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The term predictive control designates a class of control methods which are suitable for control of various kinds 

of systems. Predictive control is essentially based on discrete or sampled models of a process. It is possible to 

use various models which describe a real system sufficiently accurately. The model is used for computation of 

predictions of the systems output. On the basis of the predictions and past values of the input and output of the 

system we can optimize the control process. A cost function which is optimized is a function of difference of 

the manipulated variable. An analytical solution can be obtained by differentiation of the cost function. One of 

the major advantages of predictive control is its ability to do on-line constraints handling in a systematic way.  

For a constrained case the analytical solution may not be located in an allowed area and we need to use another 

way of optimization. The optimization problem is necessary to be solved in each sampling period, which is 

computationally demanding. Various kinds of optimization algorithm can be used. The contribution is focused 

on an analysis of the cost function and effects of constraints to an allowed area. The analysis can help with 

choosing of suitable methods and algorithms.   
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1 Introduction 
The essential idea of predictive control [1], [2], 

[3], [4] is based on the possibility to predict 

behaviour of a system using its model. Predictive 

control can be divided into several parts.  

A predictor defines relation between past and 

future values. There are a lot of methods how to 

obtain prediction equations. These methods are 

based on a model of the controlled system. A range 

of various models can be used (for instance transfer 

function, ARMA, neural network etc.). A widely 

used model in predictive control is the CARIMA 

model [5] which directly contains a difference of the 

manipulated variable. This model can be written in 

the following form  

 

     kn
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+k=BukAy

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where polynomials A and B describes a transfer 

function of the system. Δ = 1 – z
-1

, y is the output 

variable, u is the manipulated value and n is a 

nonmeasurable noise which is assumed to have zero 

mean value and constant covariance. C is a 

colouring polynomial. 

On the basis of this model the predictor can be 

calculated. The predictor [6] can be divided into two 

parts: a free response, which is that part of the 

systems response which is determined by past 

values of the systems inputs and outputs, and a 

forced response, which is determined by future 

control increments. 
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where y
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 and  are future values,   and  are 

past values. Matrices G  and X  contain 

coefficients which are necessary to be calculated in 

order to obtain the predictor.  

The predictor can be also written in the form 

shown in eq (3)  

0y+uG=y ~Δˆ  (3) 

where 0y  is the free response of the process.  

Matrix G  contains values of the step sequence 

and it can be written in the following form  
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Another part of predictive control is a cost 

function which can be defined as a sum of squares 

of control errors and squares of differences of the 
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manipulated variable. The cost function can be 

written according to eq. (5) as 

    uuλ+wywy=J
TT ~~-ˆ-ˆ  

    uu+wy+uGwy+uG=J
T

0

T

0

~~-~Δ-~Δ λ  
(5) 

where λ  is a weighting factor which is another 

degree of freedom.  

It can be also written in the form, as presented in 

eq. (6)  

uHuugJ
TT ~~~20  c  (6) 

where g  is a gradient of the cost function and 

H  is the Hessian matrix. The gradient and Hessian 

matrix can be written in the form shown in eq. (7)  

 

 wyGg 0

TT   

IGGH
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(7) 

The solution can simply be obtained by 

derivative of the cost function. Equation (8) 

considers the vector of the manipulated variable  

gHu
1~  

 0ywKu ~  
(8) 

where   T1T
GλIGGK


 .  

Only the first element is used and the whole 

procedure is repeated in the next sampling period. It 

is called the Receding Horizon concept.  

There are three important horizons in predictive 

control. N1 and N2 are minimum and maximum 

prediction horizons. It means horizons over which 

are predicted output values.  Nu is called a control 

horizon and it defines length of the vector of control 

increments.  

In technical practice often occur constraints of 

variables which causes that the analytical solution of 

the cost function is located outside the allowed area. 

In a constrained case alternative methods of 

optimization must be used to obtain the solution. 

The optimization must be as effective as possible.  

In the past, the predictive control was mostly 

applied for control of systems with large time 

constants. Nowadays it is also possible to apply it 

for control of systems with faster dynamics because 

of increasing computational power. But the 

optimization problem must be solved in each 

sampling period and computationally effective 

algorithms are required. The aim of the paper is to 

analyze the cost function and effects of constraints 

to an allowed area. 

 

 

2 Constraints and cost function 
Computational costs of solving the optimization 

problem is dependent on a shape of the cost function 

and the allowed area.  

2.1 Cost function 
As it is presented in eq. (5) the cost function is a 

quadratic function with the shape depicted in Fig. 1.  

 
Fig. 1. Cost function 

Dimension of the cost function is equal to Nu + 1. 

It is not possible to show the n-dimensional function 

in 3D space in case Nu > 2. But it is possible to 

depict its cuts with fixed values in other axes. In 

Fig. 1 is depicted the cost function for the first 

sampling step of the control process. In the 

following steps the cost function looks similarly. 

According to its shape it can be solved by the 

derivative. The cost function is unimodal with one 

local minimum.  

2.1 Constraints 
The values of variables in a real system are 

usually constrained. The constraints are mostly 

given by security conditions or technical limits. In 

this case the cost function is limited by a specific 

area.  

We can consider three types of constraints. The 

first one is constraint of difference of the 

manipulated variable. It can be written in the form 

represented in eq. (9).  

maxmin uuu ΔΔΔ   (9) 

It can be also expressed by a set of equations 

(10) 
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The system of equations can be written in a 

matrix form, as presented in eq. (11) 
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where I is an identity matrix of dimension Nu × 

Nu.  

Constraints of difference of the manipulated 

variable leads to the shape of the allowed area in the 

form of nD-cube which is depicted in Fig. 2.  

 
Fig. 2. Constraints of difference of manipulated 

variable 

The red point is a minimum obtained by 

derivative of the cost function. The green point is 

the global minimum of the allowed area.  

The next type is the constraint of the manipulated 

variable. It can be expressed by equation (12).  

maxmin uuu   (12) 

A set of equations is in form (13).  
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And the matrix form can be expressed as follows  
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where T  is a lower triangular matrix with ones 

in the non-zero positions.  

The shape of the allowed area is depicted in Fig. 

3.  

 

Fig. 3. Constraint of manipulated variable 

As it can be seen in figure 3 the range of  ku  

is in the interval form.  But the next difference value 

 1 ku  is dependent on the previous value 

of  ku . The interval of the vertical axis is being 

continuously moved which causes the shape 

depicted in Fig. 3. Every next interval of other axes 

in case of a multidimensional problem  is also 

moved according to previous values of differences 

of the manipulated variable. The allowed area is 

formed as a subspace in the nD space.  

The third type of constraint is defined as an 

interval of the output variable which can be written 

in the following form 

maxmin yy y  (15) 

There must be defined a relation between y and 

 ku . Equation (3) can be substituted to equation 

(15) and the constraint is expressed as follows 

max0min y+uGy y ~Δ  (16) 

Equation (16) can be modified  
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The matrices A and b take the following form  
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If the mapping between manipulated and output 

values is feasible then the interval of output 

constraint corresponds to the interval of the 

manipulated variable constraint. In this case the 
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shape of the allowed area, which is depicted in Fig. 

4, is similar to the shape depicted in Fig. 3.  

 
Fig. 4. Constraint of output variable 

It is obvious that positions of the local and global 

minimums can be different and they are dependent 

on the cost function and constrains. The constraints 

can be combined each other and the allowed area is 

in the intersection of them, which is depicted in Fig. 

5.  

 
Fig. 5. Combination of constraints 

The allowed area is continuous but we can 

consider other types of constraints e.g. discrete 

values, multi-intervals etc. In these cases a solution 

of the optimization problem may be more 

complicated because of the shape of the allowed 

area.  

 

 

3 Simulation and algorithms 
2.1 Simulation 

As a simulation example is presented control of 

the following system of the second order  

 
  180.40129.519

88.35




ss
sG  (19) 

The horizons were set as N1 = 1, N2 = 3 and Nu = 

2 in order to have a possibility to show graphs (3D 

cost function and 2D allowed area).  

The constraints were set to the values shown in 

eq. (20).  

5.35  u  

120  u  

3100  y  
(20) 

The optimization problem was solved by Hill 

Climbing algorithm [7]. Time responses of control 

are depicted in Fig. 6 and Fig. 7.  
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Fig. 6. Setpoint and output variables of control 

process 
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Fig. 7. Manipulated variable of control process 

We can study the shape of the allowed area and 

values of the manipulated variables. It is obvious 

that the control error for k = 1 is large and there are 

also defined constraints of difference of the 

manipulated variable, manipulated variable and 

output variable. The shape of the allowed area is 

depicted in Fig. 8.  
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Fig. 8. Allowed area for k = 1 

It is obvious that the analytical solution is located 

outside the allowed area. For the unconstrained case 

the analytically computed value is 

  4437.10 ku . But the solution which was 

found within the allowed area is 3.5 because 

constraint of difference of the manipulated variable 

is 5.3max u .  

The allowed area for k = 2 is depicted in Fig. 9. 

 
Fig. 9. Allowed area for k = 2 

In this step the analytical solution is much closer 

to the solution obtained inside the allowed area. The 

allowed area for k = 3 is depicted in Fig. 10.  

 
Fig. 10. Allowed area for k = 3 

In the third step the analytical solution is inside 

the allowed area. In most cases the analytical 

solution is inside the allowed area. In these cases the 

solution can be obtained by derivative of the cost 

function. In other cases must be used a suitable 

algorithm in order to find a solution inside the 

allowed area. These cases are mainly located around 

sudden changes of the reference signal.  

2.1 Algorithms 
The searching of the solution can be divided into 

two phases. In the first stage is being searched an 

arbitrary solution which is placed inside the allowed 

area. The second phase consists of searching the 

best solution within the allowed area.  

 
Fig. 11. Searching solution inside the allowed area 

The simplest way how to find the allowed area is 

the random walks method [7]. This method is not 

suitable for solving of higher dimensional problems 
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because its efficiency rapidly decreases with 

increasing dimension.  

The allowed area can be also found by the 

method of penalisation of the cost function outside 

of the allowed area (soft-constraints
1
). The question 

is how to penalise the cost function in order to find 

the allowed area quickly. For example 

multiplication of the cost function only increases 

value of the cost function but the gradient may stay 

similar. In this case the gradient methods may not 

converge to the allowed area. The analytical 

solution can be used as the initial estimate. Also 

point [0,0] is a good candidate to be inside the 

allowed area. But zero values of difference of the 

manipulated variable correspond to the constant 

value of the manipulated variable and the free 

response of the system may not fulfil requirements 

on constraints of the output variable.  

The next method how to find the allowed area is 

to solve a system of inequalities with fixed future 

values of difference of manipulated variables.  

The second phase can be solved by gradient 

methods because of the shape of the cost function. A 

general equation of the gradient method can be 

written in the form shown in eq. (21) 

      xgfixix 1  (21) 

where   xgf  is a function of the gradient of 

the cost function.  

One of the most suitable methods is quadratic 

programming [8], [9]. This method is often used in 

predictive control but it is also possible to use other 

methods which enable to solve this problem such as 

evolutionary algorithms [7]. Disadvantage of 

quadratic programming is higher computational cost 

and computational time.  

In cases when a model, initial conditions and a 

setpoint are known the problem can be solved 

offline [10].  

 

 

4 Conclusion 
In the paper were introduced basic aspects of 

solving the optimization problem in predictive 

control. In an unconstrained case it is possible to 

find the solution by derivate of the cost function. 

The cost function is a quadratic function, which is 

unimodal, and it has one local minimum. In a 

                                                 
1
 In case of soft-constraints cost functions of points 

which are located outside of the allowed area are 

penalized.  

constrained case a shape of the allowed area 

depends on a type and values of constraints. In this 

case the analytical solution may be located outside 

of the allowed area. There are lots of algorithms 

which enable to solve this problem. One of the most 

effective methods is called quadratic programing but 

it is also possible to solve this problem by many 

other methods for example by methods based on 

evolutionary algorithms. The crucial issue of the 

optimization are computational costs because it 

must be solved on-line in each sampling period. 

Searching of the solution can be divided into two 

phases. In the first phase there must be found the 

allowed area. In the second phase there must be 

found the best solution inside the allowed area.  
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