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Abstract: The work presents an analytical solution for an axisymmetric heat conduction problem of a plate lying
on a foundation covered by an annular thermal isolator. The plate is heated by a uniform temperature field on the
opposite side over a circular region. The three-part mixed boundary value problem is reduced to a system of triple
integral equations by the Hankel integral transforms method. Instead of the Fredholm integral equations approach
method, with the help of an integral relation we develop the unknown functions into a series of Bessel functions
product. Using the Gegenbauer addition formula for the Bessel function of zero order, we reduce the formulated
problem to an infinite system of algebraic equations. Numerical results are also given for the temperature and the
flux for different regions of the plate using the Gauss hypergeomertic function proprieties.
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1 Introduction

The problem of studying the heat conduction in solids is
of interest since one encounters mechanical structures
subjected to high temperature in different practical areas.
During recent years considerable work have been done
on calculating temperature in various geometrical con-
figurations such as thick layers and infinite cylinders.
Many physical problems considering electrostatic po-
tential, heat conduction, elastostatic and thermoelastic
ones are formulated as mixed boundary values problems
Duffy [1]. The Laplace equation is a fundamental tool
in studying such problems.
The first works treating simply and doubly mixed bound-
ary value problems for the Laplace equation were pub-
lished by Dhaliwal [2] and [3]. The dual integral equa-
tions were reduced to Fredholm ones then the small
parameter method was applied for their numerical so-
lution. Later Mehta [4] gave a closed form solution in
terms of hyper-geometrical Gauss function for a layer
subjected to a flux over a circular region. The problem
for a half-space with various mixed boundary condi-
tions was solved by Lemczyk et al. [5] and [6] by us-
ing a Fourier series development for the obtained Abel
integro-differential equation. A layered medium was
also considered by these authors using the same method.
The constriction resistance problem of an isothermal

circular spot on a half-space and thick layers was consid-
ered by [7] and [8]. A numerical method was proposed
for the solution of the corresponding Fredholm integral
equation by expanding the kernel into an infinite series.

In this paper a heat conduction problem of a plate
lying on a foundation covered by an annular thermal
isolator has been considered. The used method is in-
spired on Shibuya papers dealing with crack and punch
elastic problems [9], [10] and [11] . By this approach we
reduce the triple integral equations directly to an infinite
algebraic system equations.

2 Formulation of the problem

The problem under consideration studies the axisym-
metric heat conduction problem of a plate lying on a
foundation covered by an annular thermal isolator The
crack is situated on the z = 0 plane with the inner and
outer radii a and b, respectively. It may be treated as a
thermal isolator. The heat propagation is due to a uni-
form temperature field of intensity δ prescribed over a
circular region on the bottom medium surface z = h
whereas the outer surface is maintained at a zero temper-
ature, as shown in Fig. 1.

The mathematical problem formulation of the equi-
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librium equation in a cylindrical coordinates system is
given by

∆T (r, z) =

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
T (r, z) = 0 (1)

Fig. 1. Geometry of the problem

The boundary conditions of the problem may be
written as



T (r, z)|z=h =

{
δ, r < c (a)
0, r > c (b)

∂T
∂z (r, z)

∣∣
z=0

= 0, a < r < b (c)

T (r, z)|z=0 = 0, r < a and r > b (d)
(2)

By using the Hankel transforms method, the solu-
tion of Eq. (1) is expressed as

T (r, z) =

∫ ∞
0

λ
(
A (λ) chλz

+B (λ) shλz
)
J0 (λr) dλ (3)

where A and B are functions of λ to be determined,
and J0 is the Bessel function of the first kind of order 0.

Using the non mixed boundary conditions (a) and
(b) of Eq. (2), we obtain

A(λ)ch(λh) +B(λ)sh(λh) =

∫ c

0
δrJ0(λr)dr

=
δc

λ
J1(λc)

so

A(λ) =
δc

λch(λh)
J1(λc)−B(λ)th(λh)

The temperature can be written by

T (r, z) =

∫ ∞
0

[ δc

ch(λh)
J1(λc)ch(λz)

+λB(λ)[sh(λz)

−th(λh)ch(λz)]
]
J0(λr)dλ (4)

Next, we determine the triple integral equations for
calculating the unknown function C(λ).

From the condition (c) of Eq. (2), we obtain

T (r, z)|z=0 =
δc

λch(λh)
J1(λc)−B(λ)th(λh)

Substituting in Eq. (3),we get∫ ∞
0

[
δc

ch(λh)
J1(λc)− λB(λ)th(λh)

]
J0(λr)dλ = 0

Putting now

λC(λ) =
δc

ch(λh)
J1(λc)− λB(λ)th(λh)

we get∫ ∞
0

λC(λ)J0(λr)dλ = 0 r < a and r > b (5)

On the surface z = 0 and from the condition (c) of
Eq. (2), the flux expressed by

∂T

∂z
(r, z)

∣∣∣∣
z=0

= 0 =⇒
∫ ∞
0

λ2B(λ)J0(λr)dλ = 0

and in function of C(λ), we obtain∫ ∞
0

λ2C(λ)
1

th(λh)
J0(λr)dλ =

δc

∫ ∞
0

λ

sh(λh)
J1(λc)J0(λr)dλ a < r < b (6)
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From the Eq. (5) and Eq. (6), we obtain the follow-
ing triple integral equations for determining the auxiliary
function C(λ)



∫ ∞
0

λC(λ)J0(λr)dλ = 0, r < a and r > b

∫ ∞
0

λ2C(λ)
1

th(λh)
J0(λr)dλ =

δc

∫ ∞
0

λ

sh(λh)
J1(λc)J0(λr)dλ, a < r < b

(7)

In our solution method we use the following integral
formula

∫ ∞
0

λJ0 (λr) Jn (λc) Jn (λd) dλ

=

{
0, r < a, r > b
cosnω
πcd sinω , a < r < b

(8)

where

ω = arccos
(c2 + d2 − r2

2cd

)
and

c =
b+ a

2
, d =

b− a
2

Putting Zn (λ) = Jn (λc) Jn (λd),
and taking Gn (λ) = λ (Zn−1 (λ)− Zn+1 (λ)) , we ob-
tain

∫ ∞
0

J0 (λr)Gn (λ) dλ

=

{
0, r < a, r > b
2 sinnω
πcd , a ≤ r ≤ b (9)

It easy to remark that the first equation of (7) is
automatically satisfied by choosing

λC(λ) =

∞∑
n=1

anGn(λ) (10)

Substituting Eq. (10) into Eq. (6), we obtain

∞∑
n=1

an

∫ ∞
0

λ

th(λh)
J0(λr)Gn(λ)dλ =

δc

∫ ∞
0

λ

sh(λh)
J1(λc)J0(λr)dλ a < r < b (11)

For getting the unknowns coefficients an, we use
the following Gegenbauer formula

J0 (λr) = J0 (λc) J0 (λd)

+ 2

∞∑
m=1

Jm (λc) Jm (λd) cosmω, a < r < b

(12)

Substituting Eq. (12) into Eq. (11), we obtained

∞∑
n=1

an

∫ ∞
0

λ

th(λh)
Gn(λ)Jm(λc)Jm(λd)dλ =

δc

∫ ∞
0

λ

sh(λh)
J1(λc)Jm(λc)Jm(λd)dλ (13)

Remarking that the matrix associated to this system
is not symmetric. For the simplicity of numerical treat-
ment, taking the difference between the m-th and the
(m+2)-th equations, we get the following result that has
the symmetric matrix

∞∑
n=1

an

∫ ∞
0

1

th(λh)
Gn(λ)Gm(λ)dλ =

δc

∫ ∞
0

1

sh(λh)
J1(λc)Gm(λ)dλ (14)

Finally, the unknown coefficients an are determined
by solving Eq. (14)

In a matrix form, Eq. 14 can be expressed by

∞∑
n=1

anAmn = δcBm, m = 1, 2, 3, ...

where

Amn =

∫ ∞
0

1

th(λh)
Gn(λ)Gm(λ)dλ

and
Bm =

∫ ∞
0

1

sh(λh)
J1(λc)Gm(λ)dλ
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3 Temperature and heat conduction
problem

The temperature and the flux on the interface z = 0 are
given in a closed form by using some integral relation.

On the surface z = 0, the temperature can be ex-
pressed using Eq. (9) as follows

T (r, z)|z=0 =

∫ ∞
0

λC (λ) J0 (λr) dλ

=
∞∑
n=1

an

∫ ∞
0

Gn (λ) J0 (λr) dλ

=


0, r < a, r > b

2
πcd

∞∑
n=1

an sinnϕ, a < r < b

(15)

On the surface z = 0, the flux can rewritten as
follows

∂T

∂z
(r, z)

∣∣∣∣
z=0

=
∞∑
n=1

an

∫ ∞
0

λξ (λ)

× Gn (λ) J0 (λr) dλ

−δc
∫ ∞
0

η(λ)J0 (λr) dλ

=
∞∑
n=1

an

[ ∫ ∞
0

λGn (λ) J0 (λr) dλ

−
∫ ∞
0

λ
[
1− ξ (λ)

]
Gn (λ)

× J0 (λr) dλ
]

−δc
∫ ∞
0

η(λ)J0 (λr) dλ

=

∞∑
n=1

an

∫ ∞
0

λGn (λ) J0 (λr) dλ

−
∞∑
n=1

an

∫ ∞
0

λ
[
1− ξ (λ)

]
Gn (λ)

× J0 (λr) dλ

−δc
∫ ∞
0

η(λ)J0 (λr) dλ

(16)

where
ξ (λ) =

1

th(λh)

and
η (λ) =

λ

sh(λh)
J1 (λc)

the first term of the right-hand side in Eq. 16, can
expressed by (cf. appendix.A)∫ ∞

0
λJ0 (λr)Gn(λ)dλ = −2n

cd

[
In0 + r

∂

∂r
In0

]
(17)

where

In0 =

∫ ∞
0

J0 (λr) Jn (λc) Jn (λd) dλ

Thus from Eq. 16 we get

∂T

∂z
(r, z)

∣∣∣∣
z=0

= − 2

cd

∞∑
n=1

nan

[
In0 + r

∂

∂r
In0

]

−
∞∑
n=1

an

∫ ∞
0

λe−2λh

× Gn (λ) J0 (λr) dλ

−δl
∫ ∞
0

η(λ)J0 (λr) dλ

(18)

In order to evaluate the integral in Eq. 17, we use
the following integral formula (cf. appendix. B)∫ ∞

0
Jξ (λt) Jµ (λx) Jν (λy) dλ =

Γ
(
1+σ+ν

2

)
Γ (ξ + 1) Γ (µ+ 1) Γ

(
1−σ+ν

2

) ( t
y

)ξ (x
y

)µ(1

y

)
× F

(
1 + σ − ν

2
,
1 + σ + ν

2
; ξ + 1; sin2 ϕ

)
× F

(
1 + σ − ν

2
,
1 + σ + ν

2
;µ+ 1; sin2 ψ

)
(19)

F is a hyperbolic Gauss function, ϕ and ψ are given
by

[
ψ
ϕ

]
=

1

2

[
arcsin

(
x+ t

y

)
± arcsin

(
x− t
y

)]
(20)
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We also use the relation (cf. appendix. C)

∂

∂ϕ
F
(
α, β; γ; sin2 ϕ

)
=

αβ

γ
sin 2ϕF

(
α+ 1, β + 1; γ + 1; sin2 ϕ

)
(21)

For that reason, we distinguish the two following
cases

(Case 1) (0 < r < a): replacing ξ = 0, µ = ν =
n,
x = r, y = c and t = d.
Since r < b we find

[
ψ
ϕ

]
=

1

2

[
arcsin

(
r + d

c

)
± arcsin

(
r − d
c

)]
(22)

Then we get

 ∂ψ
∂r

∂ϕ
∂r

 =
1

2

[
1√

(a− r) (b+ r)
± 1√

(b− r) (a+ r)

]
(23)

From Eq. 19, we find that

In0 =

∫ ∞
0

J0 (λr) Jn (λc) Jn (λd) dλ

=
Γ
(
n+ 1

2

)
Γ (n+ 1) Γ

(
1
2

) 1

c

(
d

c

)n
× F

(
1

2
, n+

1

2
; 1; sin2 ϕ

)
× F

(
1

2
, n+

1

2
;n+ 1; sin2 ψ

)
(24)

and

∂In0
∂r

=
Γ
(
n+ 1

2

)
Γ (n+ 1) Γ

(
1
2

) 1

c

(
d

c

)n 1 + 2n

8

×

{
sin 2ψF

(
3

2
, n+

3

2
; 2; sin2 ψ

)
× F

(
1

2
, n+

1

2
;n+ 1; sin2 ϕ

)
×

[
1√

(a− r) (b+ r)

− 1√
(b− r) (a+ r)

]

+
sin 2ϕ

(n+ 1)
F

(
3

2
, n+

3

2
;n+ 2; sin2 ϕ

)
× F

(
1

2
, n+

1

2
; 1; sin2 ψ

)
×

[
1√

(a− r) (b+ r)

+
1√

(b− r) (a+ r)

]}
(25)

(Case 2) (r > b): by setting ν = 0,
µ = ξ = n, x = c, y = r and t = d, we find

[
ψ
ϕ

]
=

1

2

[
arcsin

(
b

r

)
± arcsin

(a
r

)]
(26)

The derivative functions are given by

 ∂ψ
∂r

∂ϕ
∂r

 =
−1

2r

[
b√

r2 − b2
± a√

r2 − a2

]
(27)

The result of the desired integrals are calculated
explicitly as follows
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In0 =

∫ ∞
0

J0 (λr) Jn (λc) Jn (λd) dλ

=
(−1)n

π

[
Γ
(
n+ 1

2

)
Γ (n+ 1)

]2
1

r

(
cd

r2

)n
× F

(
n+

1

2
, n+

1

2
;n+ 1; sin2 ϕ

)
× F

(
n+

1

2
, n+

1

2
;n+ 1; sin2 ψ

)
(28)

and

∂In0
∂r

=
(−1)n+1

2π

[
Γ
(
n+ 3

2

)
Γ (n+ 1)

]2
1

n+ 1

1

r2

(
cd

r2

)n
{

4(n+ 1)

n+ 1
2

F

(
n+

1

2
, n+

1

2
;n+ 1; sin2 ϕ

)
× F

(
n+

1

2
, n+

1

2
;n+ 1; sin2 ψ

)
+ sin 2ϕF

(
n+

3

2
, n+

3

2
;n+ 2; sin2 ϕ

)
× F

(
n+

1

2
, n+

1

2
;n+ 1; sin2 ψ

)
×
[

b√
r2 − b2

− a√
r2 − a2

]
+ sin 2ψF

(
n+

1

2
, n+

1

2
;n+ 1; sin2 ϕ

)
× F

(
n+

3

2
, n+

3

2
;n+ 2; sin2 ψ

)
×
[

b√
r2 − b2

+
a√

r2 − a2

]}
(29)

4 Numerical calculations

Next, we give numerical calculations for solving the set
of the simultaneous equations Eq. (14). For this purpose,
first, we must evaluate the infinite integrals in Eq. (14)

Amn =

∫ ∞
0

1

th(λh)
Gn(λ)Gm(λ)dλ

Since the term 1
th(λh) converge to unity rapidly as

the value of λ becomes large, Amn may be expressed
approximately by the equation

Amn =

∫ λ0

0

1

th(λh)
Gn(λ)Gm(λ)dλ+A′mn

where λ0 = 1500, and A′mn is expressed by the
equation

A′mn =

∫ ∞
λ0

Gn(λ)Gm(λ)dλ

The first integral of Amn is calculated numerically
by the Simpson’s rule.

Using the integration by parts and introducing the
integral sine and cosine functions, we can obtain the
approximate formula for A′mn (cf. appendix.D)

A′mn =

∫ ∞
λ0

Gm (λ)Gn (λ) dλ

' 4mn

π2 (cd)3

[
a2
(sin2 λ0a

λ0
− a si (2λ0a)

)
+ (−1)m+n b2

(cos2 λ0a

λ0
+ b si (2λ0b)

)
− [(−1)m + (−1)n] ab

(sinλ0a cosλ0b

λ0

−c ci (2λ0c) + d ci (2λ0d)
)]

(30)

Where

si (x) = −
∫ ∞
x

sin t

t
dt

and
ci (x) = −

∫ ∞
x

cos t

t
dt

We have also

Bm =

∫ ∞
0

1

sh(λh)
J1(λc)Gm(λ)dλ

Since the term 1
sh(λh)J1(λc) converge rapidly to

zero as the value of λ becomes large, Bm may be ex-
pressed by the equation

Bm =

∫ λ0

0

1

sh(λh)
J1(λc)Gm(λ)dλ, m = 1, 2, 3, ...
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5 Numerical results

We obtain the values of the coefficients an in terms of
the ratio (H = h/a), by choosing λ0 = 1500. The nu-
merical results of an are given in tables 1-3, for different
values of a/b.

(a/b = 0.25)
H = 0.5 H = 2 H = 5

2.371679310824958 0.343372334094965 0.104827901994758
1.508130681397395 0.190802879858602 0.037072202762871
0.758301068986590 0.076302067359153 0.013634494388821
0.268689772806665 0.028672192046544 0.005748877682817
0.083849475375852 0.012122717797783 0.002670271879081
0.059048077985122 0.005924286716950 0.001311499959137
0.054875177733002 0.003082564493935 0.000665561015023
0.031873688316213 0.001611065311746 0.000343489944993
0.007920726843701 0.000823065528887 0.000175589697838
-0.001300889057132 0.000376476743483 0.000080707935720

Table 1. The coefficients with H

(a/b = 0.5)
H = 0.5 H = 2 H = 5

0.095437486472127 0.023952911732979 0.004013488166229
0.051070554585159 0.005685871177039 0.000642143084823
0.012494608140570 0.001184598622265 0.000128877407387
0.000496371866156 0.000266396125642 0.000030715177399
-0.000361762409437 0.000066959265129 0.000008002236949
0.000110433045478 0.000018140565689 0.000002195226532
0.000121738120850 0.000005089497741 0.000000616880379
0.000023567469967 0.000001503722676 0.000000185757105
-0.000006962832870 0.000000368582772 0.000000040981389
-0.000002886299649 0.000000210920648 0.000000033382432

Table 2. The coefficients an with H

(a/b = 0.75)
H = 0.5 H = 2 H = 5

0.010928126394834 0.001811571980819 0.0002364009719648
0.002135525945182 0.000163138710274 0.0000149578911645
0.000202603731088 0.000014226586636 0.0000012880576339
0.000004578572575 0.000001399517562 0.0000001325523842
-0.000000615036062 0.000000136122883 0.0000000126447772
0.000000186074559 0.000000026331492 0.0000000029884951
-0.000000300626002 -0.000000058921800 -0.0000000078584592
0.000000066869413 0.000000026696734 0.0000000040170233
-0.000000922948882 -0.000000161138742 -0.0000000213218373
0.000000265457692 0.000000088563288 0.0000000130718140

Table 3. The coefficients an with H

Note that the convergence of coefficients an
becomes slow with the decreasing the parameter
thickness H .

Having calculated the unknowns coefficients an, we
obtain numerical values for the temperature and the heat
flow.
The corresponding plots are shown in the figures 2-8
and given in function of ρ = r/a, for various values of

ξ = z/h. As the graphs have nearly the same behaviour
for the different values of a/b, we choose the case a/b =
0.5.

Fig. 2.Distribution of the temperature

Fig. 2 shows the variations of temperature with
R for various values of ξ = z/h. The temperature
decrease in r < a (R < 1) and very rapidly in r ≥ a
(R ≥ 1), then tends to zero as the value of R becomes
large. In the same figure, as the increasing of ξ, T
decreases.

In Fig. 3, we show the variations of temperature
with R for various small values of ξ (ξ approaches to
0). The temperature decreases in r < a (R < 1) but
increases and tends Tmax in a ≤ r ≤ b (1 ≤ R ≤ 2),
and tends to zero as the value of R becomes large
(R > 2). In the same figure, we plot the variation of
temperature between a and b, at ξ = 0 using Eq. (15)
. As the increasing of ξ, T increases and tends Tmax,
but comeback to zero when R = 2 making a hyperbolic
curve.
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Fig. 3.Distribution of the temperature

Fig. 4.Distribution of the temperature

Fig. 5.Distribution of the flux

Fig. 4 shows the variations of temperature with R
for various values of H . the temperature decrease in
r < a (R < 1) and very rapidly in r ≥ a (R ≥ 1), then
tends to zero as the value of R becomes large. In the
same figure, as the increasing of H , T/δ decreases.

Fig. 5 shows the variations of flux with R for
various values of ξ. the flux decrease in r < a (R < 1)
and very rapidly in r ≥ a (R ≥ 1), and tends to zero as
the value of R becomes large. In the same figure, as the
increasing of ξ, q decreases.

In Fig. 6, we show the variations of flux with R
for various small values of ξ (ξ approaches to 0). The
flux decreases in r < a (R < 1) and rapidly between
a and b, and tends to zero as the value of R becomes
large (R > 2). In the same figure, we plot the variation
of flux in r < a and r > b, at ξ = 0 using Eq. 16 (the
ones with dashed lines are obtained from the analytical
formulas). When r < a, q/k decreases but increases
rapidly when r close to a, and tends to infinity when
R = 1 and R = 2, whereas q/k decreases and tends to
zero when R becomes large (R > 2).
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Fig. 6.Distribution of the flux

Fig. 7.Distribution of the flux

Fig. 7 shows the variations of flux with R for var-
ious values of H . the flux decrease in r < a (R < 1)
and very rapidly in r ≥ a (R ≥ 1), then tends to zero
as the value of R becomes large. In the same figure, as
the increasing of H , q/k decreases.

Fig. 8.Distribution of the temperature and the flux

Fig. 8 shows the variations of temperature and flux
at ξ = 0 with R.
We can note the good agreement between the values
obtained numerically and analytically.

6 Conclusion

Instead of the traditional method of reducing the triple
integral equations to a system of Fredholm integral equa-
tion, we get directly an infinite system of algebraic equa-
tions for determining the unknown function. The ob-
tained results are compatible with the physical meaning
of the problem. Whereas, the approximate temperature
and flux values converge to the exact analytical ones on
the interface of the medium.
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Appendix

A. Evaluation of the integral∫ ∞
0

λJ0 (λr)Gn(λ)dλ

Using the following proprieties of the Bessel func-
tion Jn

J ′n (x) =
1

2
[Jn−1 (x)− Jn+1 (x)] (31)

Jn (x) =
x

2n
[Jn−1 (x) + Jn+1 (x)] (32)

We find that

d

dλ
Zn (λ) = c

d

d(λc)
Jn (λc) Jn (λd)

+d
d

d(λd)
Jn (λc) Jn (λd)

=
cd

2n
Gn (λ)

Thus we get

Gn (λ) =
2n

cd

d

dλ
Zn (λ) (33)

By integrating by parts, and using the following
formulas

λ
∂

∂λ
J0 (λr) = λr

∂

∂λr
J0 (λr) = r

∂

∂r
J0 (λr) (34)

λJ0 (λr)Zn (λ)|∞0 = 0, J0 (0) = 1 (35)

we obtain

∫ ∞
0

λJ0 (λr)Gn(λ)dλ = −2n

cd

[ ∫ ∞
0

J0 (λr)

× Jn (λc) Jn (λd) dλ

+r
∂

∂r

∫ ∞
0

J0 (λr)

× Jn (λc) Jn (λd) dλ
]

= −2n

cd

[
In0 + r

∂

∂r
In0

]
(36)

where

In0 =

∫ ∞
0

J0 (λr) Jn (λc) Jn (λd) dλ
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B. verification of the relation (19)

Next, we use the following integral formula [12]

∫ ∞
0

Jξ (λt) Jµ (λx) Jν (λy) dλ =

tξxµΓ
(
ξ+µ+ν+1

2

)
yξ+µ+1Γ (ξ + 1) Γ (µ+ 1) Γ

(
1−ξ−µ+ν

2

)
×F4

(
ξ + µ− ν + 1

2
,
ξ + µ+ ν + 1

2
; ξ + 1,

µ+ 1;
t2

y2
,
x2

y2

)
(37)

for

[Re (ξ + µ+ ν) > −1, t, x > 0, y > t+ x]

where F4 is the Apell function given by

F4

(
α, β, γ, γ′;x, y

)
=

∞∑
m=0

∞∑
n=0

(α)m+n (β)m+n

(γ)m (γ′)n

xm

m!

yn

n!
(38)

where

[ ∣∣√x∣∣+ |√y| < 1
]

It verifies the relation

F4

(
α, γ + γ′ − α− 1, γ, γ′;x(1− y),

y(1− x)
)

= F (α, γ + γ′ − α− 1; γ;x)

F
(
α, γ + γ′ − α− 1; γ′; y

)
where F is the Gauss hyper-geometric function

F (α, β; γ;x) =

∞∑
n=0

(α)n (β)n
(γ)n

xn

n!
(39)

where

(α)n =
Γ (α+ n)

Γ (α)

In order to express F4 in terms of F , we put a)

 α = ξ+µ−ν+1
2

γ = ξ + 1
γ′ = µ+ 1

then

γ + γ′ − α− 1 = ξ + µ+ 1− ξ + µ− ν + 1

2

=
ξ + µ+ ν + 1

2

b) choosing

{
t2

y2
= α0 (1− β0)

x2

y2
= β0 (1− α0)

where α0 and β0 are to be calculated.

Putting t = y sinϕ cosψ,
x = y cosϕ sinψ; 0 < ϕ, ψ < π

2 , then{
t2

y2
= sin2 ϕ cos2 ψ = sin2 ϕ

(
1− sin2 ψ

)
x2

y2
= sin2 ψ

(
1− sin2 ϕ

)
Next, we put

x+ t

y
= sin (ψ + ϕ) ,

x− t
y

= sin (ψ − ϕ)

i.e

ψ+ϕ = arcsin

(
x+ t

y

)
, ψ−ϕ = arcsin

(
x− t
y

)
Then, we obtain ψ

ϕ

 =
1

2

[
arcsin

(
x+ t

y

)
± arcsin

(
x− t
y

)]

Finally replacing σ by ξ + µ, the relation (37) can
be written as∫ ∞

0
Jξ (λt) Jµ (λx) Jν (λy) dλ =

Γ
(
1+σ+ν

2

)
Γ (ξ + 1) Γ (µ+ 1) Γ

(
1−σ+ν

2

) ( t
y

)ξ (x
y

)µ(1

y

)
× F

(
1 + σ − ν

2
,
1 + σ + ν

2
; ξ + 1; sin2 ϕ

)
× F

(
1 + σ − ν

2
,
1 + σ + ν

2
;µ+ 1; sin2 ψ

)
(40)
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C. How to obtain the relation (21)

Using the following formulas

Γ (α+ 1) = αΓ (α)

∂

∂ϕ
sin2n ϕ = 2n cosϕ sin2n−1 ϕ = n sin 2ϕ sin2n−2 ϕ

it is easy to find that

∂

∂ϕ
F
(
α, β; γ; sin2 ϕ

)
=

Γ (γ)

Γ (α) Γ (β)
sin 2ϕ

∞∑
n=1

(
Γ (α+ n) Γ (β + n)

Γ (γ + n)

×
(
sin2 ϕ

)n−1
(n− 1)!

)

=
Γ (γ)

Γ (α) Γ (β)
sin 2ϕ

∞∑
n=0

(
Γ (α+ 1 + n)

Γ (γ + 1 + n)

× Γ(β + 1 + n)

×
(
sin2 ϕ

)n
n!

)

=
αβ

γ
sin 2ϕ

× F
(
α+ 1, β + 1; γ + 1;

sin2 ϕ
)

(41)

D. The approximation formula of A′mn ex-
pressed in Eq. (30)

the integrand function is given by

Gm (λ)Gn (λ) =

λ2
[
Jm−1 (λc) Jm−1 (λd)− Jm+1 (λc) Jm+1 (λd)

]
×
[
Jn−1 (λc) Jn−1 (λd)− Jn+1 (λc) Jn+1 (λd)

]
For the large values of x, the approximate function

of Jn is [12]

Jn (x) =

√
2

πx

[
cos
(
x− (2n+ 1)

π

4

)
−

(
4n2 − 1

8x

× sin
(
x− (2n+ 1)

π

4

))
+O

(
1

x2

)]

Then, we get

Jn (x) Jn (y) =
2

π
√
xy

{[
cos
(
x− (2n+ 1)

π

4

)
−4n2 − 1

8x
sin
(
x− (2n+ 1)

π

4

)]
[

cos
(
y − (2n+ 1)

π

4

)
− 4n2 − 1

8y

× sin
(
y − (2n+ 1)

π

4

)]

+O

(
1

(xy)2

)}

=
1

π
√
xy

{
cos (x− y)

+ cos
(
x+ y − (2n+ 1)

π

2

)
−4n2 − 1

8

[
1

x

[
sin (x− y)

+ sin
(
x+ y − (2n+ 1)

π

2

) ]]
+

1

y

[
sin (y − x) + sin

(
x+ y

− (2n+ 1)
π

2

)]
+O

(
1

(xy)2

)}

We can find easily that
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Jm−1 (x) Jm−1 (y)− Jm+1 (x) Jm+1 (y)

=
1

π
√
xy

{[
4 (m+ 1)2 − 1

8
− 4 (m− 1)2 − 1

8

]

× 1

xy

[
(y − x) sin (x− y)

+ (−1)m (x+ y) cos (x+ y)

]
+O

(
1

(xy)2

)}
=

2m

π (xy)
3
2

[
− (x− y) sin (x− y)

+ (−1)m (x+ y) cos (x+ y)
]

+O

(
1

(xy)2

)

The approximate value of the function is

Gm (λ)Gn (λ) =
4mn

π2 (cd)3
1

λ2

{
a2 sin2 (λa)

+ (−1)m+n b2 cos2 (λb)

−
[

(−1)m + (−1)n
]
ab

× sinλa cosλb
}

+O

(
1

λ3

)

Then the integral A′mn can be expressed by

A′mn =

∫ ∞
λ0

Gm (λ)Gn (λ) dλ

' 4mn

π2 (cd)3

∫ ∞
λ0

1

λ2

{
a2 sin2 (λa)

+ (−1)m+n b2 cos2 (λb)

− [(−1)m + (−1)n] ab sinλa cosλb
}
dλ

Finally, we obtain

A′mn =

∫ ∞
λ0

Gm (λ)Gn (λ) dλ

' 4mn

π2 (cd)3

[
a2
(

sin2 λ0a

λ0
− a si (2λ0a)

)
+ (−1)m+n b2

(
cos2 λ0b

λ0
+ b si (2λ0b)

)
− [(−1)m + (−1)n] ab

(
sinλ0a cosλ0b

λ0

−c ci (2λ0c) + d ci (2λ0d)

)]

where we used the values of the following integrals:

∫ ∞
λ0

2 sin2 λa dλ =
2 sin 2λ0a

λ0
− 2a si (2λ0a)

we have also∫ ∞
λ0

2 cos2 λb dλ =
2 cos 2λ0b

λ0
+ 2b si (2λ0b)

and

∫ ∞
λ0

2 sinλa cosλb dλ =
1

λ0
sinλ0a cosλ0b

−c ci (2λ0c) + d ci (2λ0d)
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