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Abstract: - In the present paper we consider a coil with alternating current located above a conducting plate 

with a cylindrical flaw. The axis of the coil coincides with the axis of the flaw. The problem is solved by the 

method of separation of variables under the assumption that the vector potential is equal to zero at a sufficiently 

large distance from the axis of the coil. The formula for the induced change in impedance of the coil is 

obtained. Results of numerical calculations are presented for different values of the parameters of the problem. 

The method of solution described in the paper can be applied to other axisymmetric flaws.  
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1 Introduction 
Solutions to eddy current testing problems for the 

case where a conducting medium is infinite in one 

or two spatial dimensions are well-known in the 

literature [1]-[3]. In applications it is often necessary 

to consider conducting objects of finite size. Since 

the method of integral transforms for the solution of 

eddy current problems for infinite media cannot be 

applied in this case, numerical methods (such as 

finite element methods) are used [4]. Recently a 

semi-analytical method (TREE method) is 

suggested for the solution of eddy current problems 

[3]. The main idea of the method is that the 

electromagnetic field is exactly zero at a sufficiently 

large distance from the source of alternating current. 

As a result, one obtains a boundary value problem in 

a finite domain which can be solved by the method 

of separation of variables. Examples of the use of 

the TREE method can be found in [6]-[8].  

    In the present paper we consider the case where a 

coil with alternating current is located above a 

conducting plate with a flaw in the form of a 

cylinder coaxial with the coil. The problem is solved 

by the TREE method where two steps of the 

solution process require the use of numerical 

methods: (a) calculation of complex eigenvalues for 

the case where a good initial guess for the root is not 

known and (b) solution of a system of linear 

algebraic equations. The change in impedance of the 

coil is computed for different frequencies of the 

excitation current. The solution of the given 

problem can be used in practice to model the effect 

of corrosion in metal plates.  

 

2 Mathematical Formulation 
Consider an air-core coil located above a conducting 

plate with conductivity  (see Fig. 1). 

 

 
 

Fig. 1. A coil above a conducting plate. 

 

The parameters of the coil are as follows: 1r and 

2r are the inner and outer radii, respectively, 

12 zz  is the height of the coil ( 1z is the distance 

from the bottom of the coil to the plate), N is the 

number of turns. The plate has a cylindrical hole of 

radius c and height 1d . The axis of the coil 

coincides with the axis of the cylinder. The height of 

the plate is 21 dd  .  
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    The solution of the problem for the coil can be 

found by the superposition principle if we know the 

solution for the case where a single-turn coil is 

located above a plate with a flaw (Fig. 2). 

 
Fig. 2. A single-turn coil above a conducting plate. 

 

Due to axial symmetry the vector potential has only 

one non-zero component in the azimuthal direction. 

It is convenient to introduce four regions 30 RR   

and denote the solutions in each of the regions by 

210 ,, AAA and 3A , respectively. The system of 

equations for the components of the vector potential 

has the form [8] 
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where )(x is the Dirac delta-function, 01  if 

cr 0 and  1 if brc  ,  b is the 

distance from the axis of the coil where the 

electromagnetic field is assumed to be exactly zero, 

and  is the frequency.   

The boundary conditions are 

,3,12,0,0|  iA bri                                    (5) 
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where 213 ddd  and the superscripts a and 

c correspond to air and conductive region, 

respectively. 
The interface conditions at cr  have the form 
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In addition, vector potential is bounded at 

infinity in regions 0R and 3R : 

.as0,as0 30  zAzA        (12) 

 

 

3 Solution for Single-Turn Coil  
In order to find the solution to (1) we consider 

two sub-regions of region 0R , namely, 

}0{00 hzR  and }{01 hzR  .The solutions 

in 00R and 01R are denoted by 00A and 01A , 

respectively. Using the principle of 

superposition we represent the solutions to (1) 

in 00R and 01R in the form 
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where ii DD 21 , and iD3 are arbitrary constants, 

bii /   and i are the roots of the equation 

.0)(1 J                                                      (15) 

The vector potential is continuous at hz  : 

.|| 0100 hzhz AA                                             (16)                                                                              

Integrating (1) with respect to z from h to 

h and considering the limit as  0  in 

the resulting equation we obtain 
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It follows from (13)-(17) that 
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Multiplying (18) by  rrJ j1 , integrating the 

resulting equation with respect to r  from 0 to 

b and using the orthogonality condition 
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the following equation is obtained 
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Applying the same procedure to (19) we obtain 
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Using (21) and  (22) we get 
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Substituting (22) and (23) into (13) and (14) we 

obtain 
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Solution to (2) satisfying (11) has the form 
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where  
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determines complex eigenvalues ip . 

General solution to (3) satisfying (5) is 
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The six sets of constants in (24)-(27), (29) and 

(30),namely, ,ˆ,ˆ, 862 iii DDD
ii DD 109 ,  and iD11 can 

be determined from the boundary conditions (6) 

–(10). Eliminating iii DDD 1092 ,, and iD11 , we 

obtain the following system of algebraic 

equations for the coefficients iD6
ˆ and iD8
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Note that the upper limit of the index of 

summation in (31) and (32) is finite (it 

represents the number of terms in the series). 

System (31), (32) has to be solved numerically. 

Solving (31), (32) we obtain the coefficients 

iD6
ˆ and iD8

ˆ .  

The induced vector potential has the form 
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The induced change in impedance of the coil is 

given by the formula       
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The induced change in impedance is computed 

for the following values of the parameters of the 

problem: ,104 7

0   0.3 Ms/m, 2.2c

mm, 55b mm, 5.01 d mm, 102 d mm,

5.40 r mm, 2.0h mm. The results are shown 

in Fig. 3. 

 
Fig. 3. The change in impedance of a single-turn 

coil for seven different frequencies. 

 

The real and imaginary parts of the change in 

impedance are shown for seven frequencies (1 

kHz, 2 kHz, …,7 kHz from top to bottom).  
    

 

4 Solution for a Coil of Finite 

Dimensions 
The induced vector potential for a coil with finite 

dimensions shown in Fig. 1 can be computed using 

the principle of superposition: 
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given by 
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Substituting (33) into (36) and (37) we obtain 
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where the elements of the matrix Y are not 

shown for brevity. 

Formula (38) is used to compute the change in 

impedance of the coil for seven frequencies 

from 1 kHz to 7 kHz. The results are shown in 

Fig. 4. 
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Fig. 4. The change in impedance of a  coil for seven 

different frequencies (from top to bottom). 

 

The parameters of the coil are as follows: 

3.01 z mm, 6.22 z mm, 5.31 r mm, 

5.52 r mm, 200N . The other parameters 

are as in Fig. 3. As can be seen from Fig. 4,  the 

modulus of the change in impedance increases 

as the frequency increases. 

 
 

 

4 Conclusion 
The method of truncated eigenfunction expansions 

is used in the present paper to compute the change 

in impedance of a coil due to a cylindrical flaw in a 

conducting plate. The problem is solved by the 

method of separation of variables. The obtained 

solution is semi-analytical since the method of 

separation of variables is combined in the paper 

with numerical methods in order to compute 

complex eigenvalues and solve systems of linear 

algebraic equations. The method can be generalized 

for other problems with axial symmetry.  
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