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Abstract: - In virtualization, power consumption is minimized and good performance is achieved by optimally 

performing virtual machine placement and migration. This paper investigates two approaches to optimal virtual 
machine placement and migration. First, a mixed integer programming (MIP) approach is presented. For this 
approach, the problem is formulated by mathematically representing the number of migrations, heterogeneous 
power consumption, and multiple performance-related resources. Although this approach is time-consuming and 
possibly impractical, it is indispensable in evaluating the goodness of other methods. In addition to the MIP, a 
heuristic approach is also examined, which relies on a metric that estimates the efficiency of virtual machine 
placement. The paper proposes a new metric to estimate efficiency more accurately. The effectiveness of the 
proposed metric is confirmed via computer simulation. Simulation also evaluates how parameters used in the 
algorithm affect solutions. Moreover, the solution obtained by the heuristic algorithm is compared with that 
obtained by the MIP approach. 
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1 Introduction 
Virtualization [1], [2] is a key technology for cloud 
computing, which is the indispensable basis of 
information technology. Virtualization provides 
various advantages, including flexibility, availability, 
scalability, etc. 

Virtualization enables multiple virtual machines 
(VMs) to run on a single physical machine (PM). 
When VMs are hosted on multiple PMs, VMs should 
be optimally placed on PMs to minimize electrical 
power consumption without overutilizing 
computational resources. An important feature of 
virtualization is live migration [3], which enables a 
VM to move from the current host to another PM 
without stopping computation. When using live 
migration, VM placement can always be optimized 
for changing load [4]. 

To minimize power consumption under the 
constraint on resource capacity, we need to develop 
an algorithm that optimizes VM placement for 
dynamic load. Meanwhile, it is known that migration 
offers considerable load on the network [5]. Thus, the 
algorithm should avoid too frequent migrations. 
Moreover, the algorithm must quickly find a solution 
for real time control of VMs. Therefore, a fast 
heuristic approach is required. 

This paper first formulates the VM placement into 
a linear mixed integer programming (MIP) problem 
[6]. Through this formulation, it becomes possible to 
strictly minimize power consumption under the 
constraints on resource capacity and migration count. 
This approach is time consuming and may be 
impractical. However, the approach is necessary to 
evaluate the goodness of a heuristic algorithm. 

This paper also examines a heuristic algorithm, 
which is basically proposed in the author’s previous 
study [7]. This paper introduces a new metric that 
estimates the efficiency of the VM placement on a 
PM. The algorithm is tested by computer simulation 
to evaluate the effectiveness of the proposed metric. 
The simulation also clarifies the optimal values for 
the parameters used in the heuristic. In addition, the 
solution obtained by the heuristic is compared with 
that obtained by the MIP approach. 

This paper is organized as follows. First, related 
studies are reviewed in Section 2. Then, the problem 
tackled in this study is explained in Section 3. Section 
4 presents how the VM placement problem is 
formulated as an MIP problem. A heuristic algorithm 
is explored in Section 5. Moreover, a new efficiency 
metric is also presented. The MIP and heuristic 
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approaches are evaluated by computer simulation in 
Section 6. Finally, Section 7 concludes the paper. 

 
 

2 Related Work 
The VM placement and migration problem have been 
studied from various perspectives [4], [7-10].  

Reference [4] presents a method to classify the 
load characteristics for obtaining gain by migration, 
a load forecasting technique, and a VM placement 
algorithm. In [9], a migration scheme is examined by 
considering various factors, including temperature, 
CPU, disk I/O, and network I/O in the physical and 
virtual machine layers. The algorithm presented in 
[8] minimizes the number of PMs by considering 
multiple performance-related resources and keeping 
their consumptions less than a given bound. Multiple 
resources are also assumed in the method of [7]. This 
method also assumes heterogeneous power 
consumption and minimizes the total power 
consumption. Meanwhile, the method of [10] 
considers only one resource, CPU. However, the 
method assumes sophisticated power management, 
which is used in computers today. 

As seen above, the VM placement problem has 
been studied for various models. However, the 
assessment on solution goodness of algorithms is 
insufficient is a common problem found in previous 
studies. To rectify this problem, it is required to 
develop a method that yields a strict optimum. 

 
 

3 Problem Description 
Suppose that many VMs are supported by multiple 
PMs. In this situation, if a few PMs support as many 
VMs as possible, the required number of PMs will be 
small, and unused PMs can be turned off. 
Unfortunately, it is impossible for a PM to operate for 
unlimited number of VMs because the performance 
will degrade due to resource shortage. Thus, we must 
appropriately place each VM on a PM to avoid 
resource shortage as well as save electrical power. 

When different loads are offered to VMs, the 
optimal placement of VMs is a combinatorial 
optimization problem. By solving this problem, it 
becomes possible to achieve a lower electrical power 
cost as well as avoid performance degradation caused 
by resource shortage. 

If the load on VMs dynamically changes with time, 
the optimal VM placement will also change. Thus, 
some VMs must migrate to achieve the optimal 
placement. Essentially, the determination of optimal 
VM placement for new load is equivalent to 
performing the best migration. 

It is known that migration offers considerable load 
on the network [5]. Thus, too frequent migrations 
should not be allowed. Therefore, power 
consumption should be minimized through as few 
migrations as possible. 

Migration is categorized into two different types. 
The first type is executed to avoid performance 
degradation caused by overload, which is triggered 
by the load increase on VMs. For this type of 
migration, if an appropriate destination PM does not 
exist, some sleeping PM should be turned on. The 
second type of migration is performed to decrease the 
number of operating PMs by integrating lightly 
loaded VMs into as few PMs as possible. If a PM is 
vacated by this type of migration, it can be turned off. 
Hereafter, let us refer to these types as type 1 and type 
2, respectively. We need to develop an algorithm for 
both of these migration types.  

 
 

3.1 Stability Problem 
To perform migration, we must determine the source 
(sender) PM, destination (receiver) PM, and target 
VM to migrate. An important problem for this 
decision is to avoid an infinitely repeated migration. 
To understand the possibility of infinite migrations, 
consider the following case of type 1 migration. Let 
PM1, PM2, and VM1 denote the source PM, 
destination PM, and target VM, respectively. 
Infinitely repeated executions occur when the 
remaining capacity of PM2 is not sufficient to accept 
VM1. If this happens, the performance of PM2 will 
degrade after migration. Thus, the VM must be 
moved again and possibly sent back to PM1. 
Obviously, this causes performance degradation on 
PM1. If the same algorithm is applied, VM1 will be 
returned to PM2. Thus, VM1 will infinitely migrate 
between PM1 and PM2.  

Infinite migrations can also occur for type 2 
migration when the algorithm selects a VM that has 
already moved as the target and sends it back to its 
original host. Thus, a migration algorithm must be 
carefully designed to avoid infinite migrations. 

 
 

3.2 Assumptions 
Suppose that m VMs should be optimally placed 
among n PMs at discrete time t = 0, 1, 2, …, T with a 
constant interval. Thus, migration is performed at t = 
1, 2, …, T to modify the placement determined at 
t – 1. VMs are denoted by VM1, VM2, …, VMm and 
the PMs are denoted by PM1, PM2, …, PMn. The 
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performance of a VM relies on K computational 
resources R1, R2, …, RK. Each VM consumes the 
resouce of its host PM. Let ( )

,
t

i ku  denote the percentile 
value that represents how much VMi )1( mi  
consumes resource Rk )1( Kk  of its host at time 
t. It is assumed that ( )

,
t

i ku  is given for every i and k at 
t. The resource consumption of PMj, denoted by ( )

,
t

j kU , 
is the sum of the resource consumption by each VM 
hosted by PMj. It is also assumed that the 
performance of VMs hosted by PMj does not degrade 
during the period from t to t + 1, if ( )

,
t

j kU  does not 
exceed a given percentile constant Umax for every k 
on PMj. 

This paper considers the situation where the 
electric power consumed by PMs is heterogeneous. 
Thus, power consumption must be minimized by 
considering the difference among the specifications 
of PMs. It is assumed that power consumption 
depends on resource consumption ( )

,
t

j kU . 
 
 

4 MIP Approach 
Under the assumptions described in 3.2, the VM 
placement problem can be formulated as a linear MIP 
problem [6]. This means that the strictly optimal 
solution is obtainable by using optimization software 
listed in [11]. Hereafter, this scheme is referred to as 
the MIP approach. 

A solution for the VM placement problem should 
achieve less power consumption and fewer 
migrations by satisfying the constraints on resource 
consumption on PMs. Thus, the problem is 
considered as the optimization for two distinct 
objectives. To tackle this problem, we examine the 
following two scenarios. 

1) Energy consumption is minimized under the 
constraint that the number of migrations does not 
exceed a specified bound. 

2) The weighted sum of energy consumption and 
the migration count is minimized. 

For VMi (1 )i m  and PMj ( 1 j n ), the 
placement at time t is represented by the following 
the binary (0-1) variable. 

,

( ) 1, if VM  is placed on PM  at 
0, otherwisei j

i jt t
x . (1) 

To estimate the energy consumption, we need to 
know which PMs are turned on among n PMs. This 
is expressed by the next binary variable. 

( ) 1, if PM  is turned at 
0, otherwisej

jt t
y . (2) 

The number of migrations is counted by 
introducing the following variable. 

( ) 1, if VM  migrates at 
0, otherwise

it
i

t
z . (3) 

The purpose of the problem is to decide these 
variables for a given condition of resource and power 
consumption. As described in 3.2, ( )

,
t

j kU  is defined as 
( ) ( )
, ,

{ |VM  is placed at PM }i j

t t
j k i k

i i

U u . (4) 

Then, the placement should be determined such 
that ( )

,
t

j kU  will not exceed Umax to avoid resource 
shortage on each PM.  

Let ( )t
jP denote the power consumed by PMj at 

time t. Thus, the energy consumption is obtained by 
multiplying ( )t

jP  by the time interval. It is assumed 
that ( )t

jP is defined as follows. 

( )
,0 , ,( )

1

, if PM  is turned on

0, if PM  is turned off

K
t

j j k j k jt
kj

j

P P U
P . (5) 

Thus, the power consumption consists of a 
constant portion and portions proportional to 
resource consumption. As seen above, ( )t

jP is a 
variable, which depends on the on/off state of PMj as 
well as VMs assigned to PMj. 

With the decision variables 
,

( )
i j

tx , ( )
j

ty , ( )t
iz , ( )t

jP  
and given constants ( )

,
t

i ku , ,0jP , ,j kP , the problem is 
formulated as follows: 

minimize   ( )

0 1

T m
t

j
t j

P  (6) 

subject to 
( ) ( ) ( ) ( )

,0 , , ,
1 1

0,
K m

t t t t
j j j j k i k i j

k i

P P y P u x  for all j, t, (7) 

( ) ( )
, , max

1

,
m

t t
i k i j

i

u x U  for all j, k, t, (8) 

( )

1 1

,
T m

t
i

t i

z C  for all t, (9) 

( ) ( 1) ( )
, , 0,t t t

i i j i jz x x  for all i, j, and t > 0, (10) 

( )
,

1

1,
n

t
i j

j

x  for all i, t, (11) 

( ) ( )
, 0,t t

j i jy x  for all i, j, t, (12) 
( ) ( ) ( )
, , , {0,1},t t t

i j j ix y z  for all i, j, t. (13) 

Here, parameter C is the upper bound for the 
number of migrations. Among the constraints, (7) 
determines the power consumed by PMj. This 
equation is immediately obtained from (4) and (5). 
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Resource consumption of a PM is set smaller than 
Umax by (8). The number of migrations does not 
exceed a given constant C by (9). The value of ( )t

iz is 
determined by (10). This equation sets ( )t

iz  to 1 if 
VMi migrates at time t. Strictly, ( )t

iz  may take 0 or 1 
in (9) when VMi does not migrate. However, we can 
precisely set the upper bound for the number of 
migrations with (9) and (10). By (11), a VM is 
certainly placed to one of the PMs. Moreover,  a VM 
is assigned on a PM that is turned on with (12). 

The weighted sum of energy consumption and 
migration count is minimized by a slightly modified 
formulation. Let w denote the weight parameter for 
the number of migrations. Migration is emphasized 
more for a larger value of w. Thus, by setting w at a 
large value, fewer migrations and greater power 
consumption will be obtained. The formulation for 
this model is as follows. 

minimize ( ) ( )

0 1 1 1

T m T m
t t

j i
t j t i

P w z  (14) 

subject to 
( ) ( ) ( ) ( )

,0 , , ,
1 1

0,
K m

t t t t
j j j j k i k i j

k i

P P y P u x  for all j, t, (15) 

( ) ( )
, , max

1

,
m

t t
i k i j

i

u x U  for all j, t, (16) 

( ) ( 1) ( )
, , 0,t t t

i i j i jz x x for all i, j, t, (17) 

( )
,

1

1,
n

t
i j

j

x  for all i, t, (18) 

( ) ( )
, 0,t t

j i jy x  for all i, j, t, (19) 
( ) ( ) ( )
, , , {0,1},t t t

i j j ix y z  for all i, j, t. (20) 

The difference from the previous formulation is 
that the constraint on the migration count is omitted. 
Instead, the number of migrations is added to the 
objective function. 

The above formulations assume that resource 
consumption for every t in 0 t T  is known and 
VM placement over every t is simultaneously 
determined. However, this scenario is impractical. In 
the real world, VM placement must be determined 
online. This scenario is specified as follows. 

Assume that current time is t. At this time, the 
given parameter is the resource consumption for t, 

( )
,
t

i ku . Future consumptions ( 1)
,
t

i ku , ( 2)
,
t

i ku ,…, are 
unknown. In addition, the VM placement determined 
before t, ,

(0)
i j

x ,…, ,
( 2)
i j
tx , ,

( 1)
i j
tx , is fixed and cannot be 

changed. Moreover, it is unnecessary and impossible 
to determine future placement ,

( 1)
i j
tx , ,

( 1)
i j
tx ,…, ,

( )
i j
Tx . 

For this setting, the problem is to optimally place 
VMs to minimize the power consumption for the next 

time interval and the number of migrations executed 
at t. 

The above online decision problem can also be 
formulated into an MIP problem. Let us ,

( 1)ˆ
i j
tx  denote 

the placement determined at previous time period 
t – 1. Since this value is a fixed constant, let us use a 
different symbol than ,

( )
i j
tx . Then, the weighted sum 

of the power consumption and migration count is 
minimized by the following formulation: 

minimize ( ) ( )

1 1

m m
t t

j i
j i

P w z  (21) 

subject to 
( ) ( ) ( ) ( )

,0 , , ,
1 1

0,
K m

t t t t
j j j j k i k i j

k i

P P y P u x  for all j, (22) 

( ) ( )
, , max

1

,
m

t t
i k i j

i

u x U for all j, (23) 

( ) ( ) ( 1)
, ,ˆ ,t t t

i i j i jz x x  for all i and ( 1)
,ˆ{ | 1}t

i jj j x , 
 (24) 

( )
,

1

1,
n

t
i j

j

x  for all i, (25) 

( ) ( )
, 0,t t

j i jy x  for all i, j, (26) 

( ) ( ) ( )
, , , {0,1},t t t

i j j ix y z  for all i, j. (27) 

The above formulation is valid for t > 0. For t = 0, 
since no migration is performed, the problem can be 
formulated by omitting (24) and the migration count 
term from the objective function.  

By starting at t = 0 and solving the above problem 
for t = 0, 1, 2, …, T repeatedly, the VM placement for 
every time period is determined stepwise. 

As seen above, the formulation is obtained by 
slightly modifying (14)-(20). A notable difference is 
seen in (24), the constraint that indicates the 
migration of VMi. The equation forces ( )t

iz  to be 1 
only when PMi migrates at t.  

 
 

5 Heuristic Approach 
5.1 Algorithm Description 
Since the VM placement problem is formulated as an 
MIP problem, the strictly optimal solution can be 
obtainable. However, this approach is highly time 
consuming and not practical. For real time control of 
VM migration, it is essential to develop a fast 
heuristic algorithm. 

Basically, this study examines a modified version 
of the method presented in [7]. To describe this 
method concisely, let us define the following vectors. 
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),...,,( )(
,

)(
2,

)(
1,

t
Ki

t
i

t
ii uuuu ,  mi1 , (28) 

),...,,( )(
,

)(
2,

)(
1,

t
Kj

t
j

t
jj UUUU ,  nj1 . (29) 

Let u and U denote the vector sets {u1, u2, …, um} 
and {U1, U2, …, Un}, respectively. Moreover, set S is 
defined as follows. 

S = {j | PMj is hosting one or more VMs}. (30) 

Here, S is a set of PMs that should be turned on. PMs 
that are not in S can be turned off to save energy. 

Using the above notation, the following basic 
algorithm determines VM placement at t = 1, 2, …, T 
by appropriately moving VMs. 

 
Algorithm decide_type(S, U, u) 
if ( )

, max
t

j kU U  for some j and k then  
  migrate_type1(S, U, u); 
migrate_type2(S, U, u); 
 

In the above algorithm, procedures migrate_type1 
and migrate_type2 execute the two migration types 
identified in 3.1. For fast computation, these 
procedures employ the greedy method [12], which 
relies on a locally optimal decision to find a solution. 
In the algorithm, local optimality is estimated by a 
metric denoted by Fj(Uj). The metric Fj(Uj) 
represents the goodness of VM placement on PMj and 
is detailed in 5.2. The procedures are described as 
follows. 
 
Procedure migrate_type1(S, U, u) 
L:= {j | ( )

, max
t

j kU U  for some k}; 
while L != {} do 
 s:= null, v:= null, xmax:=  ; 
 for each j  L do  
  for each i  {i | VMi is hosted on PMj} do 
   for each l  S – L do  
    if ( ) ( )

, , max
t t

l k i kU u U for every k then  
     x:= Fj(Uj – ui) + Fl(Ul + ui) – Fj(Uj) – Fl(Ul); 
     if x > xmax then s:＝ j, v:＝ i, d:＝ l, xmax:= x; 
    end if 
 if v = null then  
  turn on a new PM; 
  d:= index of a newly turned-on PM; 
  S:= S + {d}; 
  for each j  L do  
   for each i  {i | VMi is hosted on PMj} do 
     x:=Fj(Uj – ui) + Fl(Ul + ui) – Fj(Uj) – Fl(Ul); 
    if x > xmax then s:＝ j, v:＝ i, d:＝ l, xmax:= x; 

   end for 
 end if 
 send VMv from PMs to PMd, and update L and U; 
} 
 
Procedure migrate_type2(S, U, u) 
do  
 xmax:=  (  > 0); 
 v:= null; 
 for each j  S do  
  for each i  {i | VMi is hosted by PMj} do  
   for each l  {l | ( ) ( )

, , max
t t

l k i kU u U  for all k} do 
    x:= Fj(Uj – ui) + Fl(Ul + ui) – Fj(Uj) – Fl(Ul); 
    if x > xmax then s:＝ j, t:＝ i, d:＝ l, xmax:= x; 
   end for 
 if v = null then break; 
 send VMt from PMs to PMd and update U; 
 if no VMs are hosted on PMs then  
  turn off PMs 
  S:= S–{s}; 
 end if 
end do 
 

In the above procedures, variables s, d, and v are 
indices of the source, destination, and target, 
respectively. Variable x represents how the sum of 
efficiency metrics changes for the source and 
destination candidates before and after migration. 
Essentially, the procedures determine the 
combination of the source, destination, and target in 
order to maximize the increase of this efficiency 
metric sum. 

In migrate_type2,  is a constant that determines 
the initial value of xmax. This constant is indispensable 
to assure stability. If  is set to a large value, it 
becomes difficult for x to exceed the initial value of 
xmax. Thus, the probability of discovering the target 
VM will decrease, leading to fewer migrations, a 
greater number of operating PMs, and larger power 
consumption. Thus, we can control the tradeoff 
between power consumption and the number of 
migrations by the value of . This feature is 
confirmed by computer simulation.  

The above procedures determine the VM 
placement by applying migration to the placement at 
the previous time period. Thus, at t = 0, the initial 
solution is necessary. The initial solution is obtained 
by the best-fit algorithm shown in [8]. This algorithm 
is described as follows. 
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Algorithm best-fit(U, u) 
j:= 1; 
V:= set of VMs; 
while V  {} do 
 T:={v | v  V and v can be placed at PMj}; 
 if T  {} then  
  find v  T such that ( ) ( )j v j wf fU u U u  for 

w  T; 
  Assign v to PMj, Uj = Uj + uv; 
  V:= V–{v}; 
  else j:= j + 1;  
 end if 
end while 
  

In the algorithm, function f(Uj) shows the 
efficiency of resource utilization. This function is 
detailed in the next section. 

 
 

5.2 Efficiency Metric 
The algorithm presented in 5.1 utilizes a metric Fj(Uj). 
This metric should reflect two factors—how 
efficiently multiple resources are utilized and the 
power consumed by PMj. These factors are 
considered as follows: 

If performance depends on the utilization of two 
or more resources, all resources should be equally 
utilized to avoid unused resource capacities. This is 
explained by Fig. 1, which compares two cases of 
resource utilization on a PM. The figure assumes that 
two resources are relevant to system performance. 
Fig. 1(a) shows the case where both resources are 
almost equally utilized and thus have small unused 
capacities. Meanwhile, only one resource is fully 
utilized in Fig. 1(b). Obviously, the placement of 
Fig. 1(b) is inefficient because of the presence of a 
large unutilized resource on the machine. This 
placement will require more PMs and thus higher 
operational cost. 

From the above intuition, it is possible to use 
metrics that represent how far the current state of 
resource utilization on a PM is from the ideal state. 
Here, the ideal state means that every resource of the 
PM is utilized to Umax %. In other words, the state is 
best fit to the resource capacities. Let f(uj) denote the 
value of this fitting metric for PMj. 

As the fitting metric, a simple product of the 
resource consumption was used in [7], [8], which is 
written as, 

 
Fig. 1 Examples of resource consumption and the 
virtual machine placement: (a) balanced case and 
(b) unbalanced case. 

( )
,

1

( )
K

t
j j k

k

f UU . (31) 

The above function is maximized when the 
consumption of every resource reaches Umax%. Thus, 
it can be used as the fitting metric. Actually, this 
function yielded relatively good solutions [7], [8]. 
However, it is uncertain whether the function is the 
best. There are other functions, which are maximized 
at the fully utilized state. As it turns out for the 
unbalanced utilization as shown in Fig. 1(b), the 
above function may not be appropriate. This is 
explained by the following numerical example. 

Let us assume that two resources are concerned 
with performance. Then, consider the following two 
cases. For the first case, the consumption of each 
resource is 60%. The second case assumes that 
resource R1 is consumed by 40% and resource R2 is 
consumed by 90%. For both these cases, the output 
of f(Uj) is 3600. Thus, no difference is found by the 
function between the cases. However, in the second 
case, resource consumption is more unbalanced and 
likely to be more difficult to fully utilize every 
resource. Thus, a better result may be obtained by 
employing some other function, which outputs a 
smaller value for the second case than for the first 
case. 

From the above consideration, this paper 
examines the following function: 

( ) ( )
, ,

11

( )
K K

t t
j j k j k

kk

f U UU . (32) 

In this function,  is a constant. Let us review the 
above numerical example assuming that  is 0.5 in 
(32). Then, the function outputs 328.6 for the first 
case and 315.7 for the second case. Thus, a larger 
value is obtained for balanced resource utilization. It 
is expected that this characteristic provides better 
solutions. 

Consumption of R1

O X

Y Z

Umax

Co
ns

um
pt

io
n 

of
 R

2 Umax

O X

Y Z

Umax

Consumption of R1

Co
ns

um
pt

io
n 

of
 R

2 Umax

(a) (b)
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To reflect power consumption in the metric, the 
ratio of the fitting function f(Uj) and the power 
consumed by PMj was used in [7]. However, it is 
uncertain whether the weight is appropriate between 
the fitting function and power consumption. Instead, 
this study examines the following metric: 

( )( ) ( ) t
j j j jF f PU U . (33) 

Here,  is the parameter that determines the 
weight between the fitting function and power 
consumption. If  is larger, power consumption is 
emphasized more. On the contrary, resource 
utilization is emphasized for a smaller value of . 

 
 

5.3 Stability of the Algorithm 
The presented computational procedures finish with 
a finite number of migrations. For migrate_type1, 
migrations clearly stop after the overload of every 
PM is removed. For migrate_type2, it is necessary to 
show that migrations are not repeated permanently. 
For this problem, there is the following property. 

Property Procedure migrate_type2 stops after a 
finite number of migrations. 

Proof) In the do loop of procedure migrate_type2, 
when VMv migrates from PMs to PMd, the value x is 
defined as 

x =Fs(Us – uv) + Fd(Ud + uv) – Fs(Us) – Fd(Ud). 

The migration from PMs to PMd does not affect 
the value of Fj(Uj) for j  s, d. The above equation 
means that x is the difference of the sum j Fj(Uj) 
before and after the migration.  

In migrate_type2, the sum increases at least by 
x >  if migration is performed. Meanwhile, the sum 
has an upper bound. Let Û  denote the maximum 
value among ( ) ( ) ( )

,1 ,2 ,, ,...,t t t
j j j KU U U . Then, (32) implies 

max
ˆ( ) K K

jf U UU , (34) 

for  < K. Since ( )t
jP is not smaller than Pj,0, Fj(Uj) is 

bounded by 

max ,0( ) K
j j jF U PU . (35) 

The above equation confirms that the increase of 
j Fj(Uj) by migration cannot be repeated 

permanently. Thus, the loop is finished after a finite 
number of repetitions. (end of proof) 

 
 

6 Evaluation 
The heuristic algorithm presented in Section 5 was 
evaluated by computer simulation from two 

viewpoints. First, the effectiveness of employing the 
new efficiency metric defined by (33) is evaluated. 
The optimal values of parameters  and  are also 
determined. The second viewpoint compares the 
approximate solutions obtained by the heuristic 
algorithm with the near optimal solutions obtained by 
the MIP approach. 

The simulation model involved 40 VMs and 20 
PMs. Thus, m = 40 and n = 20. The number of 
performance-related resources, K, was 2. The 
maximum resource consumption, Umax, was 90%.  

The constants that determine the power 
consumption were given as follows: 

0, 1, 2,80, 0.4, 0,j j jP P P  for 1 6j , and 

0, 1, 2,120, 0.6, 0,j j jP P P  for 6 20 j . 

The VM resource consumption ( )
,
t

i ku  was updated 
every hour. For each update of the consumption, the 
migration algorithm was executed. The simulation 
was executed for 0 72t . At t = 0, the initial 
solution is generated by algorithm best-fit. 

VM resource consumption ( )
,
t

i ku was given as 
follows. First, the VMs were divided into two groups, 
each of which consists of 20 VMs. For the first group, 
consumption gradually increases and decreases with 
a cycle of 24 hours. This is expressed as 

,( )
,

,

( 24 ) /12, 24 24 12
(24 25 ) /12, otherwise

i kt
i k

i k

c t N N t N
u

c N t
.

 (36) 

where N = 0, 1, 2 and ci,k is an integer constant, which 
was randomly selected with equal probability from 1 
to 50. Since the actual server load for some 
applications alters periodically with a cycle of 24 h 
[4], the above model has some rationale. However, 
the above equation represents a gentle load change as 
shown in Fig. 2. Namely, the consumption increases 
and decreases with a small ratio of 1/12. Practically, 
the load on some service may more quickly increase 
or decrease and may have a different period length. 
To simulate such load, the following resource 
consumption was given to the second group of VMs. 

,( )
,

,

, 5 mod 2 0
0.3 , 5 mod 2 1

i kt
i k

i k

c t
u

c t
. (37) 

By changing the random seed for ci,k, 1000 
problems were generated. For each problem, the 
power consumption and the number of migrations at 
each t were measured and then summed for t = 0, 1, 
…, 72. Since the update interval was 1 h, the sum of 
power consumption equals the energy measured in 
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Wh. The energy consumption and the total number of 
migrations were averaged over 1000 problems.  

 

 
Fig. 2 Load offered to two groups of VMs. 

It was difficult to obtain solutions by the MIP 
approach for 1000 problems because of excessive 
computational time. Thus, for the comparison of the 
heuristic algorithm and optimal solutions, 6 of the 
1000 problems were used. The software glpsol 
distributed with glpk package [13] was used as the 
MIP solver.  

6.1 Effectiveness of Efficiency Metric 
Fig. 3 shows how the energy consumed for the 
heuristic algorithm depends on parameter  used in 
the fitting function. In the figure, parameter  was 
fixed to 0.0, 0.5, and 1.0. Parameter  used in 
migrate_type2 is 0.001. The figure shows that the 
energy consumption is minimized by selecting the 
value of  appropriately.  

From (32) and (33), it is seen that the metric used 
in [8] is obtained by setting  = 0 and  = 0 in Fj(Uj). 
Similarly, the metric employed in [7] is Fj(Uj) with 
setting  = 0 and  = 1. Meanwhile, the figure clearly 
shows that energy consumption for appropriate 
values of  and  is smaller than that for  = 0 and  
= 0 as well as that for  = 0 and  = 1. For example, 
if  = 0.4 and  =1.0, the energy is 0.6 kWh smaller 
than that obtained with using the metric of [7]. The 
smallest energy consumption was obtained for  = 
0.48 and  = 0.8. For this setting, the energy is saved 
by 0.61 kWh compared with the method of [7]. Thus, 
the metric of (33) becomes more effective than the 
metrics used in [7], [8] by selecting values of  and 

 appropriately. It is likely that this result comes from 
the characteristic of the fitting function f(Uj), which 
outputs a smaller value for unbalanced resource 
consumption. 

 
Fig. 3 Relationship between parameter  and 
energy consumption. 

In Fig. 4, the energy consumption is plotted 
against parameter , which determines the weight 
between power consumption and the fitting function. 
Parameter  is set to 0.0, 0.5, and 0.8, and  is 0.001. 
Fig. 4 shows that the energy consumption is 
minimized by selecting an appropriate value of . 
The figure shows that the characteristic considerably 
differs depending on the value of . This is explained 
by the fact that the dimension of fitting function f(Uj) 
depends on . That is, the dimension of f(Uj) is (K–

)-th power of the percentile resource consumption. 
Thus,  should be larger for a smaller value of . 

 

 
Fig. 4 Relationship between parameter  and 
energy consumption. 

Fig. 5 displays how the number of migrations 
changes depending on . The figure shows that the 
number of migrations does not significantly change 
for  < 0.5. However, if  = 1.0, it decreases for 

 > 0.5. Moreover, if  = 0.5, the migration count 
decreases for  > 0.7. This result suggests that it 
becomes more difficult to discover the target of 
migration for these regions of . 
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Fig. 5 Relationship between parameter  and the 
number of migrations. 

The relationship between the number of 
migrations and energy consumption is plotted for 
different values of  in Fig. 6. The figure shows the 
case of  = 0.5 and  = 0.8. As expected, Fig. 6 shows 
that the value of  successfully controls the tradeoff 
between the number of migrations and energy 
consumption. By setting  = 1, the migration count 
reduces to 28% of that obtained for  = 0.001. 
Meanwhile, energy consumption for  = 1 becomes 
1.28 times larger than that for  = 0.001. Thus, by 
setting  to a larger value, the number of migrations 
can be significantly reduced by sacrificing energy 
consumption. Therefore, if the network load caused 
by migration is critical, it is recommended to set to 
a large value. 

 
Fig. 6 Relationship between the number of 
migrations and energy consumption for different 
values of parameter . 

 
 

6.2 Heuristic Algorithm vs. MIP Approach 
Fig. 7 compares the energy consumption obtained by 
the MIP approach with that obtained by the heuristic 
algorithm. For the MIP approach, the online version 
defined by (21)-(27) was used. The weight parameter 

w was set to 0.001 and 1. For a larger value of w, the 
number of migrations is more emphasized. Thus, the 
number of migrations decreases while energy 
consumption may increase for w = 1. The MIP solver 
was executed with a time limit of 1800 s. Thus, the 
solutions obtained are not strictly optimum. For the 
heuristic algorithm,  and  are 0.48 and 0.8, 
respectively, while  is 0.001.  

As Fig. 7 shows, the solution obtained by the MIP 
approach yields lower energy consumption than that 
by the heuristic. The energy consumed by the 
heuristic algorithm is 1.04 times larger than that for 
the MIP approach with w = 1.  

 
Fig. 7 Energy consumption for the MIP and 
heuristic approaches. 

In Fig. 8, the number of migrations is compared 
between the MIP and heuristic approaches. The 
figure clearly shows that the heuristic approach 
yields considerably more migrations than the MIP 
approach. The number of migrations by the heuristic 
is 1.3 times larger than that by the MIP approach with 
w = 0.001 and 1.8 times larger than that of the MIP 
approach with w = 1. As seen before, the migrations 
of the heuristic algorithm can be decreased by a larger 
value of . However, this further degrades the power 
consumption. 

 
Fig. 8 The number of migrations for the MIP and 
heuristic approaches. 
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Fig. 9 plots the number of migrations against time 
for the MIP and heuristic approaches for one of 
problems. For the MIP approach, weight w was 0.001. 
Fig. 9 shows that the number of migrations is much 
greater for the heuristic algorithm particularly when 
load quickly increases. The probable cause of this 
result is that the method may perform migration twice 
for the same VM through migrate_type1 and 
migrate_type2 when load increases. Thus, the 
number of migrations may be reduced by eliminating 
this redundancy. 

 
Fig. 9 The number of migrations vs. time for the 
MIP and heuristic approaches. 

From the above result, it is concluded that the 
heuristic algorithm presented in Section 5.1 should be 
improved. Specifically, it is necessary to reduce 
migrations while maintaining low power 
consumption. 

 
 

7 Conclusion 
This paper explored two approaches to the 

optimal VM placement problem. First, the paper 
presented the formulation of the problem to obtain a 
strictly optimal solution through an MIP approach. It 
was shown how to represent VM migration by 
equations and achieve the least power consumption 
and migration count. The paper also examined a fast, 
but approximate heuristic approach. The algorithm 
presented is based on the method proposed in the 
author’s previous work. However, a new efficiency 
metric is introduced to precisely estimate local 
optimality.  

The approaches were evaluated by computer 
simulation. As a result, it was found that the new 
efficiency metric proposed for the heuristic algorithm 
is effective to reduce power consumption by setting 
parameter values appropriately. The simulation result 
also shows that the tradeoff between power 
consumption and migration count is successfully 

controlled by parameter setting. Moreover, the 
solutions were compared for the heuristic and MIP 
approaches. The result suggests that the solution 
optimality by the heuristic approach should be 
improved by reducing migrations keeping power 
consumption at a minimum.   
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