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Abstract: Solving nonlinear systems of equations is a standard problem arising in the analysis of 

nonlinear dc circuits. The most popular method for global solution of nonlinear systems is the 

well-known interval Newton method using the interval Jacobean matrix of the system or the so-

called interval slope matrix. In the present poster, a better approach is suggested which is 

based on the use of corresponding linear parametric models. 
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1. INTRODUCTION 
 

Solving nonlinear systems of equations is a standard problem arising in the global 

analysis of nonlinear dc circuits. More specifically, the problem considered is:  

solve globally 

 0)( xf , (1.a)    

 x  x
0 
 R

n
.  (1.b)  

Global nonlinear dc circuit analysis is guaranteed if interval methods are used [1].  

The most popular interval method for global solution of nonlinear systems is the 

well-known interval Newton method (or its versions): an iterative method using in-

terval extension J(x) of the Jacobean matrix (or some modifications) for the currant 

box x belonging to 0
x and related to a given iteration. The following interval system 

 ( ) ( )y f xA x  (2) 

is to be solved at each iteration where ( )A x  is an interval matrix (standing for the in-

terval Jacobean matrix, interval slope matrix, the Hansen-Sengupta operator or some 

other modification) while ( )f x  is a real vector.  

An alternative approach was suggested in [2] using the following approximation  

 ( ) ( ) ( ) ,f y A x x  x b x x  (3)  

where A(x) is a real matrix while ( )b x  is an interval vector. The right side in (3) 

 L(x) = A(x)x + b(x),       x  x, (4)   

is known as a linear interval approximation (LIA). In this case solving (1) reduces to 

repeatedly solving the interval system 

 A(x)y = –b(x) (5) 
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where, unlike (2), ( )A x is a real matrix. This determines the better performance of the 

LIA approach as compared to the standard approach (see [3]). 

A new approach for global nonlinear dc circuit analysis, i.e. solving (1), will be 

suggested here (Section 2). It is based on various alternative approximations of f in x 

which are in linear parametric form. Now, we obtain a linear parametric system  

 ( )( ) ( ) ,A p y x f x p    p   (6a) 

or, equivalently 

 ( ) ( ) ,A p z b x p  p  (6b) 

where A(p) is a parametric matrix. It will be shown that (6) is a better way to bound 

the solutions of (1) than the interval Newton method. System (6) will be referred to as 

a linear parametric model of f(x) in x. 

The linear parametric model (6) will be extended to the analysis of nonlinear cir-

cuits containing resistors or other parameters given as intervals (Section 3).  

2. SYSTEMS OF NONLINEAR (NONPARAMETRIC) EQUATIONS 

2.1. Linear parametric approximation using slopes 

This is yet another alternative linearization of nonlinear functions suggested in a 

different context for the first time in [3]. The novel approach is based on the use of 

the slope matrix S(y,x) and the equality 

 )-(),(+)(=)( xyxySxfyf , (7) 

where y and x have some fixed values (typically, x is a known solution 0x  of (1)). We 

now “free” the components yk of y and consider them as components of a parameter 

vector p, i.e. 

 p = (y1,…,yn)  x = (x1,…,xn) . (8) 

Let 

 ),(=)( xpSpa ijij   (9) 

be the entries of the parametric matrix A(p). On account of (7) to (9) 

 y  f (x) + A(p)(y – x),     p  x . (10) 

The right-hand side of (10) is the novel linear parametric approximation (LPA) 

of f in x. If y is a zero of f, then 

 A(p)(y – x) = – f (x),    p  x    (11a) 

or, equivalently 

 A(p)z = b (x),    p  x .   (11b) 

Thus, using the novel approximation, the linear parametric model (11) is ob-

tained. Following [3], we show that (11) is a better way than (2) to bound the solu-

tions of (1). Indeed, introduce the solution sets 
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 SJ  = {z:  J z = b ,   J  J(x)} ,  (12) 
 

 Sp  = {z:  A(p)z = b ,   p  x} .  (13) 

It is seen that while ( )J x  depends on n
2
 independent entries, there are only n in-

dependent elements in A(p). Moreover, the methods for enclosing p
S  account for the 

interdependencies between the components of A(p). Thus, it follows from (12) and 

(13) that 

 Jp SS 
. (14) 

If 
JZout  and 

pZout  [4] denote some outer interval solution of (2) and (11b), respective-

ly, then we can expect that also 

 Jp
ZZ outout ⊂   (15) 

but (15) is, however, not guaranteed.  

2.2. LPA using the Hansen-Sengupta operator in parametric form 

The approach of § 2.1 is applicable only if ( , )S y x  the slope matrix is available 

in analytical form. If this is not the case, then the Jacobian matrix in parametric form 

J(p) can be used as suggested in [3]. Thus, (9) is replaced with 

 
1

( ) ( ,,, )
ij ij n

a p J p p , , 1,,,
i i i

p i n  p x . (16) 

It is seen that each element ( )
ij

a p  depends on all n parameters 
i

p . A better LPA is 

suggested here which is based on the Hansen-Sengupta operator [5]. In its standard 

(nonparametric) form, it encloses each function ( )
i

f y  by the following expression 

    1 1
1

( ) ( ) ,.., ; ,..,
n

i i j j ij j j n
j

f y f x y x g x x




   x x . (17) 

We now write (17) in parametric form 

    1 1 1 1
1

( ) ( ) ,.., ; ,.., ,..,
n

i i j j ij j j n j j
j

f y f x y x g p p x x p p




     ,   x x .  (18) 

Hence, using the Hansen-Sengupta operator, we have to replace (16) with 

 
1

( ) ( ,,, )
ij ij j

a p g p p , , 1,..,
k k k

p k j  p x . (19) 

It is seen that, unlike (16) where all n parameters are intervals, now a fraction 

(1/2)(1-1/n) in (18) are real parameters. This determines the better performance of the 

Hansen-Sengupta LPA as compared to the Jacobian LPA. 

2.3. Checking uniqueness  

Another advantage of the LPA strategy over the standard strategy is in checking 

the uniqueness of a solution in x. The standard approach is to check if  
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 N(x)  int(x) (20) 

is valid (N( x ) can be the Newton, Gauss-Seidel, Krawczyk, Hansen-Sengupta opera-

tor). It is to be stressed that no additional assumption is needed. The new approach is 

based on the assumption that we have already established the presence of a solution 

x* in x and it only remains to check for uniqueness of x* in x. Very often in practice, 

this is really the case. 

Theorem 1. Let f (x) be a continuously differentiable vector function. Let A(p) be 

the parametric matrix defined in x by (16). If x* is in x, f (x*) = 0 and A(p) is a regu-

lar matrix in p = x , then x* is the unique solution of f (x) = 0 in x. 

The proof is based on Theorem 13.6.1 in [5]. 

Thus, we can prove uniqueness by checking regularity (strong regularity) of A(p) 

in x. A better choice is to check regularity of the slope matrix S(p, x*), p  x by some 

method (a simple such test for regularity is given by Theorem 4, Section 3.2 in [3] 

but any better check for regularity of parametric matrices could be used.  

3. SYSTEMS OF NONLINEAR PARAMETRIC EQUATIONS 

We now extend some of the ideas considered earlier to the parametric case 

 f (x, p) = 0 ,  (21a)  

 p  p  R
m
 ,  (21b) 

 x  x
0
  R

n
 . (21c)    (19c) 

Assumption 1. A pair 
0 0( , )x p  satisfying (21b), (21c) is known which is a zero of f 

in (21a). 

The vector
0p  is usually the centre of p and 0x  is the solution of (21a) for 0p p . 

The solution set of (21a), (21b) is the set  

 Sf (p): = {x: f (x, p) = 0,   p  p} .  (22) 

The interval hull of ( )
f

S p  will be denoted *
 x ; any other interval x such that 

*  x x  is referred to as an interval (outer) bound on ( )
f

S p .  

3.1. A basic problem  

A basic problem is to determine x for a given f and p. Finding x has been 

considered as a sensitivity analysis problem associated with (19a), (19b) (e.g., [5]). 

Various methods and algorithms are based on the parameterized versions of the 

Newton method and its variants. Now  

 ( , ) ( ) ( , )( )f y p f x y x  J x p   (23) 

is used which becomes 

 ( , )( ) ( , )y x f x p  J x p   (24) 
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if (y, p) is a zero of f. Another alternative idea is based on the use of (3) and (4) for 

linearizing non-linear functions applied to the function ( )f u  when u = (x, p) as well 

as on Assumption 1. Reference [6] seems to be the only paper where this approach 

has been developed to offer a method for determining x. 

3.2. A new linear parametric approximation (LPA) approach 

This approach to solving the basic problem is reported for the first time here. In 

the case of the parametric equation (19a), for a fixed p formula (7) becomes 

  f (y, p) = f (x, p) + S(y, x, p)(y – x)  (25) 

where most often x is the centre of x. Once again, we “free” the components yk of y to 

take on values in x. Thus, we introduce the additional parameter vector 

 q = (y1,…,yn)  x = (x1,…,xn).  (26a) 

and let 

 aij(q, p) = Sij(q, x, p) (26b) 

be the entries of the parametric matrix A(q, p), q x , p p  (x is fixed). For each 
p p  

 f (y, p)  f (x) + A(q, p)(y – x), q  x, p  p.  (27) 

If ( , )y p  is zero of f  

 A(q, p)z = b(p),   q  x,   p  p     (28) 

where z = y – x and  b(p) = –f (x,p). The linear parametric system (28) is the new LPA 

model suggested here to tackle the problem of obtaining an outer approximation y of 

the solution set ( )
f

S p . Indeed, consider the sets 

  : , ( ,
JP

S z J z b J  J x p , (29) 

 Spq  = {z:  A(q, p)z = b(p) , q  x  p  p}.    (30) 

Clearly, 

 pq JP
S S  (31) 

( ( , )J x p  has 
2n  independent entries, each being an interval extension of the 

function ( , )J x p  of  n + m arguments, while there are only n + m dependent elements 

in ( , )A q p  and m dependent elements in ( )b p .) Hence we can expect (28) to be a bet-

ter model than (24). 

If the slopes ( , , )ijS q x p cannot be found in analytical form, then they should be 

replaced with the components ( , )ijg q p . In that case, the elements of the parametric 

matrix ( , )A q p  are given not by (27) but as follows 1( , ) = g ( ,.., ; )ij ij ja q p q q p .   
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3.3. Determining an outer solution  

Let ( , )
f

N x p  denote an outer interval solution of  

 A(q, p)(y – x) = b(p),   q  x,    p  p.   (32) 

Consider the following iteration process 

 
( 1) ( ) ( ) ( )( , ; , )k k k k

x p
N   x x p , 

(0) 0xx , 0k   (33) 

where 
0x  is the solution of f corresponding to 

0p  (the centre of p ) while 
( ) ( ),k k

x p
   are 

some parameters introduced to accelerate the convergence of the iterations. The itera-

tions are terminated (if possible) as soon as  

 ( 1) ( )int ( )k k x x . (34) 

The outer solution 
b

x  (containg ( )
f

S p ) is given by ( 1)k
x . This is a rather general 

algorithm. Thus, according to [6] ( ) 1k

p
  , ( ) 1k

x
   until stationarity ( 1) ( )k k

x = x  is rea-

ched for some iteration number k  and only then ( +1) 1k

x
    with 0.05   for the 

examples considered. Perhaps, it would be useful to try with 

  ( +1)

1 2
1 [1/(1 )]k

x
k       (35) 

inflating ( 1)k
x  more drastically for the initial iterates. 

A similar approach would be to vary ( )k+1

p
  as in (35) (keeping ( ) 1k

x
  ) or to let 

both ( +1)k

x
  and ( )k+1

p
  change.  

3.4. Uniqueness 

Some of the methods for determining 
b

x  guarantees uniqueness (i.e., x(p) is 

unique in b
x  for any p p ); others do not. In the latter case an additional test for 

uniqueness is needed. Here it is assumed that (i) Assumption 1 holds, (ii) an interval 

vector x is known to contain the interval hull *
x  of (21). The problem is to establish 

whether any other zero 0( , ),x p p p  is unique in x for each p p . 

Theorem 2. Let the above assumptions be valid. Assume additionally that ( , )f x p  

is continuously differentiable in both x x  and p p . Let ( , )J x p  denote the deri-

vation of f wrt x (the Jacobian) while ( , )A q p  is the parametric matrix which elements 

are defined by ( , ) = ( , )
ij

A q p J q p . If ( , )A q p , q x , p p  is a regular interval par-

ametric matrix, then: 

a) there exists a continuous function ( )x= g p , p p  such that each x  Sf (p); 

b) Sf (p) is a connected set in x. 

The theorem improves on a result due to Hansen: Theorem 17.6.1 and Corollary 

17.6.2 in [5].  

Remark. The results obtained in § 2 and § 3 could be applied to the case of under-
determined systems (more variables than equations). 
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