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Abstract: - In 2006 Chen and Hwang gave a necessary and sufficient condition under which a three-stage Clos 
network is rearrangeable for broadcast connections. Assuming that only crossbars of the first stage have no fan-
out property, we give similar conditions for f-cast Clos networks, where f is an arbitrary but fixed invariant of 
the network. Such assumptions are valid for some practical switching systems, e.g. high-speed crossconnects. 
We also recognize the complexity status for a related routing problem. In our considerations we introduce the 
hypergraph edge coloring model, which is a suitable mathematical idealization for the three-stage Clos 
networks.  
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1 Introduction 
Rearrangeable switching networks are of prac-tical 
interest since they can be operated as non-blocking 
networks. Rearrangeability expresses a limiting 
effectiveness of crosspoint usage in switching 
systems. 

Three-stage interconnection networks of this 
type are constructed as follows: 
• The first (input) stage consists of r1 crossbars 

(switches) each with n1 inlets and m outlets. We 
say that such a crossbar is of size n1 x m. 

• The second (middle) stage consists of m 
crossbars each of size r1 x r2. 

• The third (output) stage consists of r2 crossbars 
each of size m x n2. 

• There exists exactly one link between each 
middle crossbar and each input and output 
crossbar. 

A three-stage Clos network C(n1,r1,m,n2,r2) is 
shown in Fig. 1. The inlets of the first stage (input) 
crossbars are the inputs of the network, and the 
outlets of the third stage (output) crossbars are the 
outputs of the network. In the multicast traffic 
network an input can appear in a request more than 
once. If this appearance is restricted to at most f 
times, the traffic is called an f-cast traffic or 
simply1:f traffic. A crossbar is said to have the 1:f 
property if the crossbar itself can route f-cast traffic 
without blocking, i.e., any idle inlet can be 

connected to any set of f or fewer idle outlets 
regardless of other connections.  

In the following our basic notation and 
terminology follows that of Hwang [3]. 

 

  
Fig. 1. C(n1,r1,m,n2,r2) 
 
In this paper we consider Clos networks without 

input stage fan-out, i.e., operating under the so-
called model 1 [2]. The first attempt to estimate the 
number of middle switches (often denoted by m) in 
such rearrangeable networks has been done by 
Jajszczyk [4]. However, he underestimated the value 
of m which is necessary in the networks. The first 
theoretical result concerning broadcast networks 
operating under model 1 is due to Kirkpatrick, 
Klawe, and Pippenger [5]. They gave a sufficient 
condition and also a necessary condition which 
differs from the sufficient condition by a factor of 2. 
Chen and Hwang [2] tightened their conditions. 
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More precisely, they formulated a necessary and 
sufficient condition for m which is valid for all 
rearrangeable broadcast networks of Clos type. 
Their formula holds tight also for f-cast Clos 
networks C(n1,r1,m,n2,r2), provided that f ≥ (2r2)1/2 
− 1. Clearly, broadcast networks could be used as f-
cast networks, however, the crosspoint usage in this 
case would be wasteful. 

In what follows we give a new formula on the 
number m in C(n1,r1,m,n2,r2) to be f-cast re-
arrangeable. For this reason we introduce a 
mathematical model of a state of C(n1,r1,m,n2,r2), 
namely a hypergraphs coloring, which allows to 
estimate the value of m on one hand, and to control 
the multicast Clos networks, on the other. We show 
that this formula is tight in the worst case. Finally, 
we conclude with some remarks on the complexity 
of control algorithms for rearranging f-cast Clos 
networks in a tabular form. 
 
 
2 Bipartite hypergraphs 
Hypergraph H is a pair (V,E) in which V represents 
a set of vertices and E is a multiset of hyperedges 
(or simply edges), where an edge e∈E is a 
nonempty subset of the vertex set. We say that edge 
e and vertex v are incident if v ∈ e. Two edges that 
have a vertex in common are said to be adjacent. 
The cardinality |e| of edge e is called the dimension 
of e. The maximum dimension of an edge in 
hypergraph H is denoted by ψ(H). A hypergraph is 
d-uniform if each edge is of cardinality d. The 
number of edges to which vertex v belongs is its 
vertex degree deg(v). By hypergraph degree Δ(H) 
we mean the maximum degree among all vertices in 
H.  
   An edge k-coloring of a hypergraph H is a 
function c:E→{1,2,...,k} such that for any two edges 
e, f ∈ E, e ∩ f ≠ ∅ we have c(e) ≠ c(f). In other 
words k-coloring is an assignment of k colors to the 
edges such that the edges that share a vertex get 
different colors. We say that a coloring c is optimal 
if it uses the minimum number of colors. Such a 
minimum number of colors is called the chromatic 
index χ'(H).  
   For a hypergraph H, the line graph L(H) is a 
simple graph representing adjacency between 
hyperedges in H. More precisely, each hyperedge of 
H is assigned a vertex in L(H) and two vertices in 
L(H) are adjacent if and only if their corresponding 
hyperedges in H have a vertex in common. It is easy 
to notice that an edge-coloring of a hypergraph H is 
equivalent to vertex coloring of its line graph L(H). 

   A hypergraph H is said to be bipartite, if there 
exists a subset of its vertices such that each edge 
shares exactly one vertex with this set. We will call 
this set the first (input) partition of H. The 
remaining vertices are called the second (output) 
partition. For the input partition we define the input 
degree Δi(H) that represents maximum degree of 
vertex in the first partition. The output degree Δo(H) 
is defined analogously. 
 
 
3 Hypergraphs and Clos networks 
Edge coloring problem for bipartite hypergraphs can 
be used to model Clos networks control. The 
crossbars from the input stage can be associated 
with vertices of the first partition, and the crossbars 
from the output stage one can associate with vertices 
of the second partition. Requests (calls) are 
represented by hyperedges. Note that each request 
involves one crossbar from the first stage and at 
most f crossbars from the third stage, hence each 
edge is spanned on exactly one vertex from the first 
partition and a number of vertices from the second 
partition. Moreover, for such a hypergraph we have 
ψ(H) ≤ 1+f. If all the calls are of type 1:f then the 
corresponding hypergraph is (1+f)-uniform. 

The edge coloring problem allows to operate 
Clos networks since middle-stage crossbars can be 
identified with colors. Hence edge coloring decides 
which middle crossbars should be assigned to the 
requests. Finally, as long as hypergraphs that need 
maximum number of colors are considered, the 
model allows to estimate the number of middle 
crossbars necessary and sufficient for a Clos 
network to be f-cast rearrangeable. For this reason 
we assume that each call in the network is of type 
1:f. This situation is shown in Figs. 2 and 3 for 
example, where f = 3. 
 
 
4 Bounds on the number of middle 
stage crossbars 
Proper configuration of the middle stage crossbars is 
essential in the process of designing of re-
arrangeable Clos networks. 

An upper bound on the chromatic index can be 
expressed as follows: 

 
χ’(H)  ≤  Δi(H) + (Δo(H) − 1) (ψ(H) − 1) (1) 
 
To justify this inequality it is enough to observe 

that the maximum number of possible neighbors of 
any hyperedge is Δi(H) – 1 + (ψ(H) − 1)(Δo(H) − 1) 

Recent Advances on Systems, Signals, Control, Communications and Computers

ISBN: 978-1-61804-355-9 52



 

 

since an edge meets at most Δi(H) − 1 neighbors on 
vertices from the first partition and (ψ(H) − 
1)(Δo(H) − 1) neighbors on vertices from the second 
partition. Assuming that in the worst case all the 
neighbors have pairwise different colors there must 
be one more color for the considered edge.  

 

 
 
Fig. 2. Clos network C(3,3,8,3,9) with 8 calls. 

Call (c, x, y, z) is blocked, hence the 9-th middle 
crossbar is needed. 

 
In relation with Clos networks the restriction on 

Δi  may stand for the maximal number of calls from 
a single crossbar of the first stage. Similarly Δo 
restricts the number of calls leaving any crossbar of 
the third stage. Therefore, inequality (1) may be 
expressed in terms of Clos network parameters in 
the following manner: 

  
 m  ≤  n1 +  (n2 − 1) f (2) 
 
The upper bound in (1) is sharp. Fig. 3 presents a 

nontrivial hypergraph H which follows from the 
blocking state of Clos network of Fig. 2. Each of the 
nine edges is depicted as a quadruple of vertices 
joined by a unique line. We have here  Δi(H) = 3, 
Δo(H) = 3, ψ(H) = 4, and χ’(H) = 9. This hypergraph 
can be thought of as the first in an infinite series of 
hypergraphs for which bound (1) holds with 
equality. 

Bound (1) is also tight for infinitely many values 
of ψ(H). In fact, for each odd integer d there is a d-

uniform bipartite hypergraph H of degree Δ(H) = 2, 
for which bound (1) holds with equality. An 
example of such a hypergraph with ψ(H) = 5 is 
shown in Fig. 4. In terms of Clos network 
parameters, the above statement means that for each 
even value of f there is a rearrangeable Clos network 

 

 
 
Fig. 3. Bipartite hypergraph that represents the 

calls and their incidences appearing in Clos network 
from Fig. 2. 

 
C(n1,r1,m,n2,r2) such that bound (2) holds sharp. For 
example, the corresponding Clos network for 
hypergraph of Fig. 4 is C(2,3,6,2,12). 

 

 
 
Fig. 4. Bipartite hypergraph with Δi(H) = Δo(H) 

= 2 and ψ(H) = 5 for which bound (1) is tight. 
 

5 Complexity status for Clos networks 
control 
In [6] we have investigated the complexity status for 
the operation of 2-cast Clos networks. Table 1 
collects the results for various input and output 
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degrees that may be directly transferred to Clos 
networks with f = 2. 
 
Table 1. The complexity of edge coloring depending 
on the in- and out-degrees for f = 2. 

 n1 = 1 n1 = 2 n1 ≥ 3 
n2 = 1 trivial linear linear 
n2 = 2 linear linear NP-hard 
n2 ≥ 3 NP-hard NP-hard NP-hard 

 
   Let us comment briefly on the case of n1 = n2 = 2. 
In this case the line graph of such a bipartite 
hypergraph is of degree at most 3. If such a line 
graph is K4-free then, in virtue of Brooks' theorem 
[1], it has a vertex-coloring with 3 colors which can 
be found in linear time. Since such a coloring is 
equivalent to 3-coloring the edges of H, it follows 
that there exists an efficient algorithm for 
rearranging 2-cast Clos networks C(21,r1,3,2,r2), 
unless L(H) contains K4. If n2 = 1 then the line graph 
L(H) is a collection of at most r1 complete graphs 
each of size at most n1. If, however, n1 = 1 and n2 = 
2 then L(H) is a collection of paths and cycles. Of 
course, Clos networks C(n1,r1,m,n2,r2) with n1 = 1 or 
n2 = 1 have no practical significance. 
   Below we give a similar complexity table for f = 
3. Notice the difference in the middle of the table 
(i.e. for n1 = n2 = 2). This is so because L(H) is no 
longer of degree 3 and, consequently, the previous 
linear coloring algorithm does not work. Also, note 
that if n1 = 1, n2 = 2, the corresponding line graphs 
are of degree 3, which implies linear solvability in 
this case. 
 
Table 2. The complexity of edge coloring depending 
on the in- and out-degrees for f = 3. 

 n1 = 1 n1 = 2 n1 ≥ 3 
n2 = 1 trivial linear linear 
n2 = 2 linear NP-hard NP-hard 
n2 ≥ 3 NP-hard NP-hard NP-hard 

 
   The last Table 3 gives the complexity status of 
control algorithms for f-cast Clos networks, where f 
≥ 4. Notice the difference for n1 = 1, n2 = 2. The NP-
hardness of this case follows from the fact that L(H) 
is no longer of degree 3. 
 
Table 3. The complexity of edge coloring depending 
on the in- and out-degrees for f ≥4. 

 n1 = 1 n1 = 2 n1 ≥ 3 
n2 = 1 trivial linear linear 
n2 = 2 NP-hard NP-hard NP-hard 
n2 ≥ 3 NP-hard NP-hard NP-hard 

 

 
6 Conclusions 
We have introduced a bound for the number of 
middle stage crossbars and showed that the bound is 
tight. However, we believe that some further steps 
could be done towards enhancing it. In the last 
section we have discussed the complexity status for 
Clos networks control. This is just a preliminary 
sketch and we are going to expand this topic in 
further publications. 
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