
Strict and Heuristic Optimization of Virtual Machine Placement and
Migration

SATORU OHTA

Department of Information Systems Engineering, Faculty of Engineering
Toyama Prefectural University

5180 Kurokawa, Imizu-shi, Toyama, 939-0398
JAPAN

ohta@pu-toyama.ac.jp https://www.researchgate.net/profile/Satoru_Ohta

Abstract: - In virtualization, power consumption is minimized and good performance is achieved by optimally

performing virtual machine placement and migration. This paper investigates two approaches to optimal virtual
machine placement and migration. First, a mixed integer programming (MIP) approach is presented. For this
approach, the problem is formulated by mathematically representing the number of migrations, heterogeneous
power consumption, and multiple performance-related resources. Although this approach is time-consuming and
possibly impractical, it is indispensable in evaluating the goodness of other methods. In addition to the MIP, a
heuristic approach is also examined, which relies on a metric that estimates the efficiency of virtual machine
placement. The paper proposes a new metric to estimate efficiency more accurately. The effectiveness of the
proposed metric is confirmed via computer simulation. Simulation also evaluates how parameters used in the
algorithm affect solutions. Moreover, the solution obtained by the heuristic algorithm is compared with that
obtained by the MIP approach.

Key-Words: - virtualization, live migration, optimization, heuristic, mixed integer programming

1 Introduction
Virtualization [1], [2] is a key technology for cloud
computing, which is the indispensable basis of
information technology. Virtualization provides
various advantages, including flexibility, availability,
scalability, etc.

Virtualization enables multiple virtual machines
(VMs) to run on a single physical machine (PM).
When VMs are hosted on multiple PMs, VMs should
be optimally placed on PMs to minimize electrical
power consumption without overutilizing
computational resources. An important feature of
virtualization is live migration [3], which enables a
VM to move from the current host to another PM
without stopping computation. When using live
migration, VM placement can always be optimized
for changing load [4].

To minimize power consumption under the
constraint on resource capacity, we need to develop
an algorithm that optimizes VM placement for
dynamic load. Meanwhile, it is known that migration
offers considerable load on the network [5]. Thus, the
algorithm should avoid too frequent migrations.
Moreover, the algorithm must quickly find a solution
for real time control of VMs. Therefore, a fast
heuristic approach is required.

This paper first formulates the VM placement into
a linear mixed integer programming (MIP) problem
[6]. Through this formulation, it becomes possible to
strictly minimize power consumption under the
constraints on resource capacity and migration count.
This approach is time consuming and may be
impractical. However, the approach is necessary to
evaluate the goodness of a heuristic algorithm.

This paper also examines a heuristic algorithm,
which is basically proposed in the author’s previous
study [7]. This paper introduces a new metric that
estimates the efficiency of the VM placement on a
PM. The algorithm is tested by computer simulation
to evaluate the effectiveness of the proposed metric.
The simulation also clarifies the optimal values for
the parameters used in the heuristic. In addition, the
solution obtained by the heuristic is compared with
that obtained by the MIP approach.

This paper is organized as follows. First, related
studies are reviewed in Section 2. Then, the problem
tackled in this study is explained in Section 3. Section
4 presents how the VM placement problem is
formulated as an MIP problem. A heuristic algorithm
is explored in Section 5. Moreover, a new efficiency
metric is also presented. The MIP and heuristic

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 42

approaches are evaluated by computer simulation in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work
The VM placement and migration problem have been
studied from various perspectives [4], [7-10].

Reference [4] presents a method to classify the
load characteristics for obtaining gain by migration,
a load forecasting technique, and a VM placement
algorithm. In [9], a migration scheme is examined by
considering various factors, including temperature,
CPU, disk I/O, and network I/O in the physical and
virtual machine layers. The algorithm presented in
[8] minimizes the number of PMs by considering
multiple performance-related resources and keeping
their consumptions less than a given bound. Multiple
resources are also assumed in the method of [7]. This
method also assumes heterogeneous power
consumption and minimizes the total power
consumption. Meanwhile, the method of [10]
considers only one resource, CPU. However, the
method assumes sophisticated power management,
which is used in computers today.

As seen above, the VM placement problem has
been studied for various models. However, the
assessment on solution goodness of algorithms is
insufficient is a common problem found in previous
studies. To rectify this problem, it is required to
develop a method that yields a strict optimum.

3 Problem Description
Suppose that many VMs are supported by multiple
PMs. In this situation, if a few PMs support as many
VMs as possible, the required number of PMs will be
small, and unused PMs can be turned off.
Unfortunately, it is impossible for a PM to operate for
unlimited number of VMs because the performance
will degrade due to resource shortage. Thus, we must
appropriately place each VM on a PM to avoid
resource shortage as well as save electrical power.

When different loads are offered to VMs, the
optimal placement of VMs is a combinatorial
optimization problem. By solving this problem, it
becomes possible to achieve a lower electrical power
cost as well as avoid performance degradation caused
by resource shortage.

If the load on VMs dynamically changes with time,
the optimal VM placement will also change. Thus,
some VMs must migrate to achieve the optimal
placement. Essentially, the determination of optimal
VM placement for new load is equivalent to
performing the best migration.

It is known that migration offers considerable load
on the network [5]. Thus, too frequent migrations
should not be allowed. Therefore, power
consumption should be minimized through as few
migrations as possible.

Migration is categorized into two different types.
The first type is executed to avoid performance
degradation caused by overload, which is triggered
by the load increase on VMs. For this type of
migration, if an appropriate destination PM does not
exist, some sleeping PM should be turned on. The
second type of migration is performed to decrease the
number of operating PMs by integrating lightly
loaded VMs into as few PMs as possible. If a PM is
vacated by this type of migration, it can be turned off.
Hereafter, let us refer to these types as type 1 and type
2, respectively. We need to develop an algorithm for
both of these migration types.

3.1 Stability Problem
To perform migration, we must determine the source
(sender) PM, destination (receiver) PM, and target
VM to migrate. An important problem for this
decision is to avoid an infinitely repeated migration.
To understand the possibility of infinite migrations,
consider the following case of type 1 migration. Let
PM1, PM2, and VM1 denote the source PM,
destination PM, and target VM, respectively.
Infinitely repeated executions occur when the
remaining capacity of PM2 is not sufficient to accept
VM1. If this happens, the performance of PM2 will
degrade after migration. Thus, the VM must be
moved again and possibly sent back to PM1.
Obviously, this causes performance degradation on
PM1. If the same algorithm is applied, VM1 will be
returned to PM2. Thus, VM1 will infinitely migrate
between PM1 and PM2.

Infinite migrations can also occur for type 2
migration when the algorithm selects a VM that has
already moved as the target and sends it back to its
original host. Thus, a migration algorithm must be
carefully designed to avoid infinite migrations.

3.2 Assumptions
Suppose that m VMs should be optimally placed
among n PMs at discrete time t = 0, 1, 2, …, T with a
constant interval. Thus, migration is performed at t =
1, 2, …, T to modify the placement determined at
t – 1. VMs are denoted by VM1, VM2, …, VMm and
the PMs are denoted by PM1, PM2, …, PMn. The

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 43

performance of a VM relies on K computational
resources R1, R2, …, RK. Each VM consumes the
resouce of its host PM. Let ()

,
t

i ku denote the percentile
value that represents how much VMi)1(mi
consumes resource Rk)1(Kk of its host at time
t. It is assumed that ()

,
t

i ku is given for every i and k at
t. The resource consumption of PMj, denoted by ()

,
t

j kU ,
is the sum of the resource consumption by each VM
hosted by PMj. It is also assumed that the
performance of VMs hosted by PMj does not degrade
during the period from t to t + 1, if ()

,
t

j kU does not
exceed a given percentile constant Umax for every k
on PMj.

This paper considers the situation where the
electric power consumed by PMs is heterogeneous.
Thus, power consumption must be minimized by
considering the difference among the specifications
of PMs. It is assumed that power consumption
depends on resource consumption ()

,
t

j kU .

4 MIP Approach
Under the assumptions described in 3.2, the VM
placement problem can be formulated as a linear MIP
problem [6]. This means that the strictly optimal
solution is obtainable by using optimization software
listed in [11]. Hereafter, this scheme is referred to as
the MIP approach.

A solution for the VM placement problem should
achieve less power consumption and fewer
migrations by satisfying the constraints on resource
consumption on PMs. Thus, the problem is
considered as the optimization for two distinct
objectives. To tackle this problem, we examine the
following two scenarios.

1) Energy consumption is minimized under the
constraint that the number of migrations does not
exceed a specified bound.

2) The weighted sum of energy consumption and
the migration count is minimized.

For VMi (1)i m and PMj (1 j n), the
placement at time t is represented by the following
the binary (0-1) variable.

,

() 1, if VM is placed on PM at
0, otherwisei j

i jt t
x . (1)

To estimate the energy consumption, we need to
know which PMs are turned on among n PMs. This
is expressed by the next binary variable.

() 1, if PM is turned at
0, otherwisej

jt t
y . (2)

The number of migrations is counted by
introducing the following variable.

() 1, if VM migrates at
0, otherwise

it
i

t
z . (3)

The purpose of the problem is to decide these
variables for a given condition of resource and power
consumption. As described in 3.2, ()

,
t

j kU is defined as
() ()
, ,

{ |VM is placed at PM }i j

t t
j k i k

i i

U u . (4)

Then, the placement should be determined such
that ()

,
t

j kU will not exceed Umax to avoid resource
shortage on each PM.

Let ()t
jP denote the power consumed by PMj at

time t. Thus, the energy consumption is obtained by
multiplying ()t

jP by the time interval. It is assumed
that ()t

jP is defined as follows.

()
,0 , ,()

1

, if PM is turned on

0, if PM is turned off

K
t

j j k j k jt
kj

j

P P U
P . (5)

Thus, the power consumption consists of a
constant portion and portions proportional to
resource consumption. As seen above, ()t

jP is a
variable, which depends on the on/off state of PMj as
well as VMs assigned to PMj.

With the decision variables
,

()
i j

tx , ()
j

ty , ()t
iz , ()t

jP
and given constants ()

,
t

i ku , ,0jP , ,j kP , the problem is
formulated as follows:

minimize ()

0 1

T m
t

j
t j

P (6)

subject to
() () () ()

,0 , , ,
1 1

0,
K m

t t t t
j j j j k i k i j

k i

P P y P u x for all j, t, (7)

() ()
, , max

1

,
m

t t
i k i j

i

u x U for all j, k, t, (8)

()

1 1

,
T m

t
i

t i

z C for all t, (9)

() (1) ()
, , 0,t t t

i i j i jz x x for all i, j, and t > 0, (10)

()
,

1

1,
n

t
i j

j

x for all i, t, (11)

() ()
, 0,t t

j i jy x for all i, j, t, (12)
() () ()
, , , {0,1},t t t

i j j ix y z for all i, j, t. (13)

Here, parameter C is the upper bound for the
number of migrations. Among the constraints, (7)
determines the power consumed by PMj. This
equation is immediately obtained from (4) and (5).

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 44

Resource consumption of a PM is set smaller than
Umax by (8). The number of migrations does not
exceed a given constant C by (9). The value of ()t

iz is
determined by (10). This equation sets ()t

iz to 1 if
VMi migrates at time t. Strictly, ()t

iz may take 0 or 1
in (9) when VMi does not migrate. However, we can
precisely set the upper bound for the number of
migrations with (9) and (10). By (11), a VM is
certainly placed to one of the PMs. Moreover, a VM
is assigned on a PM that is turned on with (12).

The weighted sum of energy consumption and
migration count is minimized by a slightly modified
formulation. Let w denote the weight parameter for
the number of migrations. Migration is emphasized
more for a larger value of w. Thus, by setting w at a
large value, fewer migrations and greater power
consumption will be obtained. The formulation for
this model is as follows.

minimize () ()

0 1 1 1

T m T m
t t

j i
t j t i

P w z (14)

subject to
() () () ()

,0 , , ,
1 1

0,
K m

t t t t
j j j j k i k i j

k i

P P y P u x for all j, t, (15)

() ()
, , max

1

,
m

t t
i k i j

i

u x U for all j, t, (16)

() (1) ()
, , 0,t t t

i i j i jz x x for all i, j, t, (17)

()
,

1

1,
n

t
i j

j

x for all i, t, (18)

() ()
, 0,t t

j i jy x for all i, j, t, (19)
() () ()
, , , {0,1},t t t

i j j ix y z for all i, j, t. (20)

The difference from the previous formulation is
that the constraint on the migration count is omitted.
Instead, the number of migrations is added to the
objective function.

The above formulations assume that resource
consumption for every t in 0 t T is known and
VM placement over every t is simultaneously
determined. However, this scenario is impractical. In
the real world, VM placement must be determined
online. This scenario is specified as follows.

Assume that current time is t. At this time, the
given parameter is the resource consumption for t,

()
,
t

i ku . Future consumptions (1)
,
t

i ku , (2)
,
t

i ku ,…, are
unknown. In addition, the VM placement determined
before t, ,

(0)
i j

x ,…, ,
(2)
i j
tx , ,

(1)
i j
tx , is fixed and cannot be

changed. Moreover, it is unnecessary and impossible
to determine future placement ,

(1)
i j
tx , ,

(1)
i j
tx ,…, ,

()
i j
Tx .

For this setting, the problem is to optimally place
VMs to minimize the power consumption for the next

time interval and the number of migrations executed
at t.

The above online decision problem can also be
formulated into an MIP problem. Let us ,

(1)ˆ
i j
tx denote

the placement determined at previous time period
t – 1. Since this value is a fixed constant, let us use a
different symbol than ,

()
i j
tx . Then, the weighted sum

of the power consumption and migration count is
minimized by the following formulation:

minimize () ()

1 1

m m
t t

j i
j i

P w z (21)

subject to
() () () ()

,0 , , ,
1 1

0,
K m

t t t t
j j j j k i k i j

k i

P P y P u x for all j, (22)

() ()
, , max

1

,
m

t t
i k i j

i

u x U for all j, (23)

() () (1)
, ,ˆ ,t t t

i i j i jz x x for all i and (1)
,ˆ{ | 1}t

i jj j x ,
 (24)

()
,

1

1,
n

t
i j

j

x for all i, (25)

() ()
, 0,t t

j i jy x for all i, j, (26)

() () ()
, , , {0,1},t t t

i j j ix y z for all i, j. (27)

The above formulation is valid for t > 0. For t = 0,
since no migration is performed, the problem can be
formulated by omitting (24) and the migration count
term from the objective function.

By starting at t = 0 and solving the above problem
for t = 0, 1, 2, …, T repeatedly, the VM placement for
every time period is determined stepwise.

As seen above, the formulation is obtained by
slightly modifying (14)-(20). A notable difference is
seen in (24), the constraint that indicates the
migration of VMi. The equation forces ()t

iz to be 1
only when PMi migrates at t.

5 Heuristic Approach
5.1 Algorithm Description
Since the VM placement problem is formulated as an
MIP problem, the strictly optimal solution can be
obtainable. However, this approach is highly time
consuming and not practical. For real time control of
VM migration, it is essential to develop a fast
heuristic algorithm.

Basically, this study examines a modified version
of the method presented in [7]. To describe this
method concisely, let us define the following vectors.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 45

),...,,()(
,

)(
2,

)(
1,

t
Ki

t
i

t
ii uuuu , mi1 , (28)

),...,,()(
,

)(
2,

)(
1,

t
Kj

t
j

t
jj UUUU , nj1 . (29)

Let u and U denote the vector sets {u1, u2, …, um}
and {U1, U2, …, Un}, respectively. Moreover, set S is
defined as follows.

S = {j | PMj is hosting one or more VMs}. (30)

Here, S is a set of PMs that should be turned on. PMs
that are not in S can be turned off to save energy.

Using the above notation, the following basic
algorithm determines VM placement at t = 1, 2, …, T
by appropriately moving VMs.

Algorithm decide_type(S, U, u)
if ()

, max
t

j kU U for some j and k then
 migrate_type1(S, U, u);
migrate_type2(S, U, u);

In the above algorithm, procedures migrate_type1
and migrate_type2 execute the two migration types
identified in 3.1. For fast computation, these
procedures employ the greedy method [12], which
relies on a locally optimal decision to find a solution.
In the algorithm, local optimality is estimated by a
metric denoted by Fj(Uj). The metric Fj(Uj)
represents the goodness of VM placement on PMj and
is detailed in 5.2. The procedures are described as
follows.

Procedure migrate_type1(S, U, u)
L:= {j | ()

, max
t

j kU U for some k};
while L != {} do
 s:= null, v:= null, xmax:= ;
 for each j L do
 for each i {i | VMi is hosted on PMj} do
 for each l S – L do
 if () ()

, , max
t t

l k i kU u U for every k then
 x:= Fj(Uj – ui) + Fl(Ul + ui) – Fj(Uj) – Fl(Ul);
 if x > xmax then s:＝ j, v:＝ i, d:＝ l, xmax:= x;
 end if
 if v = null then
 turn on a new PM;
 d:= index of a newly turned-on PM;
 S:= S + {d};
 for each j L do
 for each i {i | VMi is hosted on PMj} do
 x:=Fj(Uj – ui) + Fl(Ul + ui) – Fj(Uj) – Fl(Ul);
 if x > xmax then s:＝ j, v:＝ i, d:＝ l, xmax:= x;

 end for
 end if
 send VMv from PMs to PMd, and update L and U;
}

Procedure migrate_type2(S, U, u)
do
 xmax:= (> 0);
 v:= null;
 for each j S do
 for each i {i | VMi is hosted by PMj} do
 for each l {l | () ()

, , max
t t

l k i kU u U for all k} do
 x:= Fj(Uj – ui) + Fl(Ul + ui) – Fj(Uj) – Fl(Ul);
 if x > xmax then s:＝ j, t:＝ i, d:＝ l, xmax:= x;
 end for
 if v = null then break;
 send VMt from PMs to PMd and update U;
 if no VMs are hosted on PMs then
 turn off PMs
 S:= S–{s};
 end if
end do

In the above procedures, variables s, d, and v are
indices of the source, destination, and target,
respectively. Variable x represents how the sum of
efficiency metrics changes for the source and
destination candidates before and after migration.
Essentially, the procedures determine the
combination of the source, destination, and target in
order to maximize the increase of this efficiency
metric sum.

In migrate_type2, is a constant that determines
the initial value of xmax. This constant is indispensable
to assure stability. If is set to a large value, it
becomes difficult for x to exceed the initial value of
xmax. Thus, the probability of discovering the target
VM will decrease, leading to fewer migrations, a
greater number of operating PMs, and larger power
consumption. Thus, we can control the tradeoff
between power consumption and the number of
migrations by the value of . This feature is
confirmed by computer simulation.

The above procedures determine the VM
placement by applying migration to the placement at
the previous time period. Thus, at t = 0, the initial
solution is necessary. The initial solution is obtained
by the best-fit algorithm shown in [8]. This algorithm
is described as follows.

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 46

Algorithm best-fit(U, u)
j:= 1;
V:= set of VMs;
while V {} do
 T:={v | v V and v can be placed at PMj};
 if T {} then
 find v T such that () ()j v j wf fU u U u for

w T;
 Assign v to PMj, Uj = Uj + uv;
 V:= V–{v};
 else j:= j + 1;
 end if
end while

In the algorithm, function f(Uj) shows the
efficiency of resource utilization. This function is
detailed in the next section.

5.2 Efficiency Metric
The algorithm presented in 5.1 utilizes a metric Fj(Uj).
This metric should reflect two factors—how
efficiently multiple resources are utilized and the
power consumed by PMj. These factors are
considered as follows:

If performance depends on the utilization of two
or more resources, all resources should be equally
utilized to avoid unused resource capacities. This is
explained by Fig. 1, which compares two cases of
resource utilization on a PM. The figure assumes that
two resources are relevant to system performance.
Fig. 1(a) shows the case where both resources are
almost equally utilized and thus have small unused
capacities. Meanwhile, only one resource is fully
utilized in Fig. 1(b). Obviously, the placement of
Fig. 1(b) is inefficient because of the presence of a
large unutilized resource on the machine. This
placement will require more PMs and thus higher
operational cost.

From the above intuition, it is possible to use
metrics that represent how far the current state of
resource utilization on a PM is from the ideal state.
Here, the ideal state means that every resource of the
PM is utilized to Umax %. In other words, the state is
best fit to the resource capacities. Let f(uj) denote the
value of this fitting metric for PMj.

As the fitting metric, a simple product of the
resource consumption was used in [7], [8], which is
written as,

Fig. 1 Examples of resource consumption and the
virtual machine placement: (a) balanced case and
(b) unbalanced case.

()
,

1

()
K

t
j j k

k

f UU . (31)

The above function is maximized when the
consumption of every resource reaches Umax%. Thus,
it can be used as the fitting metric. Actually, this
function yielded relatively good solutions [7], [8].
However, it is uncertain whether the function is the
best. There are other functions, which are maximized
at the fully utilized state. As it turns out for the
unbalanced utilization as shown in Fig. 1(b), the
above function may not be appropriate. This is
explained by the following numerical example.

Let us assume that two resources are concerned
with performance. Then, consider the following two
cases. For the first case, the consumption of each
resource is 60%. The second case assumes that
resource R1 is consumed by 40% and resource R2 is
consumed by 90%. For both these cases, the output
of f(Uj) is 3600. Thus, no difference is found by the
function between the cases. However, in the second
case, resource consumption is more unbalanced and
likely to be more difficult to fully utilize every
resource. Thus, a better result may be obtained by
employing some other function, which outputs a
smaller value for the second case than for the first
case.

From the above consideration, this paper
examines the following function:

() ()
, ,

11

()
K K

t t
j j k j k

kk

f U UU . (32)

In this function, is a constant. Let us review the
above numerical example assuming that is 0.5 in
(32). Then, the function outputs 328.6 for the first
case and 315.7 for the second case. Thus, a larger
value is obtained for balanced resource utilization. It
is expected that this characteristic provides better
solutions.

Consumption of R1

O X

Y Z

Umax

Co
ns

um
pt

io
n

of
 R

2 Umax

O X

Y Z

Umax

Consumption of R1

Co
ns

um
pt

io
n

of
 R

2 Umax

(a) (b)

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 47

To reflect power consumption in the metric, the
ratio of the fitting function f(Uj) and the power
consumed by PMj was used in [7]. However, it is
uncertain whether the weight is appropriate between
the fitting function and power consumption. Instead,
this study examines the following metric:

()() () t
j j j jF f PU U . (33)

Here, is the parameter that determines the
weight between the fitting function and power
consumption. If is larger, power consumption is
emphasized more. On the contrary, resource
utilization is emphasized for a smaller value of .

5.3 Stability of the Algorithm
The presented computational procedures finish with
a finite number of migrations. For migrate_type1,
migrations clearly stop after the overload of every
PM is removed. For migrate_type2, it is necessary to
show that migrations are not repeated permanently.
For this problem, there is the following property.

Property Procedure migrate_type2 stops after a
finite number of migrations.

Proof) In the do loop of procedure migrate_type2,
when VMv migrates from PMs to PMd, the value x is
defined as

x =Fs(Us – uv) + Fd(Ud + uv) – Fs(Us) – Fd(Ud).

The migration from PMs to PMd does not affect
the value of Fj(Uj) for j s, d. The above equation
means that x is the difference of the sum j Fj(Uj)
before and after the migration.

In migrate_type2, the sum increases at least by
x > if migration is performed. Meanwhile, the sum
has an upper bound. Let Û denote the maximum
value among () () ()

,1 ,2 ,, ,...,t t t
j j j KU U U . Then, (32) implies

max
ˆ() K K

jf U UU , (34)

for < K. Since ()t
jP is not smaller than Pj,0, Fj(Uj) is

bounded by

max ,0() K
j j jF U PU . (35)

The above equation confirms that the increase of
j Fj(Uj) by migration cannot be repeated

permanently. Thus, the loop is finished after a finite
number of repetitions. (end of proof)

6 Evaluation
The heuristic algorithm presented in Section 5 was
evaluated by computer simulation from two

viewpoints. First, the effectiveness of employing the
new efficiency metric defined by (33) is evaluated.
The optimal values of parameters and are also
determined. The second viewpoint compares the
approximate solutions obtained by the heuristic
algorithm with the near optimal solutions obtained by
the MIP approach.

The simulation model involved 40 VMs and 20
PMs. Thus, m = 40 and n = 20. The number of
performance-related resources, K, was 2. The
maximum resource consumption, Umax, was 90%.

The constants that determine the power
consumption were given as follows:

0, 1, 2,80, 0.4, 0,j j jP P P for 1 6j , and

0, 1, 2,120, 0.6, 0,j j jP P P for 6 20 j .

The VM resource consumption ()
,
t

i ku was updated
every hour. For each update of the consumption, the
migration algorithm was executed. The simulation
was executed for 0 72t . At t = 0, the initial
solution is generated by algorithm best-fit.

VM resource consumption ()
,
t

i ku was given as
follows. First, the VMs were divided into two groups,
each of which consists of 20 VMs. For the first group,
consumption gradually increases and decreases with
a cycle of 24 hours. This is expressed as

,()
,

,

(24) /12, 24 24 12
(24 25) /12, otherwise

i kt
i k

i k

c t N N t N
u

c N t
.

 (36)

where N = 0, 1, 2 and ci,k is an integer constant, which
was randomly selected with equal probability from 1
to 50. Since the actual server load for some
applications alters periodically with a cycle of 24 h
[4], the above model has some rationale. However,
the above equation represents a gentle load change as
shown in Fig. 2. Namely, the consumption increases
and decreases with a small ratio of 1/12. Practically,
the load on some service may more quickly increase
or decrease and may have a different period length.
To simulate such load, the following resource
consumption was given to the second group of VMs.

,()
,

,

, 5 mod 2 0
0.3 , 5 mod 2 1

i kt
i k

i k

c t
u

c t
. (37)

By changing the random seed for ci,k, 1000
problems were generated. For each problem, the
power consumption and the number of migrations at
each t were measured and then summed for t = 0, 1,
…, 72. Since the update interval was 1 h, the sum of
power consumption equals the energy measured in

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 48

Wh. The energy consumption and the total number of
migrations were averaged over 1000 problems.

Fig. 2 Load offered to two groups of VMs.

It was difficult to obtain solutions by the MIP
approach for 1000 problems because of excessive
computational time. Thus, for the comparison of the
heuristic algorithm and optimal solutions, 6 of the
1000 problems were used. The software glpsol
distributed with glpk package [13] was used as the
MIP solver.

6.1 Effectiveness of Efficiency Metric
Fig. 3 shows how the energy consumed for the
heuristic algorithm depends on parameter used in
the fitting function. In the figure, parameter was
fixed to 0.0, 0.5, and 1.0. Parameter used in
migrate_type2 is 0.001. The figure shows that the
energy consumption is minimized by selecting the
value of appropriately.

From (32) and (33), it is seen that the metric used
in [8] is obtained by setting = 0 and = 0 in Fj(Uj).
Similarly, the metric employed in [7] is Fj(Uj) with
setting = 0 and = 1. Meanwhile, the figure clearly
shows that energy consumption for appropriate
values of and is smaller than that for = 0 and
= 0 as well as that for = 0 and = 1. For example,
if = 0.4 and =1.0, the energy is 0.6 kWh smaller
than that obtained with using the metric of [7]. The
smallest energy consumption was obtained for =
0.48 and = 0.8. For this setting, the energy is saved
by 0.61 kWh compared with the method of [7]. Thus,
the metric of (33) becomes more effective than the
metrics used in [7], [8] by selecting values of and

 appropriately. It is likely that this result comes from
the characteristic of the fitting function f(Uj), which
outputs a smaller value for unbalanced resource
consumption.

Fig. 3 Relationship between parameter and
energy consumption.

In Fig. 4, the energy consumption is plotted
against parameter , which determines the weight
between power consumption and the fitting function.
Parameter is set to 0.0, 0.5, and 0.8, and is 0.001.
Fig. 4 shows that the energy consumption is
minimized by selecting an appropriate value of .
The figure shows that the characteristic considerably
differs depending on the value of . This is explained
by the fact that the dimension of fitting function f(Uj)
depends on . That is, the dimension of f(Uj) is (K–

)-th power of the percentile resource consumption.
Thus, should be larger for a smaller value of .

Fig. 4 Relationship between parameter and
energy consumption.

Fig. 5 displays how the number of migrations
changes depending on . The figure shows that the
number of migrations does not significantly change
for < 0.5. However, if = 1.0, it decreases for

 > 0.5. Moreover, if = 0.5, the migration count
decreases for > 0.7. This result suggests that it
becomes more difficult to discover the target of
migration for these regions of .

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 24 48 72

N
or

m
al

ise
d

Lo
ad

Time (h)

Gently Changing Load
Steeply Changing Load

74

76

78

80

82

84

0 0.2 0.4 0.6 0.8

En
er

gy
 (k

W
h)

Parameter a

b = 0.0 b = 0.5 b = 1.0

70

75

80

85

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

En
er

gy
 (k

W
h)

Parameter b

a = 0.0
a = 0.5
a = 0.8

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 49

Fig. 5 Relationship between parameter and the
number of migrations.

The relationship between the number of
migrations and energy consumption is plotted for
different values of in Fig. 6. The figure shows the
case of = 0.5 and = 0.8. As expected, Fig. 6 shows
that the value of successfully controls the tradeoff
between the number of migrations and energy
consumption. By setting = 1, the migration count
reduces to 28% of that obtained for = 0.001.
Meanwhile, energy consumption for = 1 becomes
1.28 times larger than that for = 0.001. Thus, by
setting to a larger value, the number of migrations
can be significantly reduced by sacrificing energy
consumption. Therefore, if the network load caused
by migration is critical, it is recommended to set to
a large value.

Fig. 6 Relationship between the number of
migrations and energy consumption for different
values of parameter .

6.2 Heuristic Algorithm vs. MIP Approach
Fig. 7 compares the energy consumption obtained by
the MIP approach with that obtained by the heuristic
algorithm. For the MIP approach, the online version
defined by (21)-(27) was used. The weight parameter

w was set to 0.001 and 1. For a larger value of w, the
number of migrations is more emphasized. Thus, the
number of migrations decreases while energy
consumption may increase for w = 1. The MIP solver
was executed with a time limit of 1800 s. Thus, the
solutions obtained are not strictly optimum. For the
heuristic algorithm, and are 0.48 and 0.8,
respectively, while is 0.001.

As Fig. 7 shows, the solution obtained by the MIP
approach yields lower energy consumption than that
by the heuristic. The energy consumed by the
heuristic algorithm is 1.04 times larger than that for
the MIP approach with w = 1.

Fig. 7 Energy consumption for the MIP and
heuristic approaches.

In Fig. 8, the number of migrations is compared
between the MIP and heuristic approaches. The
figure clearly shows that the heuristic approach
yields considerably more migrations than the MIP
approach. The number of migrations by the heuristic
is 1.3 times larger than that by the MIP approach with
w = 0.001 and 1.8 times larger than that of the MIP
approach with w = 1. As seen before, the migrations
of the heuristic algorithm can be decreased by a larger
value of . However, this further degrades the power
consumption.

Fig. 8 The number of migrations for the MIP and
heuristic approaches.

500

600

700

800

900

1000

0 0.2 0.4 0.6 0.8

N
um

be
r o

f M
ig

ra
tio

ns

Parametr a

b = 0.0
b = 0.5
b = 1.0

70

80

90

100

110

120

0 200 400 600 800 1000

En
er

gy
 (k

W
h)

Number of Migrations

60

62

64

66

68

70

72

MIP, w = 0.001 MIP, w = 1 Heuristic

En
er

gy
 (k

W
h)

0
100
200
300
400
500
600
700
800
900

1000

MIP, w = 0.001 MIP, w = 1 Heuristic

N
um

be
r o

f M
ig

ra
tio

ns

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 50

Fig. 9 plots the number of migrations against time
for the MIP and heuristic approaches for one of
problems. For the MIP approach, weight w was 0.001.
Fig. 9 shows that the number of migrations is much
greater for the heuristic algorithm particularly when
load quickly increases. The probable cause of this
result is that the method may perform migration twice
for the same VM through migrate_type1 and
migrate_type2 when load increases. Thus, the
number of migrations may be reduced by eliminating
this redundancy.

Fig. 9 The number of migrations vs. time for the
MIP and heuristic approaches.

From the above result, it is concluded that the
heuristic algorithm presented in Section 5.1 should be
improved. Specifically, it is necessary to reduce
migrations while maintaining low power
consumption.

7 Conclusion
This paper explored two approaches to the

optimal VM placement problem. First, the paper
presented the formulation of the problem to obtain a
strictly optimal solution through an MIP approach. It
was shown how to represent VM migration by
equations and achieve the least power consumption
and migration count. The paper also examined a fast,
but approximate heuristic approach. The algorithm
presented is based on the method proposed in the
author’s previous work. However, a new efficiency
metric is introduced to precisely estimate local
optimality.

The approaches were evaluated by computer
simulation. As a result, it was found that the new
efficiency metric proposed for the heuristic algorithm
is effective to reduce power consumption by setting
parameter values appropriately. The simulation result
also shows that the tradeoff between power
consumption and migration count is successfully

controlled by parameter setting. Moreover, the
solutions were compared for the heuristic and MIP
approaches. The result suggests that the solution
optimality by the heuristic approach should be
improved by reducing migrations keeping power
consumption at a minimum.

Acknowledgement
The authors would like to thank Enago
(www.enago.jp) for the English language review.

References:
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauery, I. Pratt, and A. Warfield, “Xen and
the art of virtualization,” in Proc. SOSP ‘03, Bolton
Landing, New York, USA, 2003, pp. 164-177.

[2] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: a
survey on concepts, taxonomy and associated security
issues,” in Proc. Computer and Network Technology
(ICCNT), 2010 Second International Conference on, 2010,
pp. 222-226.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proc. USENIX NSDI ‘05, Boston, MA,
USA, 2005, pp. 273-286.

[4] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement
of virtual machines for managing SLA violations,” in Proc.
IM ‘07, Munich, Germany, 2007, pp. 119-128.

[5] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya,
“Cost of virtual machine live migration in clouds: a
performance evaluation,” Cloud Computing,, Lecture Notes
in Computer Science, Vol. 5931, 2009, pp. 254-265.

[6] H. P. Williams, Model Building in Mathematical
Programming. Wiley, 2013.

[7] S. Ohta and A. Sakai, “Virtual machine migration methods
for heterogeneous power consumption,” in Proc. the 11th
IEEE International Conference on Autonomic and Trusted
Computing (ATC-2014), Bali, Indonesia, 2014, pp. 577-582.

[8] S. Ohta, “Virtual machine placement algorithms to
minimize physical machine count,” in Proc. The 15th Asia-
Pacific Network Operations and Management Symposium
(APNOMS 2013), Hiroshima, Japan, 2013, pp. poster2-4.

[9] J. Xu and J. A. B. Fortes, “A Multi-objective approach to
virtual machine management in datacenters,” in Proc. ICAC
‘11, Karlsruhe, Germany, 2011, pp. 225-234.

[10] D. G. d. Lago, E. R. M. Madeira, and L. F. Bittencourt,
“Power-aware virtual machine scheduling on clouds using
active cooling control and DVFS,” in Proc. MGC ‘11,
Lisbon, Portugal, 2011.

[11] J. J. More and S. J. Wright, Optimization Software Guide.
Philadelphia: SIAM, 1993.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press, 2009.

[13] GLPK (GNU Linear Programming Kit), Available:
http://www.gnu.org/software/glpk/

0

10

20

30

40

50

0 12 24 36 48 60 72

N
um

be
r o

f M
ig

ra
tio

ns

Time (h)

Heuristic MIP

Advances in Information Science and Computer Engineering

ISBN: 978-1-61804-276-7 51

