%)
4. /*Creating garbage instructions*/
5. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ← ∅
6. While sizeof(𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#) < 𝓂
7. 𝑔 ← RandomOpcode() ∘ RandomOperand()
8. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ← 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ∪ 𝑔
9. End While
10. /*Creating dead execution spots to hold false and

garbage instructions and moving such instructions to
there */

11. ℳ ← 𝑆𝑖𝑧𝑒𝑂𝑓 𝒦!"#$% + 𝓂
12. 𝒮!"#$% ← GetRandomElements(𝒞!"#$%#, ℳ)

13. ∀ 𝑓! ∈ 𝑓𝑎𝑙𝑠𝑒!"#$%# ∧ ∀ 𝑠! ∈ 𝒮!"#$%:
 𝒫! ← CreateDeadExecutionSpot(𝒫, 𝑠! , 𝓉,sizeof(𝑓!))
 𝒫!! ← Move(𝒫! , 𝑓! , 𝑠!)

14. ∀ 𝑔! ∈ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ∧ ∀ 𝑠! ∈ 𝒮!"#$%:
 𝒫!!! ← CreateDeadExecutionSpot(𝒫!! , 𝑠! , 𝓉, 𝑔!)
 𝒫!" ← Move(𝒫!!! ,𝑔! , 𝑠!)

15. 𝒫! ← 𝒫!" ∪ ℛ
16. 𝒫!" ← InsertCallsToReconstructRoutine(𝒫! , 𝒦)
Algorithm 4: Proposed algorithm to hide cryptographic key
parts into false instructions and add garbage instructions

The differences between this algorithm and
algorithm 3 are: (i) the steps to create garbage
instructions that do not exist in the previous
algorithm and (ii) the number of dead execution
spots that should be created. After getting the
candidate instructions (𝒞!"#$%#) and creating the
false instructions by the function
SplitCryptographicKey, this algorithm creates
garbage instructions until it is created 𝓂 garbage
instructions. Each garbage instruction is created by
combining random bytes, which represents a valid
opcode, with random bytes that represents a valid
operand. Next it is created the required number of

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 333

dead execution spots, which is the number of parts
of the cryptographic key (𝑆𝑖𝑧𝑒𝑂𝑓 𝒦!"#$%) more
the number of garbage instructions 𝓂. Then both
false and garbage instructions are randomly moved
to the created dead execution spots and finally, the
reconstruction cryptographic key routine is attached
to the program and calls to it are inserted.
3.5 Dynamically Camouflage Keys
The previously proposed methods try to hinder
reverse engineering considering that the attacker
only uses static analysis tools. However, such
methods are not effective when he uses dynamic
analysis tools, such as debuggers and emulators.

The fist strategy that takes advantage of static
software is the program diffing. This strategy
depends on the attacker has two or more copies of
the same software and the cryptographic key in each
copy be different. In this case, the attacker could
reveal cryptographic keys by comparing the copies
whereas each copy is equivalent except on the
positions where the cryptographic is stored. Thus,
examining the positions that are not equivalent, the
attacker could easily reveal cryptographic keys.

The other strategy that takes advantage of static
software is the recurrent attacks. The goal of this
strategy is compromise the largest possible number
of devices. Assuming a scenario where there are
many devices containing identical software within
it, once an attacker could find out the position where
the cryptographic key is located, he may create a
script to remotely read such position on other
devices, where the cryptographic key is expected to
be, in order to find out new cryptographic keys
without analyze the software of all devices.

The countermeasure proposed in this work to
prevent against such strategies is attaching to the
embedded software an obfuscation engine that
dynamically camouflages all parts of the
cryptographic key in different false instructions and
create random garbage instructions. Notice that the
obfuscation engine could move both instructions to
different program address in order to make it more
difficult to identify such instructions.

The obfuscation engine could prevent against
program diffing because the copy contained in each
device is different since the software changes
periodically differently and not only in the positions
where the cryptographic key is. So, there are many
positions in the code that are different, making
difficult to know cryptographic key position by
simply comparing two or more software.
Furthermore, the obfuscation engine hinders
recurrent attacks because it provides software
diversity, i.e. the software within each device is

different. Thus, the attacker could not take
advantage of previous knowledge (cryptographic
key location) to discover new cryptographic keys to
propagate an attack for other devices.

The algorithm 5 describes the steps of the
proposed method to counter program diffing and
recurrent attacks. Such algorithm receives the
following information as input: program 𝒫,
cryptographic key 𝒦, the operand size 𝓃, the
number of garbage instructions 𝓂 and returns 𝒫!"
containing an obfuscation engine capable to embed
an obfuscation engine that periodically hides
cryptographic key in false instructions and inserts
garbage instructions in different ways, by changing
its shape and its location. In order to ensure that
each device has distinct software, it is necessary to
use schemes that gets intrinsic features of the device
where the software is embedded, such as Physical
unclonable Function (PUF) [11].
Input: Program 𝒫; cryptography key 𝒦; operand size 𝓃,
number of garbage instructions 𝓂
Output: Program 𝒫!"
1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey(𝒦,𝓃)
3. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← CreateFalseInstructions(𝒦!"#$%)
4. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ← CreateGarbageInstructions(𝓂)
5. ℳ ← 𝑆𝑖𝑧𝑒𝑂𝑓 𝒦!"#$% + 𝓂
6. 𝑆!"#$% ← GetRandomElements(𝒞!"#$%#, ℳ)
7. 𝒫! ← CreateDeadExecutionSpots(𝒫, 𝑆!"#$%)

8. 𝒫!! ← 𝑀𝑜𝑣𝑒(𝒫!, 𝑓𝑎𝑙𝑠𝑒!"#$%# ∪ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#,𝒮!"#$%)
9. 𝒫!!! ← 𝒫!! ∪ ℛ
10. 𝒫!! ← InsertCallsToReconstructRoutine(𝒫′′′, 𝒦)
11. /* Filling Obfuscation Engine 𝒪 with information that

allows it to run */
12. 𝒪 ← 𝒪 ∪ 𝒞!"#$%# ∪ 𝑆!"#$% ∪ 𝑓𝑎𝑙𝑠𝑒!"#$%# ∪ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#

13. /* Embed 𝒪 to 𝒫!" and insert calls to 𝒪 at randomly
different positions in the software */

14. 𝒫! ← 𝒫!" ∪ 𝒪
15. 𝒫!" ← insertCallsToObfuscatorEngine(𝒫!)
Algorithm 5: Proposed algorithm to embed the obfuscation
engine into a program

The steps of algorithm 5 are similar to the
algorithm 4 except for the steps to embed the
obfuscation engine 𝒪. This is done to guarantee that
before 𝒪 runs for the first time, the software will be
different for each device. Thus, until the line 10 is
reached, the algorithm 5 behaves as algorithm 4.
After this line, the algorithm 5 fills 𝒪 with the
following information in order to ensure that it
behaves as expected: 𝒞!"#$%#,
𝑓𝑎𝑙𝑠𝑒!"#$%#, 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# and 𝑆!"#$%. 𝒞!"#$%# is
required to the 𝒪 knows where new dead execution
spots could be created; 𝑆!"#$% is proved to 𝒪 in

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 334

order that it knows the dead execution spots where
is located false and garbage instructions. Finally,
must to know 𝑓𝑎𝑙𝑠𝑒!"#$%# and 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# in
order to know what kind of instruction is in each
dead execution spots informed by 𝑆!"#$%. The last
steps of this algorithm are responsible to embed the
𝒪 and inserts instructions that calls it randomly in
different positions in the software.

During the execution of 𝒪, it creates new false
and garbage instructions, which could be stored in
new dead execution spots or simply moved among
the existing ones. For this, 𝒪 randomly chooses n
false instructions and m garbage instructions to be
modified in this moment. In the following, it is
chosen how many false and garbage instructions
should be modified in its shape, in its locations or
both. Then it is performed the respective steps to do
such actions, i.e. the steps to create new false and
garbage instructions, the steps to create new dead
execution spots and the steps to move false and
garbage instructions to new locations. Finally,
before 𝒪 returns the control flow to the software, it
ensures that the addresses of dead execution spots
are known and what kind of instruction is stored in
each of them.

4 Case Study
In this section, we present a case study showing the
difficulty to disclosure a cryptographic key. After
applying each of the proposed methods, it is
presented how the difficulty increases.

Since there is not an absolute metric to evaluate
software protection methods in the literature, we
propose an effort metric (𝐸), which measures the
difficulty to achieve a goal, such as disclosure
cryptographic keys. This metric is expressed as
𝐸 = 𝑇!×𝛼!!

!!! , where 𝑇! is a time-based factor,
which represents the time required to the attacker to
perform a certain task; and 𝛼! is a constant factor
that weights the difficulty to the attacker to perform
the task related to the time-based factor.

For our experiments, we used the rijndael
application of an embedded benchmark suite, called
MiBench [12]. This application is an
implementation of the AES symmetric cipher to
ARM vendor devices [13]. In its original form, such
application does not have any method to prevent it
against reverse engineering.

The first strategy to disclosure its cryptographic
keys is the string analysis. Considering that the
attacker knew nothing about the rijndael application
a priori, he could examining its code with IDA
PRO, a commercial multi-processor disassembler
and debugger [14] in order to find out its
cryptographic key in the data segment (.rodata).

Figure 1 shows that it is possible since the
cryptographic key used in this application could be
found after identify the string CRYPTO_KEY
stored at the program address 0x020311FC. For
such, the attacker must to spend the effort
𝐸 = 𝑇!×𝛼!, where 𝑇! is the time to examine an
element in the data segment and 𝛼! is related to the
data segment size and the number of strings in it.

Figure 1. Cryptographic key revealed by string analysis

The first countermeasure, as described in
subsection 3.1, to protect the rijndael application
consists in moving the cryptographic key to the code
segment, more specifically in a dead execution spot.
In our experiments, we create a dead execution spot
in the code segment of the rijndael application
through call obfuscation. A way to perform call
obfuscation in ARM is described on [9].
.data
crypto_key: .word 0xFFFF

.text
main:
1. bl foo
2. mul r1, r0,#2
3. bl bar
4. div r1,0,#3
foo:
1. stmdb sp!,{r4-­‐r11}
2. add r0,r0,#1
3. ldmia sp!, {r4-­‐r11}
4. ret

.text
main:
1. add lr,pc,#4
2. ldr pc,=foo
3. 0xFFFF
4. mul r1, r0,#2
5. bl bar
6. div r1,0,#3
foo:
1. stmdb sp!,{r4-­‐r11}
2. add r0,r0,#1
3. ldmia sp!, {r4-­‐r11}
4. ret

(a) (b)
Figure 2. Original code sample (a) and obfuscated code (b)

Figure 2 shows an example that shows how to
create a dead execution spot in ARM architecture
using call obfuscation. For such, the call instruction
‘bl foo’ at line 1 on column (a) is replaced by the
following two instructions at the lines 1 and 2 on
column (b): ‘add lr, pc, # 4’ and ‘ldr pc, = foo’. The
first instruction (‘add lr, pc, # 4’) is responsible to

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 335

save the return address, in this case, the new address
of the instruction ‘mul r1, r0, # 2’ to the lr register,
which is used, as standard, to store the return
address. Then, the second instruction (‘ldr pc, =
foo’) updates the pc register with the address of the
first instruction of foo. Thus, it is created a dead
execution in the line 3 of column (b) capable to
store 4 bytes. In this example, the bytes of (0xFFFF)
of the crypto_key is moved from the data segment
(.data) to the created dead execution spot.

The dead execution spot of the rijndael
application was created in the program address
0x020234C8. In the Figure 3 could be seen the bytes
of the cryptographic key in such dead execution
spot. Notice that not all bytes were translated as
program instructions, some of them are showed as
garbage bytes.

Figure 3. Entropy calculation

Despite the movement of the cryptographic key
to the code segment is effective against string
analysis, such method is not effective against
entropy analysis. To perform the entropy analysis,
he created a script in the IDA PRO to calculate for
each code block of 1024 bytes the Shannon entropy
[10]. After calculate the entropy for all code blocks,
it is calculated the entropy mean and the entropy
variance. Finally, if the entropy of a code block is
greater than the entropy mean more the entropy
variance. Then the first program address of such
code block is returned. Also, in the Figure 3, is
shown the possible candidate program address
where the cryptographic key could be located,
which are the program addresses of the code block,
whose entropy is greater than the entropy mean
(0,13040864204) more the entropy variance
(0,0181771936).

After examining each candidate program
address, the attacker is able to find out the
cryptographic key stored in the code segment since
one of such candidates is the program address
0x020234C8, i.e. the program address where the
cryptographic key is located. The effort to

disclosure such cryptographic key using the entropy
analysis strategy is 𝐸 = 𝑇!×𝛼!, where 𝑇! is the time
to examine each candidate program address and 𝛼!
is a constant factor that depends on the attacker’s
capacity to create the script to calculate the entropy
and the number of possible candidate program
address that were found by such script. Notice that
the attacker has performed the string analysis before
the entropy analysis, then the total effort to
disclosure the desired cryptographic key is
𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼!

The second countermeasure to protect the
cryptographic key, described in the subsection 3.2,
is split the cryptographic key and store each part in a
distinct dead execution spot, which is randomly
disposed in the code segment. In this case, the script
that calculates the entropy does not return any
possible candidate program address. Thus, the
cryptographic key could not been disclosure by
entropy analysis.

When the entropy analysis could not help the
attacker, he could use the garbage bytes
examination, i.e. examine the code segment for
garbage bytes. Such bytes appear in the code
segment because disassemblers cannot make the
correspondence between these bytes with a certain
program instruction. On the other hand, such bytes
could also be incorrectly translated, as program
instructions. It happens when an assumption used by
disassemblers are not followed. For example, when
disassemblers detect a call instruction, they assume
that the return address is the subsequent address
after the call instruction. However, since the return
address is manipulated to redirect the control flow to
other program address, disassemblers still translates
the bytes located at return address that they consider
as real program instructions.

The effort to disclosure cryptographic key using
garbage examination is 𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼!,
where 𝑇! is the time to find out one garbage byte, 𝛼!
the constant factor related to the number of parts of
the cryptographic key, 𝑇! is the time to combine the
collected garbage bytes in a certain order and 𝛼!
dictate the number of combinations, which depends
on the number of garbage bytes found in the code
segment. Notice that some parts of the
cryptographic key will not be translated as garbage
instructions, such strategy could not be absolutely
effective.

Next, to counter the attacker to find out garbage
bytes, it is applied the method described in the
subsection 3.3. Assuming that the attacker knows
that the cryptographic key parts are camouflaged as
false instructions, he could try to identify them in
the code segment. However, distinguish the false

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 336

instructions from actual instructions is difficult
because false instructions do not have a format that
differentiate the actual instructions. Thus, the
attacker should try to identify all the dead execution
spots in the code segment (dead execution
investigation) before combine the operand part of
the false instructions.

One way to identify dead execution spots is by
analyzing the control flow. However, to perform
such analysis, it is necessary to generate the Control
Flow Graph (CFG) of the program and since the
CFG depends on the assembly code created by
disassemblers and the method to create dead
execution spots could infringe certain disassembler
assumptions, the CFG created could not be trusted,
making difficulty to identify such dead execution
spots.

The effort to find out cryptographic key by dead
execution investigation is 𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼!.
Such effort depends on to identify the dead
execution spots among all program instructions in
the code segment and the time to combine the
cryptographic key parts (𝑘1, 𝑘2 , 𝑘3,…, 𝑘n) since the
false instructions could be disorderly arranged in the
code segment. In this effort, 𝑇! is the time to find
out one dead execution spot, 𝛼! depends on the
number of dead execution spots and the attacker’s
capacity to identify dead execution spots, which is
difficult because it could be created using several
code manipulations. In addition, 𝑇! is the time to
combine the operand bytes of each false instruction
in a certain order and 𝛼! dictate the number of
combinations, which depends on the number of dead
execution spots found in the code segment.

If an attacker discovers all the dead execution
spots, and consequently, the false instructions, the
proposed solution was adding garbage instructions
also in dead execution spots in order to increase the
time to disclosure the cryptographic key. Thus the
effort to do this is 𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼! + 𝑇!×𝛼!.
Beyond such effort must to consider the time to find
out false instructions, it has to consider the time to
find out garbage instructions (𝑇!) and its respective
constant factor (𝛼!). Similarly as the distinction
between false instructions is difficulty, the
distinction between false and garbage instructions
also is difficulty. For instance, to reconstruct the
cryptographic key 𝒦, the attacker must to discover
the false instructions among n + m dead execution
spots whereas m is the number of garbage
instructions and n the number of false instructions.

In order to prevent against program diffing and
recurrent attacks, it is applied the last method,
described in the subsection 3.5. Since the
obfuscation engine change randomly the software

running on each device, a comparison of attack can
be made impossible. This is because each copy of
software is different, since the n key parts are
arranged in different places and in different
directions false. However, if only the false
statements changed, the obfuscation engine could
give indications of the location of these keys.
However, the obfuscation engine also generates
garbage statements at run time. Thus when
comparing copies of two different devices, it does
not help the attacker to locate a cryptographic key as
the software are very different and the effort to
understand the differences compares the effort to
analyze the two copies altogether.

Software obfuscation diversity provided by the
engine is also useful to contain recurrent attacks.
This is because the software is constantly changing
and therefore cannot take advantage an earlier attack
to compromise the same device in the future or
commit other devices that have the same software.
.data
crypto_key: .word 0xFFFF

.text
main:
1. bl foo
2. mul r1, r0,#2
3. bl bar
4. div r1,0,#3
foo:
1. stmdb sp!,{r4-­‐r11}
2. add r0,r0,#1
3. ldmia sp!, {r4-­‐r11}
4. ret

.text
main:
1. add lr,pc,#4
2. ldr pc,=foo
3. 0xFFFF
4. mul r1, r0,#2
5. bl bar
6. div r1,0,#3
foo:
1. stmdb sp!,{r4-­‐r11}
2. add r0,r0,#1
3. ldmia sp!, {r4-­‐r11}
4. ret

(a) (b)
Figure 2. code examples that show two samples created by
obfuscation engine operation

The Fig. 4 presents an example that shows how
the code of an application changes due to operation
of the obfuscation engine at two different times T1
and T2 respectively shown in Fig 2 (a) and Figure 2
(b). In T1, a part of a cryptographic key (0xE0C7) is
camouflaged in the false statement 'addeq r8, r4, #
199' on a snippet of non-executable code created
through a obfuscation call. In T2, 0xE0C7 is
camouflaged within the false instruction 'subne r8,
r4, # 199'. Such instruction is stored in a snippet of
non-executable code created using an obfuscation
return [3,13]. For this, the ret instruction of the
function bar is replaced by the instructions 'add r3,
lr, # 4' and 'r3 b', able to manipulate the flow of
control in order to create a dead execution spot
between the function call 'bl bar' and 'div r8, r4, #
199' instruction.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 337

5 Conclusion
In this work, we present methods to protect
cryptographic keys by hiding them into the code
segment. Such methods could be considered
appropriate for embedded systems because it
decreases the risk disclosure by reverse engineering,
without financial costs. For future works, we would
increment the cryptographic key protection with
anti-debugging and anti-emulation techniques in
order to prevent against dynamic analysis tools.

References:
[1] P. Marwedel, “Embedded System Design:

Embedded Systems Foundations of Cyber-
Physical Systems,” TU Dortmund, Informatik,
2011

[2] A. Akhunzada, M. Sookhak, N. Anuar, A.
Gani, E. Ahmed, M. Shiraz, S. Furnell, A.
Hayat and M. Khan, “Man-At-The-End attacks:
Analysis, taxonomy, human aspects,
motivation and future directions,” Journal of
Network and Computer Applications, vol. 48,
pp. 44-57, Feb. 2015.

[3] K. Fysarakis, G. Hatzivasilis, K. Rantos, A.
Papanikolaou and C. Manifava, “Embedded
Systems Security Challenges,” Measurable
security for Embedded Computing and
Communication Systems (MeSeCCS 2014),
within the International Conference on
Pervasive and Embedded Computing and
Communication Systems (PECCS 2014), At
Lisbon, Portugal, 2014

[4] A. Shamir and N. Someren. “Playing "Hide and
Seek" with Stored Keys,” in Proc. 3rd
International Conference on Financial
Cryptography (FC '99), Matthew K. Franklin
(Ed.). Springer-Verlag, London 1999, pp. 118-
124.

[5] S. Kinney, “Trusted Platform Module Basics:
Using TPM in Embedded Systems (Embedded
Technology),” Newnes, 2006

[6] C. Collberg and J. Nagra. “Surreptitious
Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection,”
Addison-Wesley Professional, Ed. 1, 2009.

[7] John P. McGregor and Ruby B. Lee. 2005.
“Protecting cryptographic keys and
computations via virtual secure coprocessing”,
SIGARCH Comput. Archit. News 33, 1, 16-26,
(2005)

[8] Jian Jun Hu; Qiaoyan Wen; Wen Tang; Ai-Fen
Sui, “A key hiding based software encryption
protection scheme”, Communication
Technology (ICCT), IEEE 13th International
Conference on , pp.719,722, 25-28. (2011)

[9] Costa, Rafael, Boccardo, Davidson, Gomes,
Cleber, Carmo, Luiz ; Pirmez, Luci “Sensitive
Information Protection for Advanced Metering
Infrastructure”, 10th International Congress on
Electrical Metrology (SEMETRO'13), (2013)

[10] G. Croll, “BiEntropy - The Approximate
Entropy of a Finite Binary String”, eprint
arXiv:1305.0954, Presented at ANPA 34,
Rowland's

[11] Suh, G. Edward, and Srinivas Devadas.
“Physical unclonable functions for device
authentication and secret key generation”
Proceedings of the 44th annual Design
Automation Conference. ACM, 2007.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T.
M. Austin, T. Mudge, and R. B. Brown. 2001.
MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of
the Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop (WWC
'01). IEEE Computer Society, Washington, DC,
USA, 3-14.

[13] HEX-RAYS (2012) "Executive Summary: IDA
PRO - at the cornerstone of IT security",
http://www.hex-rays.com/products/ida/ida-
executive.pdf, June.

[14] ARM7DM Data Sheet, 1994 :Advanced RISC
Machines Ltd.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 338

