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1 Introduction 
The term ``histogram'' was coined by the famous 
statistician Karl Pearson to refer to a ``common 
form of graphical representation'' [1]. Histograms 
are very useful in their canonical visual 
representation, but today histograms are considered 
as purely mathematical objects.  
   Histograms are used in different scientific fields. 
Besides physics data analyses, histograms play a 
very important role in databases, image processing, 
computer vision [1]. Correspondingly, goals and 
methods of the treatment of histograms are varied in 
dependence to the area of application. In this paper 
histograms are considered in frame of tasks related 
to physical experiments.  
 

2 Histogram  
Let us call the appearance of the realization of the 
random variable (or random variables) as the event. 
Suppose, there is given a set of non-overlapping 
intervals.  A histogram represents the frequency 
distribution of data which populates those intervals. 
This distribution is obtained during data processing 
of the sample taken from the flow of events. These 
intervals usually are called as bins.  
   The filling procedure of a histogram influences the 
analysis of histogram. There are two extreme cases. 
The first case: one event produces one histogram. 
For example, the distribution of brightness in a 
photo is a result of data processing of one event. 
Here one sample consists from one event and one 
event is one photo.  
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   The second case: one event is one measurement of 
random variable and resulting value is put to 
histogram. The filling of the histogram is a chain of 
independent measurements with gradual filling of 
the histogram. The second case is used, usually, in 
physical experimental researches for data 
processing. Correspondingly, the content of the bin 
is called the number of events in the bin, the sum of 
contents of bins in histogram is a volume of the 
histogram.  
   Common issues of are in construction of 
histograms, for example,  the choice of optimal 
binning and the choice of the model for distribution  
of errors for observed values in the bins.  
 
2 Comparison of Histograms  
Given two histograms, how do we assess whether 
they are similar or not? What does it means 
"similar"? Several standard procedures exist for this 
task.  
   Suppose, a reference histogram is known. Usually, 
the proximity of test histogram and reference 
histogram is measured via a test statistic, that 
provides the quantitative expression of the 
``distance'' between histograms [2]. The smaller the 
distance the more similar they are.   
2.1  ``Distance'' between histograms 
   There are several definitions of  distance in   the 
literature, for example,  the Kolmogorov distance 
[3], the Kullback-Leibner [4] distance, the total 
variation distance [5], the chi-square distance [6] 
and so on. Usually, it is the some test statistics, 
distribution of which can be calculated via formulae 
or constructed by Monte Carlo method. Other  
approach is  based on the    fact   that a histogram    
of    a measurement provides the basis for an 
empirical estimate of the probability density 
function (pdf) [7]. Computing the distance between 
two pdfs can be regarded as the same as computing 
the Bayes (or minimum misclassification) 
probability. This is equivalent to measuring the 
overlap between two pdfs as the distance. 
Sometimes, the Bhattacharyya distance [8] (or 
Hellinger distance [9]) is used as the distance 
between two pdfs. Note, that the Kolmogorov 
distance [3], the Anderson-Darling distance [10], the 
Kullback-Leibner distance [4] also allow to compare 
samples of events without their presentation in form 
of histograms. Recently, the test based on the 
maximum mean discrepancy (MMD) [11] was 
appeared. The important approach for comparison 
of histograms is tests based on ranks and/or 
permutations (Mann-Whitney [12], …). In the 
vector approach, a histogram is treated as a fixed-

dimensional vector. Hence standard vector norms 
such as city block, Euclidean or intersection can be 
used as distance measures [13]. Similarity measures 
can be used in the comparing histograms.  For  
example, the method of modulo similarity [14] is 
based on Lukasiewicz logic [15].  
 
2.2 Testing of consistency of histograms or 
distinguishability of  histograms 
Also, a goal of histogram comparison is a testing of 
their consistency [16] or vice versa of their 
distinguishability [17]. Consistency here is the 
statement that both histograms are produced during 
data processing of independent samples which are 
taken from the same flow of events (or from the 
same population of events). In paper [18] is 
proposed approach which allows to estimate the 
distinguishability of histograms and, 
correspondingly, the distinguishability of parent 
events flows. The method is based on the statistical 
comparison of histograms. The multidimensional 
test statistic is used as a distance between 
histograms. The modification [19] of this method is 
used for the detection of the changing of parameters 
in the context of wireless transmission. 
   If the goal of the comparison of histograms is the 
check of their consistency, then task is reduced to 
hypotheses testing: main hypothesis H0 (histograms 
are produced during data processing of samples 
taken from the same flow of events) against  
alternative hypothesis H1 (histograms are produced 
during data processing of samples taken from 
different flows of events). In principle, the choice 
between main and alternative hypothesis depends on 
the task. The determination of critical area allows to 
estimate Type I error (α) and Type II error (β) in 
decision about choice between H0 and H1. The 
Type I error is a probability of mistake if done 
choice is H1, but H0 is true. The Type II error is a 
probability of mistake if done choice is H0, but H1 
is true. The selection of a significance level (α) 
allows to estimate the power of the test (1-β). 
Usually, values of significance level are 10%, 5%, 
1%. If both hypotheses are equivalent, then other 
combinations of the α and β are used. For example, 
in task about distinguishability of the flows of 
events works a relative uncertainty (α+β)/(2-(α+β)) 
[20]. Under the test of equal tails [21] the mean 
error (α+β)/2 can be used. 
 
2.3 Other goals of comparison of histograms 
Many other goals of comparison of histograms exist.  
   For example, the search for anomalous  structures 
in test histogram in comparison with reference 
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histogram is a very important task in particle 
physics. Possible solution is the comparison of the 
contents of two histograms, bin by bin. In this case 
the probability that both bins were produced from a 
distribution with the same mean is calculated. 
   Also, the method for sorting events of 
multiparticle production according to the anisotropy 
of their momentum distribution by the use of 
histograms is presented in paper [22].  
 
2.4 Comparison of normalization and 
comparison of shape  
The histograms comparison can usually be 
decomposed into comparison of normalization and 
comparison of shape. Sometimes the normalization 
and the shape are not independent, so the 
decomposition till works but it becomes more 
difficult to come up with a meaningful combination 
of the two tests. In the simplest case, normalization 
can be estimated by common suppositions. It may 
be the ratio of the volumes of samples corrected due 
to any additional knowledge (for example, 
efficiencies of registration of events). It may be the 
ratio of times for gathering samples and so on. A 
vast amount of statistical literature is devoted to the 
theme of shape comparisons (see, for example, 
[23]).  
 
2.5 “Rehistogramming” 
The hypotheses testing require the knowledge of the 
distribution of test statistics. As mentioned above 
the distribution of test statistics can be constructed 
by Monte Carlo. Let us consider the simple case of 
the filling of histograms - event-by-event in frame 
of the method of statistical comparison of 
histograms [18,17]. The number of events in each 
bin of histogram can be considered as a realization 
(observed value) of the random variable with 
parameter “the expected number of events in given 
bin of histogram for given sample”. The knowledge 
of uncertainty of the observed value in the case of 
statistically dual distributions [24] allows to 
describe the uncertainty of the corresponding value 
of parameter. If we work with Poisson flows of 
events, then uncertainty of the parameter obeys the 
gamma distribution. If we work with Gaussian 
approximation, then the distribution of uncertainty 
obeys the normal distribution. As a result we can use 
the Monte Carlo method for construction of two 
imitation models of the possible histograms sets. 
These two sets of histograms imitate the two general 
populations (two models) which provided us two 
histograms for comparison. This procedure can be 
named as "rehistogramming" , similar to 
"resampling" in bootstrap technique [25]. The first 

imitation population (the first set of histograms) is 
used for construction of the distribution of test 
statistics for the case of H0 hypothesis. The second 
imitation population (the second set of histograms) 
is used for construction of the distribution of test 
statistics for the case of H1 hypothesis. The 
comparison of these distributions allows to estimate 
the uncertainty in the hypotheses testing [18, 17]. 
The similar approaches for histograms comparison 
is described in papers [26, 27] too.  
 
2.6 “Significance of the difference” 
The convenient characteristic for comparison of 
histograms is a distribution of the “significances of 
the difference”. The “significance of the difference” 
is calculated for corresponding pairs of bins of the 
comparing histograms. The choice of type of 
“significance of the difference” depends on the task 
[28]. If the comparing histograms are taken from the 
same population of histograms (or the 
corresponding samples are taken from the same 
flow of events), the distribution of “significances of 
the difference” is close to standard normal 
distribution.  
 
2.7 Multidimensional comparison  
As mentioned above, the method of statistical 
comparison of histograms [18, 17] is a 
multidimensional method. It allows to include any 
one-dimensional test statistic as an additional 
component of multidimensional test statistic in the 
frame of the method. For example, the including of 
the Anderson-Darling test statistic into this method 
as additional component of the multidimensional 
test statistic allows to improve the distinguishability 
of histograms. 
 
3 Conclusion 
Possible approaches for the comparative analysis of 
histogram are considered. As shown, there is no 
single best test for all applications. It means that 
before application any test must be checked with 
care.  

   As a good solution of the problem with the 
comparison of histograms for the distinguishing of 
flows of events under studing we propose a 
combined use of several tests in frame of 
multidimensional test statistic.  
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