
Performance Evaluation of Apriori Algorithm on a Hadoop Cluster

JÁNOS ILLÉS
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Magyar tudósok krt. 2. (building Q), 1117 Budapest

HUNGARY
janos.illes@aut.bme.hu

ISTVÁN VAJK
Department of Automation and Applied Informatics

MTA-BME Control Research Group
Budapest University of Technology and Economics
Magyar tudósok krt. 2. (building Q), 1117 Budapest

HUNGARY
vajk@aut.bme.hu

Abstract: Frequent Itemset Mining is a well-known concept in data sciences. If we feed frequent itemset miner
algorithms with large datasets they become resource hungry fast as their search space explodes. This problem is
even more apparent when we try to use them on Big Data. Recent advances in parallel programming provides
good solutions to deal with large datasets but they present their own problems when we try to modify existing
data mining algorithms for the new paradigms. The Apriori-algorithm is a classic solution for mining frequent
item-sets. In this paper, we provide a parallel implementation of the Apriori algorithm for the Hadoop platform.
We introduce a method to measure the performance of the distributed algorithm. In our experimental results we
find choke points in the algorithm and provide resolutions.

Key–Words: Hadoop, MapReduce, Apriori-algorithm, Frequent itemset mining, Cloud computing

1 Introduction

Intelligent analysis of large databases and finding in-
teresting relations in them is an important field of
knowledge discovery and data-mining.

Finding frequent item-sets (Frequent Itemset
Mining, FIM) is an essential part of exploring in-
teresting connections and analyzing data. FIM tries
to find information based on how frequent the inter-
esting events occur in the database. These occur-
rences can be various things, all based on what kind
of data the underlying database contains. In general,
the source of this information can vary from items in
real or online shopping carts to databases of user gen-
erated metadata, like tags or simple log files generated
by web-servers in large quantities. When we decide
that an itemset is frequent or not depends on a user-
submitted minimal threshold. There are various algo-
rithms [1, 2, 3] for mining frequent items and item-
sets in databases, but those tend to fall short if we try
to feed them with really large volumes of (big) data.

Mining really large databases can be problematic,
especially if the data does not fit in the available mem-
ory of one computer. This problem can be solved by
using algorithms that read the input database more
than once and count/store interesting parameters in-
stead of keeping the database in the memory.

Recent developments both in the academic and
commercial sectors resulted in increased database
sizes. Doing non-trivial calculations on these

databases becomes increasingly difficult once it grows
out of the available memory of a single machine.

Distributed systems are readily accessible more
than ever. It comes natural that any computer bought
in the recent years contains more than one CPU core.
Even mobile phones are starting to integrate multiple
cores [4]. To achieve optimal performance it become
necessary to use parallel programming techniques.

In theory the improvement time is linearly in-
creasing every time we add a new machine, but this
is not the case in practical scenarios. Most of the
existing algorithms has to be changed or fully re-
implemented to work in a distributed environment and
even after adapted to work in parallel, the speed we
gain is lower than expected in most of the cases.

In this paper we will show an implementation and
analysis of the classical Apriori algorithm [5]. Our
version was implemented to run on the Hadoop dis-
tributed computing framework.

Applying the original Apriori-algorithm to huge
databases can be problematic. The algorithm’s search
space increases heavily and even if the database it-
self can fit in the memory, the incremental steps of the
algorithm can generate more and more data in each
iteration.

MapReduce is distributed computation paradigm,
invented by Google. Google has their own propri-
etary implementation which they use internally. The
Apache foundation supported a free and open source
implementation of the paradigm called the Hadoop

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 114



project [6]. The Hadoop projects is collection of dif-
ferent software components. The number of compo-
nents grew steadily over the years. The two most
important parts are the distributed file system called
the Hadoop Distributed File System (HDFS) and the
software package that implements the MapReduce
paradigm called Hadoop framework. All the software
in the Hadoop project is implemented on the Java vir-
tual machine.

Using MapReduce paradigm to mine frequent
item-sets means we can harness the available com-
puting power of large clusters and thanks to the zero-
communication nature of the MapReduce paradigm
we can try to achieve the theoretical limits of speedup.

The MapReduce paradigm and the Hadoop
framework is recognized for its high throughput, great
scalability and fault tolerance. These design goals
of the framework means that the development focus
was more about to ensure these things than create the
fastest possible computation environment. This could
result in relatively poor performance when running
small jobs in a Hadoop cluster. There is no distinct
difference between short and long jobs but the term
’short job’ is usually used for jobs running under 400
seconds [7] while the long jobs can take up hours
to run. Today’s cloud providers, like Amazon EC2,
introduced pay-by-time based pricing models. Under-
standing which parts of the Hadoop jobs use up the
time and optimising it can result in savings in the bud-
get.

2 Preliminaries
First we elaborate on some basic concepts of associ-
ation rules using the formalism presented in [1]. Let
I = {i1, i2, . . . im} be a set of literals, called items.
Let D = {t1, t2, . . . tn} be a set of transactions, where
each transaction t is a set of items such that t ⊆ I .
The itemset X has support s in the transaction set
D if s% of transactions contains X , here we denote
s = support(X). An association rule is an impli-
cation in the form of X → Y , where X,Y ⊆ I and
X∩Y = ∅. Each rule has two measures of value, sup-
port and confidence. The support of the rule X → Y
is support(X ∪ Y ). The confidence c of the rule
X → Y in the transaction set D means c% of transac-
tions in D that contain X also contain Y , which can
be written in S(X ∪ Y )/S(X) form. The problem of
mining association rules is to find all the rules that sat-
isfy a user specified minimum support and minimum
confidence. If support(X) is larger than a user de-
fined minimum support (denoted here min sup) then
the itemset X is called frequent itemset.

The association rule mining (ARM) can be de-

composed into two subproblems. The first is finding
all of the frequent itemsets and the second is gener-
ating rules from these large itemsets. Most of the
ARM algorithms only differ from each other in fre-
quent itemset mining step as the second sub problem
is much easier than the first one. The Apriori algo-
rithm [5] is an iterative algorithm that finds the fre-
quent itemsets in a database. It starts by counting the
frequent items and then it combines the frequent items
to generate the candidate 2-itemsets. It counts the oc-
currences of the candidates by doing a full read on the
database, and generated the next candidate itemsets
which length are longer by one item. Before count-
ing the support of the candidate itemsets the algorithm
prunes the candidates that contain non-frequent sub-
sets. The algorithm continues until it no longer can
generate a new candidate itemset.

Parallel algorithms for mining frequent item-set
are quite common. Distributed algorithms were pro-
posed almost as soon as non-distributed versions were
introduced in [8, 9].

MapReduce was introduced by Google employ-
ees [10]. MapReduce is a programming model for
parallel computations. Google’s own implementa-
tion is also called MapReduce and it not available to
the public, but the underlying ideas were published.
Apache Hadoop is free and open source implementa-
tion of the MapReduce paradigm. It is a Java language
based implementation widely used by both industry
and academic research.

The MapReduce paradigm was designed to work
on really large datasets, to solve “embarrassingly par-
allel” problems. A parallel computing problem is
called embarrassingly parallel if the effort needed to
separate the solving process into independent, paral-
lel tasks is negligible.

The main idea behind MapReduce is to split the
problem the computation into two subproblems: a
map and a reduce phase. First, the input data get sliced
into smaller chunks and every chunk is given to a ma-
chine that executes a mapper. The mapper processes
that chunk and provides key value pairs as the output.
Than mapreduce framework collects these pairs, sorts
them based on the key and passes them to reducers.
A reducer receive a key and a list of values that be-
longs that key and provides the results. The process
can be seen on Figure 1. The strength of the MapRe-
duce paradigm is that it does not allow any communi-
cation between the map nodes during the map phase
and no communication between the reduce nodes dur-
ing the reduce phase. The data transfer between the
map and the reduce phases are automatic and the pro-
grammer does not have to explicitly do anything for it
to happen.

This approach resolves or avoid the typical falla-

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 115



Figure 1: Hadoop mapreduce execution overview

cies of distributed computing. It hides the problem of
data distribution and workload balance, the program-
mer can focus on the algorithm. There are some limi-
tations of course, the mapreduce paradigm works only
on key-value pairs, input and output data has to be
key-value pairs, as well as the intermediate data that
moves between the map and reduce phases.

Some data processing tasks nicely fit to this
paradigm, and the conversion of the sequential algo-
rithm is straightforward. Translating other problems
and algorithms to the mapreduce paradigm may raise
challenges or simply prove unrealizable. The chal-
lenges of porting an algorithm and in using a mapre-
duce framework include the separation the algorithm
into two, non-communicating map and reduce phase.
Another issue is that a paradigm consists of two steps,
the map and the reduce phase and the computation
only provides a final result after the final computer
in the reduce phase finishes its job. Porting a recur-
sive or cyclical algorithm means that we have to restart
the map-reduce loop and feed the output of the previ-
ous cycle as the input for the next many times before
reaching the desired result.

3 Related work
Data mining and frequent item-set mining is a well
researched field, various, well-established algorithms
available for such tasks. The distributed versions of
such algorithms are almost as old as the originals, but

they tend to fail on the scale of Big Data.
The iterative mechanics of the Apriori algorithm

does not fit well with the MapReduce paradigm be-
cause of the high overhead introduced by the frame-
work itself at the start and the stop of every iteration.
Li et al. proposes [11] a Single Pass Counting (SPC)
based method for distributed calculation of the Apri-
ori algorithm. The main idea behind the SPC algo-
rithm is that it uses a MapReduce phase for counting
the items and generating candidate itemsets. Another
proposed algorithm is the Fixed Passes Combined-
Counting (FPC) start to generate candidates with n
different lengths after p phases and counts the fre-
quiencies in one database scan, where n and p are
given as paramters. The last algorithm in their paper
is called the Dynamic Passes Counting (DPC) which
is similar to FPC but n and p is determined dinamy-
cally at each phase by the number of generated can-
didates. They also proposed the PApriori algorithm
in [12] which is very similar to SPC.

Another well researched single-machine algo-
rithm for frequent itemset mining is the FP-Growth
algorithm [3] which uses a datastructure called FP-
Tree to count the frequent items. This datastructure
compresses the input database in most of the prac-
tical inputs. A mapreduce based parallel version of
this algorithm is called Parallel FP-Growth (PFP) was
proposed in [8]. The PFP algorithm groups the items
and distributes their conditional databases to the map-
pers. The mappers independently builds and FP-tree
corresponding to their own slice of input data. PFP
efficiency is not optimal, because some of the nodes
has to read almost the whole database into the node’s
memory which is undesired or outright impossible in
many use-cases of Big Data scenarios.

The PARMA algorithm proposed in [13] provides
great improvements to the runtime of finding associ-
ation rules. PARMA achieves this by utilizing proba-
bilistic results, it only approximates the answers. An-
other statistical approach was presented in [14]. This
solution uses clustering to create groups of transac-
tions and chooses candidate sets from the representa-
tive itemsets in the clusters.

The count distribution (CD) algorithm [15] is
a fundamental distributed association rule algorithm.
The basic idea of this algorithm is that each of the
nodes keeps large itemsets and counters of candidates
locally, which are related to the whole database. These
counters are maintained in accordance with the local
dataset and incoming counter values. The nodes lo-
cally execute the Apriori algorithm and after reading
through the local dataset they broadcast own counters
to the other nodes. Each of the nodes can generate new
candidates on the basis of the global counter values.
Listing 1 shows the pseudo code of the CD algorithm.

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 116



Drawback of this approach is that the itemset counting
phases are always synchronized to the slowest node.

D_local = receiveDataset()
C_local_1 = countItems(D_local)
broadcast(C_local_1)
L1 = gatherCounters()
C_local_2 = generateCandidate(L1)
i = 2
while Ci != 0 do

for all t IN D_local do
incrementCounter(C_local_i, t)

broadcast(C_local_1)
Li = gatherCounters()
i++
Cib = generateCandidate(L_i-1)

return merged(Li)

Listing 1: Count distribution algorithm pesudo code

4 Frequent itemset mining on
Hadoop

There is no well established frequent-itemset miner
algorithm for the Hadoop framework. The Apacahe
Mahaout software collection contains an algorithm
that can be used to mine frequent itemsets, but as
showed in [16] the the implemented algorithms does
not perform well on real world data, on some inputs
they did not even provide any meaningful result.

In this paper we will analyze the performance of
the algorithm we proposed for frequent item-set min-
ing in our previous paper [17] which is using a similar
algorithm to Li et al.’s SPC algorithm.

MapReduce paradigm requires key-value pairs
for input and output, so first the dataset has to be
converted to this format. Transactional databases can
be converted to key value pairs where the key is the
transaction ID and value is the set of items from the
transaction. The algorithms also have to use key-value
pairs to represent their intermediate state. This inter-
nal state is passed to the reduce machines at the end
of the map phase.

Large part of the challenges of converting an al-
gorithm to use the Map Reduce paradigm is to find the
right place to separate the internal data and find a good
key-value representation for the data passing between
the map and the reduce phase.

4.1 Experimental Setup
For the presented measurements we used the follow-
ing tools. We used a small Hadoop cluster consisting
of four computing nodes. All of the computing ma-
chines were running in a virtualized environment on
the same host hardware. All virtual machines were

allocating the same amount of resources in the virtu-
alized environment. The available memory was 2 Gi-
gabytes per machine. We were using version 1.1.2 of
the Hadoop software framework. All of the machines
were running the Ubuntu distribution of the Linux op-
erating system with the latest stable Java runtime in-
stalled.

We used various input datasets for the measure-
ments. A synthetic dataset generator tool was pub-
lished with [5]. Most measurements were using the
data generated by this tool. We were using other
datasets used for research in the frequent itemset min-
ing areas were obtained from [18].

We also conducted measurements on our own
dataset. This database was based on real world data
acquired from web-server access logs of different
high-traffic websites.

An access log by itself is not a transactional
database that can be used for frequent itemset min-
ing. We had to convert the logs into a format that
is meaningful in a frequent itemset mining scenario.
Each visited website was considered as an item and
given a unique identifier. Websites visited by the same
user within a period of time are considered to be in the
same itemset. The time period chosen is arbitrary, in
our case it was chosen to be 60 seconds.

The file format of the transactional databases
slightly varies between the different data-generators
and databases. As a step before loading the data into
the distributed filesystem we convert the them into an
intermediate file format. In the intermediate file for-
mat every transaction is represented by one line. Line
base separation is handled well by the Hadoop frame-
work. The lines start with a transaction identifier and
followed by the list of items. If there is a meaningful
lexicographic ordering available on the items then we
store them in ascending order.

The algorithm implementation consists of multi-
ple mapreduce jobs and it generates an output in ev-
ery phase. These output files are used by the next job,
except the last one. The output of the last job is con-
sidered as the output of the whole computation. We
do not use this output for further analysis, currently
we are only interested in the running speed of this im-
plementation. Because of the size of the output files
can grow significantly, the output files of the previous
runs gets discarded every time a new job is started.

4.2 Mapper setup
The first step of any MapReduce job is the map
step. Before the start of this step the Hadoop frame-
work will split the D input database into smaller Dn

chunks. The size of these split parts depends on
the framework configuration and how the data is dis-

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 117



tributed across the on the file-systems of the machines
in the cluster. Computation and data storage takes
place on the same computers. The frameworks tries to
minimize the use of the network and will try to feed
local data to the computation. Each chunk is provided
as input for a mapper instance. It is possible to create
both more and less chunks than the available mapper
nodes thus sometimes database chunks will wait for
nodes to free up.

The purpose of the very first map task is to count
all the items. This is implemented in a really straight-
forward way. The input data is given to the mapper
line by line then the line is split into items and the out-
put key-value pair consists of the item and the value
1. This is the local frequency of the item. The pseudo
code of the first map task is on Listing 2.
for all transaction in DB_chunk do

for every item in transaction
ouput key=item value=1

end for
end for

Listing 2: Pseudo code for the first map task

In the following phases the mapper uses a differ-
ent implementation. Starting from the second phase
the mapper get a chunk of the original dataset and
reads another input database that was generated by the
previous reduce task. This database contains all of the
candidate itemsets. In the nth phase this databases
contains the list of the candidate itemsets of length
n. The goal of the mapper is to count the frequency
of each candidate. To achieve this, the first step of
mapper is to read all the available candidates to the
memory and then read process the database chunk and
count the occurrence of each candidate. The follow-
ing pseudo code in Listing 3 represents the algorithm
of the map task.
Candidates = read_from_HDFS()
for all t in DB_chunk do

incerement_counter(Candidates, t)
end for
for all c in Candidates

output key=candidate value=candidate count
endfor

Listing 3: Pseudo code for the general map task

4.3 Reducer Setup
The reducer task get its input key-value pairs from the
output of the previous map task. The pairs are ordered
and there is a guarantee that if a reduce task receives a
key it will also receive all values with the same key.
The ordering and moving of the intermediate key-
value pairs is done automatically by the framework
and it is called the shuffle step.

In the our current implementation of the Apriori
algorithm we limit the number of the reducer nodes to
one. To generate all the candidate itemsets we have to
use all large itemsets. If we do not limit the number
of available reducer tasks then we can not get a global
state where we combine all large itemsets into larger
candidate itemsets. The reduce task always does the
same with every key-value pair, presented on List-
ing 4.

itemset = input key
counts = input value
large_itemset = empty array
if sum(counts) > minimum_support

largeitemsets += itemset
end if

Listing 4: Pseudo code of the reduce task, first phase

After summing up all the itemsets the reduce task
creates the candidate database. This is then written to
the DistributedCache. The pseudo code is in Listing 5.

candidates = generate_candidates(large_itemset)
if candidates is empty

STOP
else

output candidates
endif

Listing 5: Pseudo code of the reduce task, second
phase

The reduce task starts with the itemsets of length
1 and generates candidates with length 2. During step
k of the algorithm it will start with length n itemsets
and generate length k + 1 candidate itemsets. If the
reduce task cannot generate bigger candidate itemsets
it will stop the whole computation.

4.4 Job Orchestration
One map task followed by a reduce task will gener-
ate the k + 1 sized frequent item candidates called
Ck+1. To reach every frequent itemset, the algorithm
requires multiple passes over the input database. Be-
cause Hadoop jobs inherently consists of only one
map and one reduce task we had to create a tool that
can decide if there is a need for another iteration. At
the end of the reduce task, the single reducer can tell
how many candidate itemsets were generated. If there
are no more candidates the reduce task will signal the
tool and the computation is finished.

If there are candidates available value is greater
than zero then a new job must be started. The map
task in this job requires the generated candidate item-
sets as input as well as the split of the input database.
However in Hadoop a map task can only get have the

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 118



input database split provided by the Hadoop frame-
work.

The candidate itemset database is written into
the Hadoop Distributed-cache where every mapper
instance can read its contents and process it. The
Distributed-cache is a Hadoop specific feature and can
be populated with arbitrary files. These files are avail-
able to every machine in the cluster. The schematic
overview of this setup can be seen in Figure 2.

Figure 2: The setup of the Apriori algorithm imple-
mentation

4.5 Execution Time Analysis
We run a task on a different input datasets with the
same minimum support values. We started on single-
machine pseudo cluster then enabled another machine
and finally we enabled all four. The results can be
seen on Figure 3. As we expected, the computation
got faster when more machines were enabled. We can
see however that the difference between the elapsed
time is narrow when the input dataset was small.

We monitored many aspects of the cluster during
the jobs. We are interested in making the frequent
itemset mining algorithm faster on the Hadoop frame-
work so the most relevant was how much time it took
to run a full computation, but it is important to know
how much time is spent on the different parts of the
algorithm.

Measuring the spent time of an algorithm that
runs on multiple machines in a parallel environment is
not a trivial task. The Hadoop framework can tell how
long a job was running but our computations are using
multiple jobs. We can sum up these jobs of course but
the framework does a lot of things in the background
like copying code and data between the nodes as well
as ordering and shuffling the intermediate job data.

We need more fine grained values so we created a
scaffolding framework for our implementation that is
responsible for measuring the spent time on each task.
This information was collected on each of the comput-
ers that were part of the measurements. The resulting

Figure 3: Running time of the Apriori algorithm

data was written to the distributed filesystem. Every
machine gets a unique identifier and logs its execu-
tion time analysis to a different file named with this
id. Appending to the same file on the distributed file
system is not recommended due to performance rea-
sons and it was not even possible in the earlier ver-
sions of Hadoop. We can extract and accumulate the
data as one file easily, thanks to the merging capabil-
ities of the HDFS. At the end of the jobs the files are
collected and merged into one. These files are really
small and only accessed a few times during a job, so
creating and writing to them did not have any measur-
able impact on the jobs.

We can use the data to measure how much time
was spent on each iteration. From this data we can see
that the first step of the algorithm, the first MapReduce
job that will calculate the frequent pairs will be using
significant time compared to the later steps.

Figure 4: Hadoop mapreduce framework overhead

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 119



On Figure 4 we can see the overhead of the
mapreduce steps. What we call overhead is the time
spent when the job is running but it not executing
any of the code we written. The time used by the
framework is mainly consists of the shuffle step and
the copying of the data. Since in each iteration we
have to distribute the output of the reduce step to ev-
ery mapper machine the time of this copy is reason-
ably big. As seen in the figure, in some iterations the
time used by the Hadoop framework is larger than the
time used up by our job, this is the reason why we see
smaller differences with small datasets on Figure 3.
The overhead of the framework is more significant if
the dataset is small.

4.6 Impact of the Reduce Step
Since the reduce step is always limited to a single ma-
chine we assumed that it will produce a bottleneck.
We analyzed the data to find out if it is really the case.

Figure 5: Map and reduce task runtimes

In Figure 5 we can see how much time the reduce
task and the map tasks take during one job iteration. In
the first job the time of the reduce phase is on par with
the all the map phases combined but in the following
jobs the reduce task takes negligible time.

This means that the generation of the length 2
candidate itemsets is indeed takes a significant time
but in the later iterations, the time needed to generate
the k + 1 itemsets is not comparable to the time of
counting the candidate itemsets in the map task.

Breaking up the reduce-step into smaller tasks
would produce benefit only during the first iteration
but nothing in the later iterations of the algorithm. A
parallel reduce implementation can add to the already
significant overhead of the framework by shuffling
and distributing the data for the reducers across the

network and then collecting the results. This means
we should focus more on eliminating steps from the
whole algorithm and decreasing the steps needed to
get the final result so we can decrease the significant
overhead that is introduced by the Hadoop framework
as seen on Figure 4.

Figure 5 also shows us that the map runtime varies
between different nodes. In extreme cases one map-
per node takes up more than twice as much time than
the others in that job. The computation can only con-
tinue to the next reduce step if all of the mapper nodes
are finished. This means that the map task will be fin-
ish when the slowest node finishes. While this sounds
bad, in reality the Hadoop framework starts to sort and
shuffle the output of the nodes as soon as they finished
with their chunk of the input data. Still it worth not-
ing that the slicing of the input database impacts the
workload balance of the map tasks.

5 Conclusion

We provided a runtime analysis of our approach to fre-
quent item-set mining on Hadoop and pointed out var-
ious performance choke points in the algorithm. We
found that using a single reducer does not necessar-
ily introduces a bottleneck and by trying to split up
the single-machine reduce step to multiple machines
we can cause significant framework overhead which
is greater than the time we gain by making the reduce
task parallel.

In Section 4.6 we showed that the single-machine
reducer algorithm works great because it does not in-
troduce unnecessary overhead. There is a possibility
that the input data has a large number of long candi-
date itemsets. In that case, the reduce step will take
a significant time with every iteration. A parallel so-
lution, where the reduce step is broken down to sev-
eral machines the time gained can overcome the in-
troduced overhead, but we can not make a parallel re-
ducer the default option. In the first iteration of the
algorithm, it still takes large amount of time to cre-
ate the next candidate itemsets on a single-machine
reduce task. Making only parts of the reduce task par-
allel is worth exploring.

As seen in section 5, the runtime of the map nodes
varies heavily. Further research is needed in this area
to determine how to load the input data to the nodes
for a more balanced workload. The Hadoop Distribut-
edCache could be replaced with alternative solutions,
such as a remote database. These alternative solutions
to the DistributedCache are part of a further research
issue.

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 120



Acknowledgments

This work was partially supported by the European Union
and the European Social Fund through project FuturICT.hu
(grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013) orga-
nized by VIKING Zrt. Balatonfüred.

This work was partially supported by the Hungar-
ian Government, managed by the National Development
Agency, and financed by the Research and Technology In-
novation Fund (grant no.: KMR 12-1-2012-0441).

References:

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Min-
ing association rules between sets of items in large
databases,” in Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data, (SIG-
MOD’93) (P. Buneman and S. Jajodia, eds.), (Wash-
ington, D.C.), pp. 207–216, 26–28 1993.

[2] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dy-
namic itemset counting and implication rules for mar-
ket basket data,” SIGMOD Rec., vol. 26, pp. 255–264,
June 1997.

[3] J. Han, J. Pei, and Y. Yin, “Mining frequent pat-
terns without candidate generation,” SIGMOD Rec.,
vol. 29, pp. 1–12, May 2000.

[4] R. R. Schaller, “Moore’s law: Past, present, and fu-
ture,” IEEE Spectr., vol. 34, pp. 52–59, June 1997.

[5] R. Agrawal and R. Srikant, “Fast algorithms for min-
ing association rules in large databases,” in Proc.
of the 20th International Conference on Very Large
Data Bases (VLDB’94), (San Francisco, CA, USA),
pp. 487–499, Morgan Kaufmann Publishers Inc.,
1994.

[6] The Apache Software Foundation, “Apache
Hadoop.” http://hadoop.apache.org,
2014.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica, “Improving mapreduce performance in
heterogeneous environments,” in Proceedings of the
8th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’08, (Berkeley, CA,
USA), pp. 29–42, USENIX Association, 2008.

[8] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y.
Chang, “Pfp: parallel fp-growth for query recommen-
dation,” in Proceedings of the 2008 ACM conference
on Recommender systems, RecSys ’08, (New York,
NY, USA), pp. 107–114, ACM, 2008.

[9] R. Agrawal and J. C. Shafer, “Parallel mining of asso-
ciation rules,” IEEE Transactions on Knowledge and
Data Engineering, vol. 8, pp. 962–969, 1996.

[10] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Proceedings of
the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’04,
(Berkeley, CA, USA), pp. 10–10, USENIX Associa-
tion, 2004.

[11] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based
frequent itemset mining algorithms on mapreduce,”
in Proceedings of the 6th International Conference
on Ubiquitous Information Management and Com-
munication, ICUIMC ’12, (New York, NY, USA),
pp. 76:1–76:8, ACM, 2012.

[12] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel imple-
mentation of apriori algorithm based on mapreduce.,”
in SNPD (T. Hochin and R. Y. Lee, eds.), pp. 236–
241, IEEE Computer Society, 2012.

[13] M. Riondato, J. A. DeBrabant, R. Fonseca, and
E. Upfal, “Parma: A parallel randomized algorithm
for approximate association rules mining in mapre-
duce,” in Proceedings of the 21st ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’12, (New York, NY, USA), pp. 85–94,
ACM, 2012.

[14] M. Malek and H. Kadima, “Searching frequent item-
sets by clustering data: Towards a parallel approach
using mapreduce,” in Web Information Systems Engi-
neering WISE 2011 and 2012 Workshops (A. Haller,
G. Huang, Z. Huang, H.-y. Paik, and Q. Sheng, eds.),
vol. 7652 of Lecture Notes in Computer Science,
pp. 251–258, Springer Berlin Heidelberg, 2013.

[15] R. Agrawal and J. C. Shafer, “Parallel mining of asso-
ciation rules,” IEEE Trans. on Knowl. and Data Eng.,
vol. 8, pp. 962–969, Dec. 1996.

[16] S. Moens, E. Aksehirli, and B. Goethals, “Frequent
itemset mining for big data,” in SML: BigData 2013
Workshop on Scalable Machine Learning, IEEE,
2013.

[17] F. Kovács and J. Illés, “Frequent itemset mining on
hadoop,” in Proc. of the IEEE 9th International Con-
ference on Computational Cybernetics (ICCC 2013.

[18] “Frequent itemset mining dataset repository.” http:
//fimi.ua.ac.be/data/, 2004.

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 121




