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Abstract: - In the present paper we consider a coil with alternating current located above a conducting plate
with a cylindrical flaw. The axis of the coil coincides with the axis of the flaw. The problem is solved by the
method of separation of variables under the assumption that the vector potential is equal to zero at a sufficiently
large distance from the axis of the coil. The formula for the induced change in impedance of the coil is
obtained. Results of numerical calculations are presented for different values of the parameters of the problem.
The method of solution described in the paper can be applied to other axisymmetric flaws.
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1 Introduction

Solutions to eddy current testing problems for the
case where a conducting medium is infinite in one
or two spatial dimensions are well-known in the
literature [1]-[3]. In applications it is often necessary
to consider conducting objects of finite size. Since
the method of integral transforms for the solution of
eddy current problems for infinite media cannot be
applied in this case, numerical methods (such as
finite element methods) are used [4]. Recently a
semi-analytical method (TREE method) is
suggested for the solution of eddy current problems
[3]. The main idea of the method is that the
electromagnetic field is exactly zero at a sufficiently
large distance from the source of alternating current.
As a result, one obtains a boundary value problem in
a finite domain which can be solved by the method
of separation of variables. Examples of the use of
the TREE method can be found in [6]-[8].

In the present paper we consider the case where a
coil with alternating current is located above a
conducting plate with a flaw in the form of a
cylinder coaxial with the coil. The problem is solved
by the TREE method where two steps of the
solution process require the use of numerical
methods: (a) calculation of complex eigenvalues for
the case where a good initial guess for the root is not
known and (b) solution of a system of linear
algebraic equations. The change in impedance of the
coil is computed for different frequencies of the
excitation current. The solution of the given
problem can be used in practice to model the effect
of corrosion in metal plates.
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2 Mathematical Formulation
Consider an air-core coil located above a conducting
plate with conductivity o (see Fig. 1).

L

Fig. 1. A coil above a conducting plate.

The parameters of the coil are as follows: r,and
r,are the inner and outer radii, respectively,
Z, — Z,is the height of the coil (z,is the distance

from the bottom of the coil to the plate), N is the
number of turns. The plate has a cylindrical hole of
radius cand height d,. The axis of the coil
coincides with the axis of the cylinder. The height of
the plateis d, +d,.
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The solution of the problem for the coil can be
found by the superposition principle if we know the
solution for the case where a single-turn coil is
located above a plate with a flaw (Fig. 2).

// -

Fig. 2. A single-turn coil above a conducting plate.

Due to axial symmetry the vector potential has only
one non-zero component in the azimuthal direction.

It is convenient to introduce four regions R, — R,
and denote the solutions in each of the regions by
A, A,Aand A,, respectively. The system of

equations for the components of the vector potential
has the form [8]

oA, 16A0 AO %A,

or? r or r2 o072 (1)
= 41 5(r = 1,)5(z~ ),
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s A T + —0,(2
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where o(x)is the Dirac delta-function, o, =0if

0<r<cand o,=0cif c<r<b, bis the

distance from the axis of the coil where the
electromagnetic field is assumed to be exactly zero,
and wis the frequency.

The boundary conditions are

Al_=0 1=0123, (5)
A0|ZO Al |z =0 %lzozai'z:m OSr<C|
(6)
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(8)
a oA? 1%}
A1 |z:—d1:A2 |z:—d11 :;1 |Z 6, = A2 |z d, 0S|’<C,
(9)
oA, 0
A |z —d; A3|z —d3? oz |z d3 Aslz —d3? (10)

where d, =d, +d,and the superscripts aand

ccorrespond to air and conductive region,
respectively.
The interface conditions at = chave the form

. a a C a a

A L= A =T
In addition, vector potential is bounded at
infinity in regions Ryand R,:

A, > 0asz —»> 4o, A, >0asz —» —o,

(11)

(12)

3 Solution for Single-Turn Coil
In order to find the solution to (1) we consider
two sub-regions of region R,, namely,

Ry, ={0 <z <h}and R,, ={z > h}.The solutions

in Ry,and Rjare denoted by Aj,and A,

respectively.  Using  the  principle  of
superposition we represent the solutions to (1)
in Ry,and R, in the form

Au(r,2)= Dy, (4r), (13)
A(r,2)= Y (D6 + Dye™)J, (A1), (14)

where D,;,D,and D,are arbitrary constants,
A =, /b and ¢, are the roots of the equation
J,(a) =0. (15)
The vector potential is continuous at z=nh:

AOO |z h™ A)l |z h-* (16)

Integrating (1) with respect to zfrom h—-¢to
h+ ¢and considering the limit as ¢ — +0 in
the resulting equation we obtain
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Ay . _%h:h:—ydé‘(r_ro)- (17)

It follows from (13)-(17) that

> Dye "3 (A4r)
= (18)
2|e_/lih + Daieiih )‘]l(ﬂ'l r),

Z}“i Dlie%ih\]l(iir)

i=1

+Z(_ﬂ“i DZiedjLih + 4 Dsieﬁih)Jl(ﬂbir) (19)
i-1

= polo(r —1y).

Multiplying (18) by rJl(/Ijr), integrating the
resulting equation with respect to r from 0 to
b and using the orthogonality condition
b 0, I # ]
2
!rJl(/Ijr)Jl(/Lr)dr— b (i) - (20)

the following equation is obtained
D,e " =D, " +D,e"". (21)
Applying the same procedure to (19) we obtain

(D, e ™" —D, e " + D" ), %Jg(ljb)

= 11513, (2,1,).

(22)
Using (21) and (22) we get
Ir,J,(A:r,
D3j _ Ho 3 12( i O)G_M. 23)
A;b*Jg (4;b)

Substituting (22) and (23) into (13) and (14) we
obtain

An(12)= 3Dy 10, (A1)

Z \](/lr) 7ﬂ,|(h Z)J (lr) (24)
=2 32(Ab)
A (r,2) = ZDz.e ()
(25)

,Uolr J; (41,) A4 (z-h)
Zu 2(ab)” L (A0

Solutlon to (2) satlsfylng (11) has the form
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AR 2) = 2 3, (RDT(6,0)(Dge™ + Bye ™),
_ (26)
AS(r,z) =3, (PO, (q,r)(Dge™ + Dye ),

i=1
(27)
where

Tl(qir) = Jl(qir)Yl(qib) - Jl(qib)Yl(qir)1 I

P = VQiZ + joou,,

and the equation

pi‘]ll(piC)Tl(qu) = qiTll (QiC)Jl(piC) (28)
determines complex eigenvalues p; .

General solution to (3) satisfying (5) is

A,(r,z) =D (Dge™* + Dyue ™), (A1), (29)
i=1

where

Pu =\A + joou,.

Solution to (4), (12) has the form

Ay(r,z) = Z Dy 8" 3, (4r). (30)
i=1

The six sets of constants in (24)-(27), (29) and

(30),namely, D,;, Dy;, Dy, Dy, D,y and D, can

be determined from the boundary conditions (6)

—(10). Eliminating D,,Dg;,D,;and D,;, we

obtain the following system of algebraic

equations for the coefficients Dy and Dy :

Z[(lj + P;)Dg; + (4; - pi)elﬁsi]aii

— (31)
= 44113, (4,1, )e "

2 [(9;Ds + f;Dg Ja;; =0, (32)
i=1

where
g; = (lj - plj)(plj + pi)e

(p1j+p')d+p1j1d3

+(4; +py)(py —pi)e ,
fij = (j”j - plj)(plj - pi)e(p”7pi)diplhd3

—(Pj—pi)d+pyj,ds
)

(p1j—P.)d‘p111d3

+(A; + Py )Py + Py)e
a; =T,(g;0)a; + I, (p; C)a

ji
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ji r‘]l(ﬂ’jr)‘]l(pir)dr

- rpz(ﬂ'j‘]z(ﬂ“jc)‘]l(pic)_ piJl(ﬂjc)\]z(piC))

j i

( I’)qu’

= Yl(qib)J. r‘Jl(ﬂ'jr)‘]l(qir)dr -

D)
Il
O oo

ox___,c

Jl(qib)jj‘ r.]l(ij r )Y, (q;r)dr

. [bad L(40)[3,(@b)Y, (o, b) (ab), (,b) ]+
= g | oAt @b (ac) - 3 aoran) ]+
: I +Cq|‘]l(ﬂ'jc)[ Z(qu)Yl(qib) l(qib)YZ(qu)]

Note that the upper limit of the index of
summation in (31) and (32) is finite (it
represents the number of terms in the series).
System (31), (32) has to be solved numerically.
Solving (31), (32) we obtain the coefficients

D, and Dy;.
The induced vector potential has the form

A (1, h) =" D,5e "3, (A1), (33)
j=1
where
2 4 A A
D, =———>» a.(D. +D,
2] bZJg(/lb); ]|( 6i 8|)
i (34)

,Uolrojl(ﬁv rpe
ljb JO(/"LJ-b)

The induced change in impedance of the coil is
given by the formula

in @ n
z" = ’, 21, A (1, ).

The induced change in impedance is computed
for the following values of the parameters of the

problem: u, =4-10" 7z, o =3.0Ms/m,c=2.2

(35)

mm,b =55mm,d, =0.5mm,d, =10mm,
I, =4.5mm, h=0.2mm. The results are shown
in Fig. 3.
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Fig. 3. The change in impedance of a single-turn
coil for seven different frequencies.

The real and imaginary parts of the change in
impedance are shown for seven frequencies (1
kHz, 2 kHz, ...,7 kHz from top to bottom).

4 Solution for a Coil of Finite

Dimensions
The induced vector potential for a coil with finite
dimensions shown in Fig. 1 can be computed using
the principle of superposition:

2,
A (r.2) = [ [ A (r, 2,16, M)drodh

hg

(36)

The induced change in impedance of the coil is
given by

zind _ 2A© — )(22 — )IIrAOCO,|(r,z)drdz. (37)
1 1

I(r
Substituting (33) mto (36) and (37) we obtain

-2iz, VAR

e j
= ljjfal(r:)dg

-z,

e J
w2

ind _ 2joriyN

(r,—1)2 (2, -
(m"e )}f}a (©)de

k e

n
:E: Y|k
=1

(38)

where the elements of the matrix Y are not
shown for brevity.
Formula (38) is used to compute the change in
impedance of the coil for seven frequencies
from 1 kHz to 7 kHz. The results are shown in
Fig. 4.
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Fig. 4. The change in impedance of a coil for seven
different frequencies (from top to bottom).

The parameters of the coil are as follows:
z, =0.3mm,z, =2.6 mm,r, =3.5mm,
r,=55mm, N =200. The other parameters

are as in Fig. 3. As can be seen from Fig. 4, the
modulus of the change in impedance increases
as the frequency increases.

4 Conclusion

The method of truncated eigenfunction expansions
is used in the present paper to compute the change
in impedance of a coil due to a cylindrical flaw in a
conducting plate. The problem is solved by the
method of separation of variables. The obtained
solution is semi-analytical since the method of
separation of variables is combined in the paper
with numerical methods in order to compute
complex eigenvalues and solve systems of linear
algebraic equations. The method can be generalized
for other problems with axial symmetry.
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