
 

 

 

Abstract— In the present paper we analyze the combined effect 

of small curvature, non-uniform friction and presence of small heavy 

particles in a carrier fluid on linear stability of shallow mixing layers. 

The linear stability problem is solved numerically. Marginal stability 

curves and marginal stability surfaces are constructed for different 

values of the parameters of the problem. It is shown that for the case 

of stably curved mixing layers all three parameters (particle loading 

parameter, small curvature and non-uniform friction) stabilize the 

flow.  

 

Keywords—Linear stability, particle-laden flow, shallow water, 

friction coefficient, curvature 

I. INTRODUCTION 

LOWS at river junctions or in compound and composite 

channels represent widespread examples of shallow mixing 

layers. It is well-known from linear stability analyses of 

shallow mixing layers that bottom friction in a shallow layer of 

fluid plays an important role in preventing the development of 

three-dimensional instabilities [1]-[4]. In addition, bottom 

friction also stabilizes the flow since growth rates of small 

perturbations are reduced by the presence of a solid boundary. 

Experimental investigations show that the growth a mixing 

layer is also affected by the presence of bottom friction [5]-[8].  

In practice shallow mixing layers can be also slightly curved. 

The effect of small curvature on the stability of free shear 

layers is investigated in [9] where it is shown that curvature 

has a stabilizing effect for the case of stably curved mixing 

layer and destabilizes the flow for unstably curved layer.  

    The analysis in [1]-[4] is performed for the case where 

bottom friction is modeled by means of the Chezy formula 

[10], where the friction coefficient is assumed to be constant in 

the transverse direction. Recent experimental investigations 

[11]-[15] showed that there are cases where the friction force 

changes considerably in the transverse direction. One 

important application of such a case in practice is flow in 

compound channels (or rivers) during floods. In this case 

friction in the floodplain is much higher than the friction in the 
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main channel. It is shown in [11]-[15] that the characteristics 

of mass and momentum exchange in case of variable friction 

are different from the corresponding characteristics for the 

case of constant friction. 

     In many cases water flows in rivers and channels contain 

particles [16]. The presence of heavy particles also can affect 

the dynamics of the flow and, in particular, modify linear 

stability characteristics of the flow. Spatial and temporal 

instability of slightly curved particle-laden shallow mixing 

layers for the case of constant friction is investigated in [17]. 

In the present paper we investigate the combined effect of 

small curvature, variable friction in the transverse direction 

and presence of small heavy particles on the stability 

characteristics of shallow mixing layers. The corresponding 

linear stability problem is solved numerically for different 

values of the parameters of the problem. It is shown that 

increase of the particle concentration and small curvature, as 

well as bottom friction has stabilizing effect on the flow.   

   

II. MATHEMATICAL ANALYSIS 

Shallow water equations under the rigid-lid assumption can 

be written in the form [17] 
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where p is the pressure, u and v are the velocity components 

of the fluid in the x and y -directions, respectively, 
pu and 

pv are the velocity components of particles, h is water depth, 

)( yc f is the non-constant friction coefficient, B is the 

particle loading parameter [16], [17], and R is the radius of 

curvature ( 1R ).  

    The following simplifying assumptions are used to derive 

(1)-(3): (a) equation (1) represents the rigid-lid assumption 

(water depth is constant); (b) distribution of particles in the 
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fluid is uniform; (c) curvature is small ( 1/1 R ), (d) there 

is no dynamic interaction between particles and the fluid. 

Since the continuity equation (1) is the same as in a two-

dimensional hydrodynamics we introduce the stream function 

),,( tyx by the formulas 

x
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y
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Eliminating the pressure from (1)-(4) we obtain 
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We assume that the friction coefficient )( yc f can be 

represented in the form 

),()(
0
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where 
0fc is constant and )(y is a differentiable shape 

function. 

Consider a perturbed stream function ),,( tyx  of the form 

...),,()(),,( 10 tyxytyx                           (7) 

where )(0 y is the stream function of the base flow 

)(yU and  is a small parameter. The base flow is assumed 

in the form 
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Using a standard linearization procedure around the base flow 

)(yU we obtain 
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Using the method of normal modes we assume that 1 is 

represented in the form 
)(

1 )(),,( ctxieytyx ,                                             (10) 

where is the wave number of unsteady perturbation and 

ir iccc is a complex eigenvalue. Substituting (10) into 

(9) we obtain  
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where 
h

bc
S

f0 is the stability parameter and b is a 

characteristic length scale of the problem (for example, half-

width of the mixing layer). 

The boundary conditions are 

.0)(                                                                        (12) 

Linear stability of the base flow (8) is determined by the sign 

of the imaginary part of the complex eigenvalue 

ir iccc of eigenvalue problem (11), (12). The base flow  

)(yU is said to be linearly unstable if at least one eigenvalue 

satisfies the inequality 0ic . If all 0ic then the base flow 

is linearly stable. Small perturbation is marginally stable if all 

eigenvalues have negative imaginary parts while one 

eigenvalue satisfies the condition 0ic . Problem (11), (12) 

is solved numerically in the next section for different values of 

the parameters of the problem. 

III. NUMERICAL RESULTS 

We use the collocation method based on Chebyshev 

polynomials [4] to solve (11), (12) numerically.  

The shape function in (6) is assumed to be of the form 
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c
is the ratio of the friction coefficients in 

the floodplain and main channel.   

Fig. 1 plots the marginal stability curves for the case of 

uniform friction ( 1) and straight channel ( R ). 

Three curves in Fig. 1 (from top to bottom) correspond to the 

following three values of the particle loading parameter :B 0, 

0.02 and 0.04. As can be seen from the figure, the particle 

loading parameter has a stabilizing effect on the flow (the 

critical bed friction number crS decreases as the parameter 

B increases.  
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Fig. 1. Marginal stability curves for the case 1,R and 

three values of 02.0,0: BB  and 04.0B (from top to 

bottom).  

 

The effect of non-uniform friction on the marginal stability 

curves for the case 5.1,R is shown in Fig. 2. The 

three curves in Fig. 2 correspond to the same values of B as in 

Fig. 1. Comparing Figs. 1 and 2 we can see that non-uniform 

friction stabilizes the flow: the maxima of the marginal 

stability curves in Fig. 2 occur at lower values of S than in 

Fig. 1 (uniform friction).  

     S  
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Fig. 2. Marginal stability curves for the case 5.1,R and 

three values of 02.0,0: BB  and 04.0B (from top to 

bottom).  

 

In order to analyze the combined effect of the three parameters 

,R  and B on the stability boundary we calculated the 

critical values of the bed friction number S , namely, 

)(max kSS
k

cr for several values of the parameters. The 

results (marginal stability surfaces) are shown in Figs. 3 – 5.  

Fig. 3 plots the critical values of S (the vertical ass) for 

different values of and 31:B and 

05.00 B for R .  

 

Fig. 3. Marginal stability surfaces for the case R and different 

values of  and .B   

Similar graphs are shown in Fig. 4 where the marginal stability 

surfaces are shown for the case 03.0/1 R (slightly curved 

mixing layer).  

 

Fig. 4. Marginal stability surfaces for the case 03.0/1 R and 

different values of  and .B   

 

The stabilizing effect of small curvature can be seen from the 

analysis of Figs. 3 and 4: critical bed friction numbers 

decrease as R/1 increases. 

Larger value of the parameter R/1 is shown in Fig. 5 (the 

marginal stability surfaces are constructed for the same range 

of and B values as in Figs. 3 and 4). Stabilization of the 

base flow is even more pronounced for the case 06.0/1 R . 
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Fig. 5. Marginal stability surfaces for the case 06.0/1 R and 

and different values of  and .B   

 

 

Comparing Figs. 3 – 5 we see that all three parameters ,R  

and B have a stabilizing effect on the flow: the critical bed 

friction number decreases as all parameters increase. It would 

be interesting to see what happens in the case of unstably 

curved mixing layer since previous studies have shown that 

curvature has a destabilizing effect on unstably curved mixing 

layers [9]. Thus, one can expect to see a competition between 

destabilizing effect of curvature and stabilizing influence of 

non-uniform friction and presence of particles in the flow. The 

authors are currently working on this topic.  

 

 

IV. CONCLUSION AND DIRECTION FOR FUTURE WORK 

Linear stability of shallow mixing layers in the presence of a 

non-uniform friction in the transverse direction is investigated. 

It is assumed that carrier fluid contains small heavy particles. 

The flow is also slightly curved in a longitudinal direction. The 

combined effect of three parameters: small curvature, particle 

loading parameter and non-uniform friction is investigated. It 

is shown that all three parameters have a stabilizing influence 

on the flow.  

Linear stability can be also analyzed for the case where 

mixing layer is unstably curved. It is known from the previous 

studies that in this case small curvature destabilizes the flow. 

On the other hand, stabilizing influence of particle loading 

parameter is confirmed for the case of fluid flow with uniform 

friction. The authors are currently analyzing the combined 

effect of all parameters on linear stability of unstably curved 

mixing layer. In addition, it is planned to develop weakly 

nonlinear theory for the case where the bed friction number is 

slightly smaller than the critical value.  
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