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Abstract: - A new set of boundary conditions for velocity-divergence formulation of incompressible Navier–
Stokes equations are derived.  The boundary is characterized by traction due to friction and surface tension. The 
pressure being unknown is decoupled from the computation of velocity and is determined by post processing of 
the velocity field. Numerical results are presented for - classical lid-driven cavity flow- widely used by 
numerous authors due to its simple geometry and complicated flow behavior and squeezed flow between two 
parallel plates amenable to analytical solution and compared with benchmark and analytical results.  
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1 Introduction 
The coupling of the velocity and pressure fields and 
correct implementation of pressure boundary 
conditions is the main problem in the numerical 
simulation of incompressible viscous flows. The 
real-life problems are usually three-dimensional 
which tremendously increase the computation load. 
Hence, efficient and accurate numerical methods are 
essential to the development of CFD techniques. 
The stream function–vorticity formulation [1] and 
[2], which eliminates pressure calculation, is well 
developed and established in two-dimensional 
incompressible flow analysis. However, the 
boundary condition for vorticity, especially on non-
slip boundaries is difficult to be specified accurately 
and lead to error to the computation. On the other 
hand, the boundary conditions in primitive variables 
(velocity and pressure) formulation of the 
incompressible Navier–Stokes equations could be 
specified without further derivation. The accuracy 
of the various alternatives has been studied 
extensively in the literature. The finite element 
solution of the primitive variables formulation leads 
to a fully coupled matrix equation that provides 
accurate solution by solving both velocity and 
pressure implicitly. Cruchaga and Oñate [3] 
demonstrated a numerical solution by this approach. 
However, large computer resources are required to 
obtain the solution of the coupled formulation 
implicitly. Whereas, the additional computation load 
spends on solving fully coupled solution could be 
avoided by using velocity correction method [4] and 
[5], which decouples the velocity–pressure 

formulation and solves the primitive variables 
independently. 

The velocity correction method (also called 
projection method) was discussed in detail in 
Gresho [6]. In another paper, Gresho and Chan [7] 
demonstrated the finite element solution of some 
viscous incompressible flow problems solved by the 
projection method of which the diffusion and 
convection terms are calculated implicitly and 
explicitly, respectively. This approach has the 
benefit of avoiding the non-linearity caused by the 
convection term which leads to the formation of a 
non-symmetric coefficient matrix and instabilities in 
convection dominated flow. Moreover, the negative 
numerical diffusivity caused by solving the 
convection term explicitly is compensated by using 
a balancing diffusion tensor [7]. 

The present study generally follows a similar 
approach and uses penalty finite element method to 
decouple the incompressible Navier–Stokes 
equation. This method seeks to eliminate the 
continuity equation to get rid of pressure - the most 
unusual quantity in the N-S equations. It is 
subsequently determined from the velocity at time 
‘t’ without any time lag. Unlike the finite difference 
method and the spectral method, the finite element 
method is convenient for handling arbitrarily shaped 
domains and variable resolution meshes [3]. The 
adopted mathematical model and its implementation 
is discussed in detail in the following sections. 

The accuracy of the solution, however, involves 
specification of the proper boundary conditions [6-
7]. Using penalty method neither the pressure nor its 
normal gradient on the boundaries are known until 
the velocity field is determined. Prescription of any 
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erroneous boundary stresses may result in distortion 
of solution in the interior of the domain. Peyret and 
Taylor [8], in their book on computational fluid 
mechanics, also identify the specification of correct 
pressure boundary conditions as the primary 
difficulty.  

In this paper we replace the pressure boundary 
conditions by gradient of velocity to avoid distortion 
of solution and employ fully discrete approximation 
procedure for the solution of transient Navier-Stokes 
equations based on Crank Noclson scheme in time 
and finite element method in space. It is then 
applied to classical lid-driven square cavity flow 
and squeezing flow between parallel plates. The 
results are compared with benchmark results 
published in the literature 

 
 

2 Governing Equations 
The governing equations for isothermal, viscous 
incompressible flow over a domain enclosed by the 
boundary  21 Γ∪Γ=Ω∂   are:  
    
 

( ) Ω+∇+∇−=∇+
∂
∂ infp

t
uuuu 2

Re
1.  (1) 

       
        Ω= indiv 0u  (2)  

Where u is the velocity vector, p is the kinematic 
pressure (pressure divided by constant density), Re 
is Reynolds number which is reciprocal of the 
kinematic viscosity, f is body force vector and t is 
the time. The effect of stresses in Eq. (1) is 
represented by and terms, which are gradients of 
surface forces, analogous to stresses in solids. The 
term is pressure gradient and arises from normal 
stresses that turn up in almost all situations and 
conventionally represents the shear effect for 
incompressible flow.  

The equation (1) comprises of time-dependent 
system of nonlinear partial differential equations in 
primitive variables. It can be viewed as the 
respective equations for the velocity components, 
implying that the divergence-free condition (2) must 
be solved for pressure which is particularly difficult 
because the pressure does not appear explicitly in 
this equation. Presence of non-linear, non-
symmetric convective terms in equation (1) presents 
another difficulty particularly at high Reynolds 
number flows which are convection dominated. 
Equation (2) is more specifically a statement of the 
conservation of mass. Together, the set of equations 
(1) and (2) represent a constrained coupled problem. 
Any numerical solution to N-S equations (1) apart 

from verifying the dynamic constitutive equation 
has to satisfy in addition the incompressibility 
condition (2).  

 
 

3 Boundary Conditions   
For conciseness, we breakup into two subsets: and, 
over which displacements and stresses, respectively 
are specified. Two transitional relations are to be 
satisfied for fluid at a material boundary i.e. 
continuity of intensity across the surface and the 
continuity of normal component of flux vector. For 
viscous incompressible flow, momentum is the 
transportable quantity across the interface; hence, 
specifications of boundary conditions at a surface 
involve continuity of velocity and continuity of 
stress.  
 
 
3.1 Continuity of Velocity   
In case of viscous flow the boundary conditions for

1Γ=Ω∂    i.e. on solid walls, the velocity must 
satisfy both no-slip and no-flux conditions. No slip 
condition requires that the tangential component of 
the fluid velocity be the same as the tangential 
component of the velocity of the surface i.e.

t.ut.u =               (3) 

Where, u  is a given function describing the 
velocity of the boundary  1Γ  and t is a unit vector 
tangent to the boundary. This condition is used 
almost universally in modeling of viscous flows and 
is essentially a conservation of tangential velocity; if 
the boundary is stationary,  0=t.u  and by 
equation (3) above we have,  0=t.u  giving

0== vu .  Similarly, no-flux condition requires 
that the normal component of the velocity of the 
fluid must be same as the normal component of the 
velocity of the boundary i.e. 
                                                                     
        n.un.u =  (4) 

Where, n denotes the outward pointing normal 
on Γ  . If this were not being the case, the resulting 
discontinuity would essentially be a rupture or 
shock in the medium and we have not assumed any 
event that would cause such a phenomena.  Further, 
any discontinuity across a boundary would result 
either in a transport of the differences of fluid across 
the boundary, which would not then be 
impermeable, or there would be an unbounded 
positive or negative accumulation of fluid by the 
wall. Boundary condition (4) is known as no flux or 
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no penetration condition. Combining Eq. (3) and (4) 
we have 

11 ong Γ=u    (5) 
The boundary conditions (5) imply that the fluid 
velocity must match the velocity of the rigid 
boundary at every point on it. It represents essential 
or Dirichlet boundary conditions which assign 
values to dependant variables. It is obtained from 
kinematic considerations - a condition which relates 
the motion of the boundary to the fluid velocities 
and is applicable on rigid and symmetry planes of 
the boundary 1Γ .  
 
  
3.2 Continuity of Stress  
Boundary tractions and contact forces (because of 
friction and surface tension) acting on Γ2 lead to 
pressure or stress boundary conditions.  Considering 
a small area dA bounded by a closed contour C and 
characterized by surface traction tn and surface 
tension γ, the net force on the element dA is given 
by          
         ∫∫ +=

CSs dldA γntf   (6) 

Where, dl is small length along the curve C.  
Although the forces in the conservation of linear 
momentum equation may be left in terms of surface 
tractions, it is more convenient and customary to put 
the stress vector nt  in terms of stresses on the 
planes perpendicular to the coordinate axes, i.e. in 
terms of the components of the stress as 
         
 T.nt =n      (7) 
Where,  T  is Cauchy stress tensor (normalized by 
density). The elements of T  are associated with 
normal and tangential forces and can be expressed 
as the sum of mean hydrostatic stress tensor, pI 
which tends to change the volume of the fluid 
element; and deviatoric stress as 
        
  ( )( )Tp uuIT ∇+∇+−= ν   
 (8) 
Where, I is the identity tensor. The part Ip−
represents the stresses due to compression of the 
fluid. The part ( )( )Tuu ∇+∇ν represents viscous 
stress tensor which tends to distort the body and 
depend on the velocity of the fluid. It gives the force 
in a direction parallel to the surface. Substituting the 
expression for stress tensor in (7) and integrating, 
we have 

                                     
( )( ){ }∫∫ ∇+∇+−=

S

T

S n dA.uupdAt nI ν   (9) 

Also form Stokes theorem, we have 
       
       

( )[ ] dA.dl
S

ss

C ∫∫ ∇+∇−= γγγ nn  (10) 

Where, ( )∇−∇=∇ .nns  is the component of 
gradient operator in the local plane of the interface.

n.s∇  is the mean curvature of the interface which 
can be expressed as the sum of two radii of 
curvature R1 and R2 of the interface in any two 

orthogonal planes as 







+=∇

21

11
2
1.

RR
s n  . On 

the right hand side (Eq. 10), ( )nn .s∇γ is the 
normal curvature force per unit area and ( )γs∇  is 
the tangential stress associated with gradient of 
surface tension, both of which will vanish, if either 
the curvature of the interface or the surface tension 
vanishes. Using equations    (9 -10), the surface 
force fs become   
         

( )( ){ } ( )[ ] dA..dA.pf
S

ss

S

T
s ∫∫ ∇+∇−+∇+∇+−= γγν nnnuuI  (11) 

Since dA is arbitrary, the integrand must vanish 
identically giving  
                                     

( )( ) ( ) ( ) 2
ss on...p Γγγν ∇+∇−∇+∇+−= nnnuunσ T    (12) 

Where, σ is the total stress vector acting on a 
plane perpendicular to the coordinate axis having 
the unit normal n. It serves as a traction boundary 
condition at the free surface, typically 
complementing the Navier-Stokes equations at the 
far field. The stress vector σ may not necessarily be 
perpendicular to the plane, i.e. parallel to n, and can 
be resolved into scalar components i.e. normal and 
tangential (shear traction).  

 
 

3.3 Normal Stress  
The normal stress component, σn of any stress 
vector in terms of the component of the stress tensor 
is the dot product of the stress vector and the unit 
vector n normal to the surface, thus 
        

nσσ .=n      (13) 
Using equation (13), we have 
             

( )( ) ( ) ( )[ ] nnnnuunσn ....p SsT γγν ∇+∇−∇+∇+−=
       

( ) ( )( ) ( ) ( ) ( ) ( ) nn.nnn.nuun.n ..p SST γγν ∇+∇−∇+∇+−=  
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( )( ) ( ) ( ) nnuu ..p SST γγν ∇+∇−∇+∇+−=    

( ) ( ) ,nnnu ...p SS γ∇+∇γ−∇ν+−=     

    Since           ( )Tu    u ∇=∇                      (14)     
Noting that  ( ) 0=∇ n.γS  since is tangent to the 
surface, the normal boundary condition (14) can be 
written as 

( ) 2
S g..u =∇γ−∇ν+− nnp  on   Γ2       (15) 

This condition indicates that the interface curvature 
times the surface tension and pressure must balance 
the given normal stress. In the case where 2Γ   is a 
planer surface, ,0. =∇ ns   the equation (15) 
reduces to 
           

22 ong.u Γν =∇+− np                (16) 
 
  
3.4 Tangential Stress   
The tangential stress component, σt of any stress 
vector σ in terms of the component of the stress 
tensor is given by 
           
  tσσ .=t      (17) 
Where, t is a unit tangential vector. Using (12), we 
have 
   
 ( )( ) ( ) ( )[ ] t.n.nuunnσt γγν SsTp ∇+∇−∇+∇+−=

( ) ( )( ) ( ) ( ) ( ) ( ) t.t.nn.t.nuut.n γγν SSTp ∇+∇−∇+∇+−=  
  2Γ∇= insγ        (18) 

Which, indicates that the tangential stress at a 
surface must be balanced by the gradient of local 
surface tension. The effect of surface tension applies 
only in the normal direction since the attractive 
forces on the molecules between the two mediums 
will always apply in the direction normal to the fluid 
interface.  Since no such difference in potential 
forces exists in the tangential direction, equation 
(18) reduces to 
         
 2on0 Γ=tσ       (19) 

In fact, for incompressible flows, no boundary 
conditions for pressure are necessary. It is closely 
related to continuity equation and when the 
continuity equation is dropped or eliminated, the 
pressure term will also disappear as is shown later.  
 

In case of time dependant problems, the fluid is 
also assumed to satisfy the initial condition   
      

  Ω== int 00 uu  
 (20) 
This condition is used to define the initial state of 
the domain Ω. However, the initial velocity field 
must be solenoidal, i.e. 0. 0 =∇ u  .  A typical 
divergence free condition correspond to a stationary 
flow is u0 = 0.  For pressure, no initial conditions 
need to be specified as no time derivatives of 
pressure appear in the governing equations. Thus we 
have the boundary conditions  
         

11 ong Γ=u  ,     (21) 
    on Γ2   and        

;g.u 2=∇+− nνp 0=tσ             (22) 
         

Ω== int 00 uu    (23) 
Which together with governing equations (1-2) 
completely specify the problem. 
 
 
4 Mathematical Formulations  
In penalty function formulation [5], the continuity 
equation (2) is modified by adding a small term 
containing pressure as    
       

0/ =+ udivP λ      (24) 

Giving,  udivP λ−=          (26) 

Where, βµλ Re=  is penalty parameter, Re 
and µ are respectively the Reynolds number and 
viscosity of the fluid and β is arbitrary large number, 
say, 107 1010 to  in double precision calculations.. 
The added term introduces damping to the 
continuity equation, reduces the divergence and help 
in recovering the incompressibility quickly. 
Eliminating the pressure P the governing flow 
equation (1) results in   

         

( ) ( ) fdiv
t

=∇−∇−∇+
∂
∂ uuuu λ2

Re
1. u     (27) 

Strict compliance of incompressibility constraint 
(Eq. 2) is abandoned in view introduction of 
penalized term in the momentum equation; thus 
eliminating the issue of a pressure boundary 
condition associated with the original primitive 
variable formulation. 
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The standard weak form is obtained by the 
application of weighted residual method i.e. by 
decretizing the equation (27), multiplying it by an 
arbitrary test function w and integrating, we have  

                                                        

( ) ( ) Ω=Ω







∇∇−∇−∇+

∂
∂

∫∫ ΩΩ
dwdw

t
fuuu .

Re
1. 2 λuu  (28) 

Integrating equation (28) and using the relations 

  ( ) ,.wwdivw 2 uuu ∇∇−∇=∇  

 ( ) ( ) uu ∇∇−∇
∂
∂

=∇∇ .ww
x

.w u  

together with Gauss divergence theorem  

∫∫ =
ΓΩ

ΓΩ ,d.ddiv naa  with n as outward 

normal  and choosing, a =   we obtain the weak form 

       

( ) ( ) Ωλ
Ω

d.w.w
Re
1).(ww

t∫ 







∇∇+∇∇+∇+

∂
∂ uuuuu

∫∫∫ ΓΓΩ
Γ∇+Γ∇+Ω= dwdwdwf nn. .

Re
1 uu λ      

(29) 

Once the elementary matrices are evaluated and 
assembled, the Eq. (29) can be expressed as  
                       

[ ] [ ] { } { }FKKM =++






 uu λ

.
  (30) 

Where M is the standard mass matrix, K is 
viscosity matrix arising from viscous terms and is so 
called penalty matrix having the same structure as 
K. The term F represent aggregate force produced 
by body forces and stresses (normal and tangential) 
acting on the surface. It may be observed that 
matrices K and are proportional to   and   
respectively. In order to impose compressibility 
constraint, the parameter   must be selected 
sufficiently large so that it plays a significant role to 
yield correct results. If   is too small, compressibility 
and pressure errors will result and if too large it may 
result in numerical ill conditioning. Indeed, 
computations with this approach show that the 
velocity behaves rather well, but the pressure 
produces unrealistic wiggles (Sani et al 1981). 
These wiggles have been avoided by resorting to 
selective reduced integration. 

Crank-Nicolson scheme [7], with step size ∆t = 0.1, 
has been used to reduce the parabolic equation (30) 
to ordinary differential equations. The scheme is 
unconditionally stable, even though it is slightly 
more complicated and computationally intensive.  
The ordinary differential equations are then solved 
using Gauss elimination scheme iteratively starting 
with pseudo solution u0 satisfying the divergence-
free condition (2). After each time step, the pseudo 
solution uj is made equal to the computed solution 
at the previous time level. To obtain steady state 
solution, the process was continued until the 
difference of velocity between two consecutive time 
steps becomes negligibly small i.e. 

max
1 ε≤− −jj uu . 

 
 
5 Results and Discussions  
The performance of the above mentioned numerical 
model was tested with two common flow cases: lid-
driven cavity flow squeezing flow between parallel 
plates.  
 
 
5.1 Lid-driven cavity  
The first case is the classical lid-driven cavity flow 
which is commonly adopted for validating newly 
developed CFD models. Due to its simple geometry 
and complicated flow behavior, it has been widely 
used by numerous authors viz. Ghia et al. [1], 
Burgraff [9], Young and Lin [10], Botella and 
Peyret [11], Eldho and Young [12], etc. Fig. 1 
shows the geometry of the computational domain 
and the adopted boundary conditions. The two-
dimensional domain is a square cavity of width H 
that is fixed with three stationary and impermeable 
walls. The flow inside the cavity is driven by the 
upper sliding fluid moving with constant velocity 
Uref. The flows at the two upper corners are set to 
zero velocity and the first nodes from the corners 
are set to Uref/2. The Reynolds number Re is based 
on the reference velocity Uref and the reference 
length scale H (i.e., Re = UrefH/ν).  

 

 

 

Fig. 1: Geometry and Boundary Conditions for the 
Square Cavity 
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Numerical results for different Reynolds 
numbers were obtained by adjusting the kinematic 
viscosity (ν) while the reference velocity and length 
scales were fixed. In the present study 64×64 and 
128×128 grid system were used for Re⩽400 and Re 
= 1000, respectively. A converged solution for Re 
=1.0 (not shown here) with an assumption of u0 = 
v0 = 0 was obtained, which was then used as the 
initial guess for the case of Re =100, and so forth. 
For the comparison with other published results, the 
length scale is normalized by H while the computed 
velocity and pressure are normalized by Uref and 
Uref2, respectively. 

Fig. 2 shows the computed results with Re = 10, 
100, 1000 and 5000 along the horizontal and 
vertical lines passing through the geometric center 
of the cavity. For comparison, the computed results 
of Ghia et al. [1] are also shown. Good agreements 
between the two computations for both streamwise 
and spanwise velocity profiles are obtained that 
ensure the accuracy of the adopted method.  

 

Fig. 2:  Velocity profiles along central horizontal 
and vertical line of the cavity 

The magnitudes of maxima and minima of both 
velocity profiles is also indicated in Table 1.  The 

minimum of u along the center of the vertical line at 
x = 0.5 is denoted by umin.  Similarly maximum 
and minimum of v along the horizontal line at y = 
0.5 are denoted by vmax and v min respectively. 
The results show that the locations of these maxima 
move towards the stationary walls of the cavity as 
the Reynolds number increases.  

Table 1: Characteristic values of the solution 
extrema on the horizontal and vertical line through 
center of the cavity

 

Though the results are obtained for Reynolds 
numbers as high as 5000, however, it can be noticed 
that as the Reynolds number increases, the 
convergence becomes slow owing to the 
diminishing thickness of the viscous layer, thus 
increasing the number of iterations required to attain 
the same degree of accuracy (εmax =1.0 x 10-6 ). 
This behavior is evident from Table (1) where, 
results for velocity along the vertical line through 
the center of the cavity are given.  

The pressure was computed once the velocity 
profile was obtained.  The pressure variation along 
the horizontal and vertical lines through the cavity 
center is shown in figure 3 for Re =  100, 1000 and 
5000.  The solution in this case can be expected to 
be of good accuracy.  

    

Fig. 3:  Pressure profiles along central vertical and 
horizontal lines of the cavity 

The comparison of pressure variation is also 
made with the model results of Botella and Peyret 
[13] for Re = 1000, wherein, the results of pressure 
field are given after setting the pressure equal to 
zero at the center (0.5, 0.5) of the cavity.  Therefore, 
for the sake of comparison, free scale factor is 
chosen to make the pressure zero at the center of the 
cavity. The comparison is shown in figure 4 at Re = 

    Re P-FEM Solution Ref. (20) Solution 

umin vmax vmin J umin vmax vmin J 

  10 -0.1950 0.1736 -.01803   186 - - - - 

 100 -0.1921 0.1647 -0.2243   213 -0.2058  0.1750 -0.2453 - 

1000 -0.2973 0.2910 -0.4240   839 -0.3828  0.3709 -0.5155 - 

5000 -0.2912 0.2991 -0.4066  7500 -0.4364  0.4364 -0.5540 - 

 

Latest Trends in Engineering Mechanics, Structures, Engineering Geology

ISBN: 978-960-474-376-6 27



 

 

1000. The agreement is seen to be good with the 
model results. As is obvious from the figures, the 
small difference near the ends is caused by effect of 
element division in the present investigation. 
However, both the results show a similar tendency, 
thus verifying the validity of the method. 

    
Fig. 4:  Comparison of pressure profiles along 
central vertical and horizontal lines of the cavity 
 
 
5.2 Squeezing flow between parallel plates  
The second problem considered to test the capability 
of the present model for handling both the Dirichlet 
and Neumann boundary conditions is the squeezed 
flow between two parallel plates. The plates are 
assumed to be moving symmetrically about the line 
of axial symmetry towards each other at a constant 
velocity, v0 = 1.  This would impart momentum to 
the fluid and would set up a velocity gradient in the 
fluid.  
 
Figure 5 shows a schematic of computational 
domain and the dimensions for the two dimensional 
fully developed flow. The outflow boundaries are 
located at x = ± L. The plates are considered long 
enough for the velocity profile to become 
invariants at the exit plane 

 

Fig. 5: Dimensions of the Modeling Region and 
Boundary Conditions  

At the moving walls, By ±= the Dirichlet 
boundary condition 22 will be applicable i.e. 
                                  

10 onvvand0u Γ==  (31) 

The outer boundaries are chosen to be far 
enough so that the flow at the exit planes is 
fully developed. No traction boundary 
conditions at these planes follow from equation 
22 which is:    

            
20.. Γ=∇+− onunp n   (32) 

The problem is also transient in nature and has 
to be solved with appropriate initial conditions 
which has been taken as    
        

Ωin0tat0 ==u   (33) 

The two dimensional analysis are performed 
with fluid parameters   and Reynolds number 

1= eR  . The instantaneous velocity field is 
obtained by solving the Eq. (1) together with 
boundary conditions for this geometry.  The 
results are shown in Figures 6 and 7. Figures 6a 
shows the variation of velocity u with y at x = 
6, whereas, Figure 6b shows the variation of 
velocity component v with y. Clearly the 
velocity v varies from -1.0 at the boundary to 
zero at the center as anticipated. The 
comparison of computed velocity profiles with 
the approximate analytical solution of Nadai 
[13] shows an excellent agreement between the 
two.    

       

Fig. 6:  Comparison of computed velocity 
profiles with analytical solution 

The pressure has been calculated by post-
processing the velocity field using 

.).( uP ∇−= λ The variation of pressure along 
the length of plate has been plotted at  

0yy ±= , where y0 is the y -coordinate of  the 
Gauss point.  Figure 7a shows the plot of 
pressure variation at 02.0x ±=  02.0y ±=
along the length of the plate, whereas, figure 7b 
shows the pressure variation across the gap 
between the plates at  . The pressure at the walls 
is marginally higher than that in the central 
core. These figures indicate that in this case 
both x/ ∂∂P  as y/ ∂∂P  are non zero.   
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Fig.7: Comparison of computed pressure 
profiles with analytical solution. 

 

6 Conclusions 
We present the successful application of penalty 
finite element method to viscous incompressible 
flow problems governed by Navier - Stokes 
equations. The penalty variational formulation using 
finite element approximation has been constructed 
and discussed.  The solution requires specification 
of boundary conditions about the velocity field and 
its velocity gradients at the natural boundaries of the 
flow domain. Formulation of such boundary 
conditions on synthetic boundary characterized by 
traction due to friction and surface tension has been 
discussed and investigated in greater detail. 

The present numerical model was validated with 
two flow cases: flow inside a driven cavity and 
squeezing flow between two parallel plates. The 
calculated results compared well with benchmark 
numerical and analytical results. With good 
agreement between the two, it is concluded that 
penalty finite element method is a convenient way 
to satisfy the incompressibility constraint and to 
eliminate the pressure as an unknown from the 
formulation, thus reducing the number of degrees of 
freedom in the discretization. It can be successfully 
applied to solve incompressible viscous as well as 
inviscid fluid problems over a wide range of 
Reynolds numbers.  However, as the Reynolds 
number increase, the convergence become slow and 
need more iterations to acquire the same degree of 
accuracy.  
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