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Abstract: - The η-µ distribution, which can be used to describe signal envelope variation in channels where in-
phase and quadrature components have different powers, is considered in this paper. The closed form 
expressions for probability density function (PDF), cumulative distribution function (CDF) and moments are 
calculated. Also, statistics of product, ratio and maximum of two η-µ random variables is studied. The obtained 
statistical functions are shown graphically by using simulations in MATLAB. The influence of parameters of η-
µ distribution on statistics of the product, ratio and maximum of two η-µ random variables is analyzed. 
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1  Introduction 
The η-µ distribution can be used to describe small 
scale signal envelope variation in multipath fading 
channels where in-phase component power and 
quadrature component power are different. This 
distribution has two parameters η and µ. The 
parameter η is equal to ratio of in-phase component 
power and quadrature component power and 
parameter µ is in relation to the number of clusters 
in propagation environment [1] [2]. The η-µ 
distribution is general distribution and from this 
distribution can be derived Nakagami-m, Rayleigh 
and Nakagami-q distribution as special cases. 
Nakagami-m distribution can be derived from η-µ 
distribution by setting η=1, the η-µ distribution 
reduces to Nakagami-q from µ=1 and Rayleigh 
distribution approximation η-µ distribution by 
setting η=1 and µ=1 [3].  

There are several works in open technical 
literature considering statistical characteristics of η-
µ random process and performance of wireless 
communication system operating over η-µ multipath 
fading channels [4] [5]. In paper [4], the η-µ random 
variable is considered and probability density 
function is determined. PDF of η-µ distribution is 
determined by using can convolution integral for 
two Nakagami-m density function. The joint 
probability density function of in-phase component 
and quadrature component of η-µ random process is 
evaluated in work [5]. In paper [6], wireless 
communication system with equal gain combining 
(EGC) receiver operating over Nakagami-q short 

term fading channel is analysed. The sum of N 
Nakagami-q random variables is approximated by 
using η-µ distribution. In [7], the co-channel 
interference effect on average error rates in 
Nakagami-q (Hoyt) fading channels is observed.  

The second order statistical measures of wireless 
system in the presence of η-µ multipath fading are 
studied in [8]. The level crossing rate of proposed 
system is calculated and by using this expression 
average fade duration is evaluated. In this paper, 
joint probability density function of η-µ random 
variable and its the first derivative is calculated. 
Sum of non-identical squared η-µ variates and 
applications in the performance analysis of DS-
CDMA systems is determined in [9]. 

The influence of Maximal Ratio Combining 
(MRC) receiver to mitigation of η-µ fading is 
processed in [10] [11]. The performance analysis of 
Switch and Stay Combining (SSC) diversity 
reception over η–μ fading channel in the presence of 
Co-channel interference (CCI) is given in [12]. 

In this paper η-µ random variable is considered. 
Probability density function, cumulative distribution 
function and moments of η-µ random variable are 
calculated and derived expressions are closed form. 
The obtained formulas can be used for performance 
analysis of wireless communication systems 
subjected to η-µ small scale fading. Further, in this 
paper product of two η-µ random variables is 
analysed and probability density function of 
proposed product is calculated. In this paper also the 
ratio of two η-µ random variables is analysed. 
Probability density function and cumulative 
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distribution function of considered ratio are 
calculated. Those formulas can be used in 
performance analysis of wireless communication 
system operating over η-µ multipath fading channel 
in the presence of co-channel interference subjected 
to η-µ multipath fading. Further, probability density 
function of maximum of two η-µ random variables 
is calculated as closed form expression. 

 
 

2 The η-µ Random Variable 
Probability density function of η-µ random 
variable is: 
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and the variances of independent Gaussian in-
phase and quadrature processes are arbitrary 
with their ratio defined as η. 
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The cumulative distribution function of η-µ 
random variable is :  
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The moment n-th order of η-µ random variable is 
[13]:  
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(5) 

3 Product, Ratio and Maximum of 
Two η-µ Random Variables 
The η-µ random variables x1 and x2 follow 
distribution: 
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 The product of two η-µ random variable is: 

                           (7) 

The probability density function of x is: 
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Previous expression can be used for evaluation 
of the outage probability of wireless relay 
communication system with two sections operating 
over η-µ multipath fading environment. By using 
the expression for PDF, the cumulative distribution 
function of product of two η-µ random variables can 
be calculated. Random variable denoted with (η-
µ)*(η-µ) can be studied as a product of two η-µ 
random variables. By setting η=1, the (η-µ)*(η-µ) 
random variable reduces to Nakagami-
m*Nakagami-m random variable. Nakagami-
q*Nakagami-q random variable can be derived from 

1 2 1
2

, .
x

x x x x
x
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The probability density function of x is: 

( )
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(η-µ)*(η-µ) random variable for µ=1. For η=1 and 
µ=1 Rayleigh*Rayleigh random variable 
approximates (η-µ)*(η-µ) random variable. 

 
The ratio of two η-µ random variable is: 

1
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The probability density function of the ratio of 
two η-µ random variable is: 
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The cumulative distribution function of the ratio 
of two η-µ random variable is: 
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The ratio of two η-µ random variables is 
important performance measure wireless 
communication system operating over η-µ multipath 
fading channel in the presence of co-channel 
interference subjected to η-µ multipath fading. 
Probability density function, cumulative distribution 
function and moment nth order are calculated. The 
ratio of two η-µ random variables is random 
variable denoted with (η-µ)/(η-µ). For η=1, the (η-
µ)/(η-µ) variable reduces to Nakagami-
m/Nakagami-m random variable and for µ=1 
(Nakagami-q*Nakagami-q) random variable is 
derived from (η-µ)/(η-µ) random variable. 
Rayleigh/Rayleigh approximates (η-µ)/(η-µ) random 
variable for η=1 and µ=1. By derived formulaes for 
PDF and CDF of ratio of two η-µ random variables 
can be calculated outage probability and bit error 
probability wireless communication system 
operating over η-µ multipath fading channel in the 
presence of co-channel interference affected to η-µ 
multipath fading. 

Moment of n-th order of the ratio of two η-µ 
random variables is [13]: 
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Probability density function of maximum of two 
η-µ random variable is: 
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(16) 

The previous expression is probability density 
function of the maximum of two η-µ random 
variables. This formula can be used in performance 
analysis of wireless communication system with 
selection combining diversity receiver with two 
branches, operating over η-µ multipath fading 
channels. 

Selection Combining (SC) diversity receiver 
reduces η-µ short term fading effects on system 
performance [15]. SC receiver output signal 
envelope can be calculated as the maximum of the 
signal envelopes of its inputs. SC receiver selects 
the branch with the highest signal envelope. The 
performance measures as the outage probability, the 
bit error probability and the system capacity of 
proposed communication system can be calculated 
by using the obtained expression. The random 
variable which is equal to the maximum of two η-µ 
random variables can be denoted as max(η-µ, η-µ) 
and is general random variable. By setting η=1, 
max(η-µ,η-µ) reduces to max(Nakagami-q, 
Nakagami-q); max(Nakagami-m, Nakagami-m) 
random variable can be derived from max(η-µ, η-µ) 
random variable by setting µ=1; the random variable 
max(Rayleigh, Rayleigh) approximates max(η-µ, η-
µ) random variable for η=1 and µ=1.  
 
 
4   Numerical Results 
In Fig. 1, the histogram of η-µ random process is 
shown. The abscissa of the histogram is the 
amplitude values of η-µ random process; the 
ordinate is the number of samples in the interval of 
abscissa. 

In Fig. 2, the cumulative distribution function of 
product of two η-µ random variables for several 
values of parameters η and µ=2 is presented. 

The cumulative distribution function of product 
of two η-µ random variables is outage probability of 
wireless relay communication system with two 
sections operating over η-µ multipath fading. The 
outage probability increases as output signal 
envelope increases. The output signal envelope has 
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higher influence on the outage probability for lower 
values of the output signal envelope. This figure 
shows that the outage probability increases when 
parameter η decreases for lower values of parameter 
η. 

The histogram of product of two η-µ distribution 
is shown in Fig. 3. 
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Fig.1. Histogram of η-µ random process 

 
 

 
Fig.2. Cumulative distribution function of product 

of two η-µ random variables 
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Fig.3. Histogram of product of two η-µ random 

variables 

The cumulative distribution function of the ratio 
of two η-µ random variables is shown in Fig. 4. The 
cumulative distribution function of the ratio of two 
η-µ random variables is the outage probability of 
wireless communication system operating over η-µ 
short term fading in the presence of co-channel 
interference subjected to η-µ multipath fading. The 
influence of the output signal envelope is higher for 
lower values of the output signal envelope x. 

The histogram of the ratio of two η-µ random 
variables is shown in Fig. 5. The cumulative 
distribution function of the maximum of two η-µ 
random variables is shown in Fig. 6. 

The cumulative distribution function of the 
maximum of two η-µ random variables is actually 
the outage probability of wireless communication 
system with selection combining diversity receiver 
with two inputs in the presence of η-µ multipath 
fading. 
 
 

 
Fig.4. Cumulative distribution function of the ratio 

of two η-µ random variables 
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Fig.5. Histogram of the ratio of two η-µ random 

variables 
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Fig.6. Cumulative distribution function of 

maximum of two η-µ random variables 
 

The influence of the output signal envelope is 
higher for lower values of the output signal 
envelope. For lower values of the output signal 
envelope x, the outage probability increases as 
parameter η increases, and the outage probability 
stagnates for higher values of the output signal 
envelopes.   
 
 
4 Conclusion  
In this paper, η-µ random variable is considered. 
The η-µ distribution can be used to describe small 
scale signal envelope variation in fading channels 
where powers of in-phase and quadrature 
components are different. The parameter η can be 
calculated as the ratio of in-phase and quadrature 
component powers and parameter µ is in relation 
with the number of clusters in propagation 
environment. The closed from expressions for 
probability density function, cumulative distribution 
function and moments of η-µ random variable are 
evaluated. These expressions can be used for 
calculation the outage probability, the bit error 
probability and the channel capacity of wireless 
communication system operating over η-µ multipath 
fading channel. Farther, in this paper, probability 
density function of the product of two η-µ random 
variables, the ratio of two η-µ random variables and 
the maximum of two η-µ random variables are 
calculated as the expressions in the closed form. 
PDF of product of two η-µ random variables can be 
applied in performance analysis of wireless relay 
communication system with two sections. Ratio of 
two η-µ random variables can be used in 
performance analysis of wireless communication 
system operating over η-µ small scale fading 
channel in the presence of η-µ co-channel 
interference. Maximum of two η-µ random variables 

can be used in the performance analysis of wireless 
communication system which use SC receiver to 
reduce η-µ fading effects on the system 
performance. In this paper, (η-µ)*(η-µ), (η-µ)/(η-µ) 
and max(η-µ, η-µ) random variables are formed. 
The (η-µ)*(η-µ) random variable can be calculated 
as the product of two η-µ random variables, the (η-
µ)/(η-µ) random variable can be calculated as the 
ratio of two η-µ random variables and max(η-µ, η-µ) 
random variable can be calculated as a 
maximum of two η-µ random variables. 
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