Editors
Filippo Neri
Claudio Guarnaccia

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

- Proceedings of the 5th International Conference on Circuits, Systems, Control, Signals (CSCS ‘14)
- Proceedings of the 2nd International Conference on Acoustics, Speech and Audio Processing (ASAP ‘14)

Salerno, Italy, June 3-5, 2014

Scientific Sponsors

University of Salerno, Italy
Kingston University London, UK
International Black Sea University, Tbilisi, Georgia
Parco Nazionale del Cilento Vallo di Diano e Alburni-Geopark, Italy
LATEST TRENDS in CIRCUITS, SYSTEMS, SIGNAL PROCESSING and AUTOMATIC CONTROL

Proceedings of the 5th International Conference on Circuits, Systems, Control, Signals (CSCS '14)
Proceedings of the 2nd International Conference on Acoustics, Speech and Audio Processing (ASAP '14)

Salerno, Italy
June 3-5, 2014

Scientific Sponsors:

University of Salerno, Italy
Kingston University London, UK
International Black Sea University, Tbilisi, Georgia
Parco Nazionale del Cilento Vallo di Diano e Alburni- Geopark, Italy
LATEST TRENDS in CIRCUITS, SYSTEMS, SIGNAL PROCESSING and AUTOMATIC CONTROL

Proceedings of the 5th International Conference on Circuits, Systems, Control, Signals (CSCS '14)

Proceedings of the 2nd International Conference on Acoustics, Speech and Audio Processing (ASAP '14)

Salerno, Italy
June 3-5, 2014
Boonruk Chipipop
Caio Fernando Fontana
Calin Ciufudean
Cledson Akio Sakurai
Dana Anderson
Dib Karam
Dost Muhammad Khan
Ehsan Kamrani
Inácio Fonseca
Jianqiang Gao
Joao Carmo
Kandarpa Kumar Sarma
Leopoldo Yoshioka
Libor Pekar
Luigi Pomante
Lungu Mihai Aureliu
Maha George Zia
Mirjana Bonkovic
Muhammad Naufal Mansor
Mutamed Khatib
Nikos Loukeris
Ramadan Mohamed
Ramoni O. Adeogun
S. Saravanan
Swapnadip De
Tiberiu Socaciu
Umer Asgher
Vijay Kumar G
Yilun Shang
Yuqing Zhou
Zahéra Mekkioui
# Table of Contents

**Plenary Lecture 1: Pseudospectral Structure of the Singular Vectors of Nonstationary Time Series**
*Alexander Milanov*  
Page 11

**Plenary Lecture 2: Robust Algorithms of Signal Processing**
*Tõnu Trump*  
Page 12

**Plenary Lecture 3: Novel PDE-based Image Denoising and Restoration Models**
*Tudor Barbu*  
Page 13

**Plenary Lecture 4: A Comparative Study on Network Sensitivity Analysis by Using Some Kinds of Signal-Flow Graphs**
*Georgi A. Nenov*  
Page 14

**Plenary Lecture 5: Performance Improvement Using Diversity Techniques in Wireless Communication Systems over Correlated Fading Channels**
*Dragana Krstic*  
Page 15

**Plenary Lecture 6: DoS Attack Detection in Internet-Connected Vehicles**
*Tarek Saadawi*  
Page 16

**Plenary Lecture 7: The Use of Meta-Optimization for Parameter Selection in Machine Learning**
*Filippo Neri*  
Page 17

**Plenary Lecture 8: The Emulation of Non-Linear Acoustic Devices**
*Lamberto Tronchin*  
Page 18

*Anh Tuan Phan, Gilles Hermann, Patrice Wira*  
Page 19

**Cerebra as Fractal Neural Vector-Machines**
*Thomas Kromer*  
Page 28

**CTA Diffusion based Recursive Energy Detection**
*Ahti Ainomae, Tõnu Trump, Mats Bengtsson*  
Page 38

**Level Crossing Rate of Product of Two $\alpha$-$k$-$\mu$ Random Variables**
*Dragana Krstic, Mihajlo Stefanovic, Vladeta Milenkovic, Djoko Bandjur*  
Page 48

**A Comparative Study on Symbolic Network Sensitivity Analysis by Using Some Kinds of Signal-Flow Graphs**
*Georgi A. Nenov*  
Page 54

**Outage Probability of a Robust Antenna Array**
*Egon Astra, Tõnu Trump*  
Page 64
A New Approach to Detecting Deterministic Periodic Components in Noise
D. Datuashvili, C. Mert, A. Milnikov

Distillation Control: Type-1 and Type-2 Fuzzy Control Application
Michele Miccio, Bartolomeo Cosenza

Statistical Analysis of Imaging Encryption Using Chaos

Development of 2D, Ultra-Simple, Low-Cost, Optical Range TOF ScanLaser
Mihai Serbanescu, Mihaela Iliescu, Marian Lazar, Calin Ciufudean

Pseudospectral Structure of the Singular Vectors of Nonstationary Time Series
A. Milnikov

The Use of Meta-Optimization for Parameter Selection in Machine Learning
Filippo Neri, Michel Camilleri

MS Excel as Tool for Simulation of Static and Dynamic Systems
Stepan Hubalovsky, Marie Hubalovska, Michal Musilek

Performance Evaluation of Apriori Algorithm on a Hadoop Cluster
Janos Illes, Istvan Vajk

Nonlinear Diffusion-based Image Restoration Model
Tudor Barbu

Distributed Adaptive Network Performance with Static Topology and Unweighed Communication
Sander Ulp, Tonu Trump

A Robust AVR-PSS Design Based on H2 and H∞ Control Techniques- Implementation Under GUI/Matlab
Djamel Eddine Ghouraf, Abdellatif Naceri, Amina Derrer

Acoustic Noise Levels Predictive Model Based on Time Series Analysis
Claudio Guarnaccia, Joseph Quartieri, Nikos E. Mastorakis, Carmine Tepedino

Optimization in Predictive Control Algorithm
Jan Antoš, Marek Kubalčík

Solution for Angular Position Control of the Video Cameras in Closed Circuit Television Systems
Daniel Popescu, Călin Ciufudean

The Classification of Metastatic Bone Disease with Multifractal Analysis of Microscopic Images
Jelena Vasiljevic, Lamberto Tronchin, Branimir Reljin, Jelena Sopta
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of High gain and Low Offset CMOS Current Mode Front End Operational Amplifier</td>
<td>165</td>
</tr>
<tr>
<td>R. Shantha Selva Kumari, M. Vijayalakshmi</td>
<td></td>
</tr>
<tr>
<td>Time Series Model Application to Multiple Seasonality Acoustical Noise Levels Data Set</td>
<td>171</td>
</tr>
<tr>
<td>Claudio Guarnaccia, Joseph Quartieri, Eliane R. Rodrigues, Carmine Tepedino</td>
<td></td>
</tr>
<tr>
<td>Visual Data Mining and the Creation of Inductive Knowledge Base</td>
<td>181</td>
</tr>
<tr>
<td>Nittaya Kerdprasop, Kittisak Kerdprasop</td>
<td></td>
</tr>
<tr>
<td>An Advanced Robust H2-PSS Implemented Under GUI/MATLAB</td>
<td>187</td>
</tr>
<tr>
<td>Wahiha Kabib, Djamel-Eddine Ghouraf, Abdellatif Naceri</td>
<td></td>
</tr>
<tr>
<td>System for Evaluation of the Static Posturography Based on Wii Balance Board</td>
<td>193</td>
</tr>
<tr>
<td>L. Pivnickova, V. Dolinay, V. Vasek</td>
<td></td>
</tr>
<tr>
<td>Modified 16-b Square-Root CSLA with Modified Area Efficient Carry Select Adder to Reduce Area and Power</td>
<td>199</td>
</tr>
<tr>
<td>R. P. Meenaakshi Sundhari, R. Anita</td>
<td></td>
</tr>
<tr>
<td>Implementation of Chaotic Systems for Secure Communications in Embedded DSP System</td>
<td>206</td>
</tr>
<tr>
<td>Aspect of Aggregation Methods of Optical Flow Feature Displacements for Orientation Estimation</td>
<td>211</td>
</tr>
<tr>
<td>Laszlo Kundra, Peter Ekler</td>
<td></td>
</tr>
<tr>
<td>Power Reduction in OFDM Systems using Tone Reservation with Customized Convex Optimization</td>
<td>219</td>
</tr>
<tr>
<td>V. Nandalal, V. Kiruthika</td>
<td></td>
</tr>
<tr>
<td>Home E-Commerce System</td>
<td>225</td>
</tr>
<tr>
<td>Corneliu Buzduga, Calin Ciufudean</td>
<td></td>
</tr>
<tr>
<td>Advanced AVR-PSS Based H∞ Approach for Powerful Synchronous Generators Implemented Under GUI / MATLAB</td>
<td>230</td>
</tr>
<tr>
<td>Djamel Eddine Ghouraf, Abdellatif Naceri</td>
<td></td>
</tr>
<tr>
<td>Formal Verification in Autonomic-Component Ensembles</td>
<td>238</td>
</tr>
<tr>
<td>Archil Prangishvili, Otar Shonia, Irakli Rodonaia, Medhat Mousa</td>
<td></td>
</tr>
<tr>
<td>Analytical Modeling and Characterization of TSV for Three Dimensional Integrated Circuits</td>
<td>244</td>
</tr>
<tr>
<td>G. Subhashini, J. Mangaiyarkarasi</td>
<td></td>
</tr>
<tr>
<td>Backstepping Control Based Three Phase Shunt Active Power Filter</td>
<td>250</td>
</tr>
<tr>
<td>I. Ghadbane, M. T. Benchouia</td>
<td></td>
</tr>
<tr>
<td>Hautant's Test Based on Kinect Skeleton Tracking Feature</td>
<td>257</td>
</tr>
<tr>
<td>Viliam Dolinay, Lucie Pivnickova, Vladimir Vasek</td>
<td></td>
</tr>
</tbody>
</table>
PAPR Reduction in OFDM Systems using Customized Convex Optimization in Differential Scaling
B. Gayathri, V. Nandalal

SAM-based Image Indexing and Retrieval System using LAB Color Characteristics
Tudor Barbu, Adrian Ciobanu, Mihaela Luca

An Analytical Model for the Aerodynamic Noise Prediction of an High-Speed Train Pantograph
M. Viscardi, D. Siano, P. Napolitano, F. Donisi

Dynamic Chaotic Approach to Sequence Generation for Use in Stochastic Wireless Channels
Anamika Sarma, Kandarpa Kumar Sarma, Nikos Mastorakis

Dependability in Cyber-Physical Systems Network Applications
Miroslav Sveda

generation of Orthogonal Logistic Map Sequences for Application in Wireless Channel and Implementation using a Multiplierless Technique
Katyayani Kashyap, Manash Pratim Sarma, Kandarpa Kumar Sarma, Nikos Mastorakis

The Use of Carbon Nanotubes Applied to Plastic Substrates for the Construction of a Passive Antenna
Jiri Matyas, Robert Olejnik, Karel Vlcek, Petr Slobodian

Analog Non-Linear Function Synthesizer: HSPICE Design and Simulation
Madina Hamiane

An Edge Detection Scheme for Endodontic Working Length Measurement in Root Canal Treatment for Succedaneous Teeth
K. Padma Vasavi, N. Udaya Kumar, M. Madhavi Latha, E. V. Krishna Rao

Comparative Study of the Timetable Constraint Satisfaction Problem
A. A. Ojugo, I. J. B. Iyawa, F. O. Aghware, M. O. Yerokun, E. Ugboh

Wireless USB-FM Transmitter using ROHM® BU9458kv Semiconductor chip in VQFP-64 Packaging
Areeb Ahmed

Design and Implementation of RLS Algorithm using Orthogonal Triangulrization and Hardware Software Co-Design
N. Nandhagopal, M. Selvaraj

Design of Modern and Predictive Controllers for Aircraft Control System
Amir Torabi, Ali Karsaz, Seyed Kamaleddin Mousavi Mashhadi

Authors Index
Plenary Lecture 1

Pseudospectral Structure of the Singular Vectors of Nonstationary Time Series

Profesor Alexander Milnikov
Department of Informatics and Control Systems
Georgian Technical University
Department of Computer Technologies and Engineering
International Black Sea University
Georgia
E-mail: alexander.milnikov@gmail.com

Abstract: It is proved, that m principal singular vectors of a matrix , constructed on the base of a time series, contained m periodical deterministic components with additive white noise, have equal pseudospectrums and their pseudospectral structure is identical to the time series' one. Exact definitions of a conception of the pseudospectral structures are introduced, as well as a numerical criterion of their identity. Detecting of singular vectors having identical pseudospectral structures allows predefining the number of periodical deterministic components and separating principal and the other singular components from each other.

Plenary Lecture 2

Robust Algorithms of Signal Processing

Professor Tõnu Trump
Department of Radio and Telecommunication Engineering
Tallinn University of Technology
Estonia
E-mail: tonu.trump@gmail.com

Abstract: This talk concentrates on using the robust statistics in developing signal processing algorithms. Robust statistics continue to gain importance because of increasing amount of environments where noise is impulsive, not Gaussian. Impulsive noise can be seen as the reason of having outliers in the data and signal processing algorithms designed for Gaussian noise cannot cope with the impulsive noise well. The plenary talk briefly reviews the common techniques for estimation and detection designed for Gaussian noise. We then highlight the weaknesses of the ordinary techniques when used in the environment with impulsive noise. After that we introduce robust statistics and discuss several robust techniques for estimation and detection.

Brief Biography of the Speaker: Tõnu Trump received his Ph.D. degree from Tallinn University of Technology in 1993. He was from 1994 to 2006 with Ericsson AB in Stockholm Sweden, where he reached the position of expert in echo cancellation and voice enhancement devices. From 2002 to 2006 he was also the rapporteur of Question 17, Study Group 16 at International Telecommunication Union (ITU-T) in Geneva Switzerland. Since 2006 he has been the professor of Signal Processing at Tallinn University of Technology in Tallinn, Estonia. Prof. Trump has published a number of scientific papers and is the author of more than 10 patents.
Plenary Lecture 3

Novel PDE-Based Image Denoising and Restoration Models

Professor Tudor Barbu
Institute of Computer Science
Romanian Academy
Romania
E-mail: tudor.barbu@iit.academiaromana-is.ro

Abstract: Over the last few decades, the mathematical models have been increasingly used in some traditionally engineering domains like signal and image processing, analysis, and computer vision. Numerous image processing and analysis methods making use of partial differential equation based algorithms and variational calculus have been developed recently. The PDE-based techniques have been widely used in these fields in the past years because of their modeling flexibility and some advantages of their numerical implementation. Image denoising and restoration represent an important image processing domain that has been successfully approached using the PDE-based models. The nonlinear PDE-based approaches are able to smooth the images while preserving their edges, also avoiding the localization problems of linear filtering. Since P. Perona and J. Malik introduced their influential anisotropic diffusion scheme in 1987, many nonlinear diffusion equation based image noise removal techniques have been proposed. In image processing it is very common to obtain the nonlinear PDEs from some variational problems. The variational models have important advantages in both theory and computation, compared with other techniques. An influential variational denoising and restoration model was developed by Rudin, Osher and Fetami in 1992. Their technique, named Total Variation (TV) denoising, is based on the minimization of the TV norm. We have proposed numerous PDE-based image denoising and restoration techniques in recent years. Thus, we have developed both diffusion-based filtering approaches and variational PDE denoising solutions. Both linear and nonlinear diffusion equation based techniques have been modeled. A novel linear anisotropic diffusion approach based on a modified Gaussian filter kernel will be described. Also, we present some robust nonlinear anisotropic diffusion based techniques, derived from and improving the Perona-Malik denoising scheme. Various diffusivity functions are used by these smoothing algorithms. Several novel variational PDE-based denoising and restoration approaches, based on some properly chosen minimization problems, will be also described.

Brief Biography of the Speaker: Dr. Tudor Barbu is currently Senior Researcher I at the Institute of Computer Science of the Romanian Academy, in Iasi, Romania. He is the coordinator of the Image and Video Processing and Analysis research collective of the institute and also member of the leading Scientific Council of this institute. Mr. Barbu has a PhD degree in Computer Science, awarded by the Faculty of Automatic Control and Computers of the University “Politehnica” of Bucharest. He published 2 books and 4 book chapters as main author. Also, dr. Tudor Barbu published more than 70 articles in prestigious international journals and volumes of international scientific events (conferences, symposiums and workshops). His scientific activity also includes more than 35 research reports, elaborated with the institute research team coordinated by him or related to various research projects. His scientific publications have got over 120 citations, according to Google-Academic. In recent years he also coordinated various research directions in 6 projects based on contracts/grants. Dr. Tudor Barbu received also several awards for his research results, the most important being the Romanian Academy Prize “Gheorghe Cartianu”, in the Information Science and Technology domain, awarded on December 18, 2008. He is member of several conference scientific committees and also member of scientific and technical committee and editorial review boards of some journals. He is the Editor in Chief of a book. His main scientific areas of interest are: digital media (audio, video and image) signal processing and analysis, pattern recognition, computer vision, multimedia information storage, indexing and retrieval, biometric authentication using voice, face and digital fingerprint recognition, and partial differential equations.
Abstract: The actual progress in the area of the efficient methods for electrical circuit analysis and synthesis is closely connected with the problems of sensitivity determination of the realized structures. Usually the proposed until now approaches for sensitivity calculation are directed to the obtaining of a symbolic form of searched expressions and to an avoiding the direct differentiation of the complicate expressions of network functions. This task often reaches its decision by using signal-flow graph representation of the network relationships. Interesting results in this topic are based on Mason’s graphs, Coates’s graphs and Chan-Mai’s graphs. The matter of the paper presented consists in the comparison of some signal-flow graph methods for first- and higher order network symbolic sensitivity determination concerning their advantages and specific applicability.

Brief Biography of the Speaker: Georgi A. Nenov graduated from Technical University, Sofia, Bulgaria in 1962. He worked as an Assistant Professor in Technical University, Varna, Bulgaria (1963-1966), as a Scientific Researcher in Institute of Instrument Design in Sofia (1966-1974) and in Institute of Technical Cybernetics, Bulgarian Academy of Sciences in Sofia (1974-1980), as an Associate Professor in University “Prof. Dr Assen Zlatarov”, Bourgas, Bulgaria (1980-1988) and as an Associate Professor (1988-1995) and Professor (1995) in Higher School of Transport “Todor Kableskhoj, Sofia. Prof Nenov defend in 1973 a PhD dissertation on active circuit synthesis and in 1991, a Dr.Sc dissertation on analysis and synthesis of SC-networks. He is a Senior Member of IEEE and a member of Bulgarian Scientific Found. The research interests of Prof. Nenov are in the field of electrical network analysis and synthesis, network sensitivity and neural networks. He is an author and co-author of more than 120 journal and conference papers, 3 books and 1 invited book chapter.
Plenary Lecture 5

Performance Improvement Using Diversity Techniques in Wireless Communication Systems over Correlated Fading Channels

Professor Dragana Krstic
Department of Telecommunications
Faculty of Electronic Engineering
University of Nis
SERBIA
E-mail: dragana.krstic@elfak.ni.ac.rs

Abstract: In wireless communications, fading is deviation of the attenuation affecting a signal over propagation media. The fading may vary with time, geographical position or frequency, and it is modeled as a random process. A fading channel is a communication channel containing fading. In wireless systems, fading may either be due to multipath propagation, called multipath fading, or due to shadowing from obstacles affecting the wave propagation. Various statistical models explain the nature of fading and several distributions describe the envelope of the received signal: Rayleigh, Rice, Nakagami-m, Hoyt, Weibull, a-m, k-m, ... A log-normal or gamma distribution model the average power to account for shadowing. Diversity technique is one of the most used methods for minimizing fading effects and increasing the communication reliability without enlarging either transmitting power or channel's bandwidth. In communication systems where antennas are sufficiently apart, it is considered there is no correlation between transmitted signals, as well as between interferences at the reception. However, it can not be always done in practice because there is insufficient antenna spacing when diversity is applied in small devices. Because of that, the performance of diversity systems in which there is a correlation between transmitted signals and between interferers have to be considered also.

Brief Biography of the Speaker: Dragana S. Krstic was born in Pirot, Serbia. She received the BSc, MSc and PhD degrees in electrical engineering from Department of Telecommunications, Faculty of Electronic Engineering, University of Nis, Serbia, in 1990, 1998 and 2006, respectively. Her field of interest includes telecommunications theory, wireless communication systems, satellite communication systems etc. She works at the Faculty of Electronic Engineering in Nis since 1990. She participated in more Projects which are supported by Serbian Ministry of Science. She has written or co-authored more than 170 papers, published in Journals and at the International/National Conferences. She has also reviewed many articles in IEEE Transactions on Communications; IEEE Communications Letters; ETRI journal; C&EE Journal; Elektronika ir Elektrotechnika and other prominent journals. She is the reviewer of the papers for many conferences and the member of technical program committees and international scientific committees of several scientific conferences. Also, she is the member of Editorial Board of International Journal on Advances in Telecommunications.
Plenary Lecture 6

DoS Attack Detection in Internet-Connected Vehicles

Professor Tarek Saadawi
City University of New York
USA
E-mail: saadawi@ccny.cuny.edu

Abstract: The new generations of the Intelligent Transportation Systems depend heavily on communication between vehicles and road-side equipment using IEEE 802.11P and to the Internet via Wi-Fi and cellular technologies. The topic of this presentation is limited to vehicles connected to the Internet via Wi-Fi technology using IEEE 802.11b. The growing list of vehicle manufacturers that include Wi-Fi capabilities to cars to enable the Internet access coupled with the government plans to expand Wi-Fi access to the roads raises the challenges to secure the wireless networks to combat malicious users. In this presentation, we present a method to detect and identify malicious users that attempt to capture the Wi-Fi channel. Malicious user aims to disrupt the communication in the physical range of the hotspot. The disruption of communications can jeopardize the safety of the commuters when real-time applications that require Internet connection, such as road conditions, incidents and traffic updates, are running.

We discuss a light weight technique to detect the Denial of Service (DoS) behavior applied by malicious users in Internet-connected vehicles using Wi-Fi to access the Internet via hotspots installed on the roads. Malicious nodes manipulate the IEEE 802.11 DCF standards to illegally gain extra throughput and increase the probability of having a successful packet transmission on the expense of the honest users that follow the protocol standards. The theoretical network throughput is derived using two-dimensional Markov Chain to determine the network capacity. Results obtained by the theoretical computations are validated by network simulation to determine the baseline for the maximum achievable throughput in the network under fair conditions where all nodes follow the IEEE standards. An approach is presented to enable all the nodes in IEEE 802.11 network with a mechanism to detect and identify the malicious nodes in a distributed environment. Results are presented to prove the effectiveness and feasibility of the proposed algorithm.

Brief Biography of the Speaker: TAREK N. SAADAWI received the B.Sc. and the M.Sc. from Cairo University Egypt in 1973 and 1975 respectively and the Ph.D. from the University of Maryland, College Park in 1980 (all in Electrical Engineering). Since 1980 he has been with the Electrical Engineering Department, The City University of New York, City College where he currently directs the Center of Information Networking and Telecommunications (CINT) and a Professor teaching courses in Network security, computer networks, local area network, communications systems and information theory. His current interests are telecommunications networks security, high-speed networks, multimedia networks, mobile ad-hoc networks and transport layer protocols. He has published extensively in the area of telecommunications networks. He is a co-editor of the book "Cyber Infrastructure Protection," Strategic Study Institute, volume 1, May 2011, and Volume 2 August 2013, and Co-author of the book, Fundamentals of Telecommunication Networks," John Wiley & Sons, 1994 (which has been translated into Chinese) and.

Dr. Saadawi is the co-Chair and co-Organizer of NSF Workshop on Cyber Security, Cairo-Egypt, May 27-30, 2013 and was a Member of the Consortium Management Committee for the Army Research Lab (ARL) Consortium on communications and networks; known as the Collaborative Technology Alliances on Communications and Networks, (1996 – 2011). He is a Senior Member of IEEE, former Technical Editor of IEEE Communications, and former Chairman of IEEE Computer Society of New York City (1986-87). He has received IEEE Region 1 Award, 1987, and the Nippon Telegraph and Telephone (NTT) of America for research on Broadband Telecommunication Networks. Dr Saadawi is a co-founder of IEEE Symposium on Computers and Communications (ISCC is in its 18th series). Dr Saadawi and has been invited and joined US Dept of Commerce Delegation to the Government of Algeria to address rural communications. He also led a group of US experts to provide a telecommunications master plan for the Government of Egypt under US AID funding.
Abstract: The process of identifying the optimal parameters for an optimization algorithm or a machine learning one is a computationally expensive one and it usually requires the search of a large, possibly infinite, space of candidate parameter sets. This process does not have any guarantee of optimality. Various attempts have been made to automate this process. I will describe my current research in the field by describing a methodological approach of using a simple genetic algorithm to approximate the optimal parameter setting for machine learning system on given datasets.

Brief Biography of the Speaker: Prof. Filippo Neri is currently with the Dept. of Electrical Engineering and Computer Science at University of Naples Federico II, Italy. Prof. Filippo Neri is currently Editor in Chief of WSEAS Transactions on Systems. Prof. Filippo Neri has wide experience in the area of artificial intelligence, machine learning, and software agent simulation. He had the opportunity to work both in academic and industrial environments including Ericsson’s and Unlever’s R&D centers and across three countries in the European Union (Italy, Ireland and UK). He has studied and visited at several important academic institutions including Carnegie Mellon University, Imperial College London, University of Milano, University of Torino, University of Malta. He is a Marie Curie Fellow and a ADI associate, the Italian PhD association. Finally he has served in the program committees and as reviewer at several international conferences.
Abstract: The emulation of audio devices (as valve amplifier, musical instruments, etc) represents an important research topic. The most important method utilised to obtain information about an audio system is based on the measurement of its impulse response (IR). Once the IR has been caught, it is possible to recreate, by the use of linear convolution, the output signal that the audio system will generate when it is physically driven by any input signal. This method gives great results if the system is linear and time-invariant (environments behaviour is much linear and therefore its reverberant effect can be faithfully recreated using IRs) but not satisfactory in other cases, such as the emulation of tube preamps (mainly nonlinear), musical instruments and valve amplifiers. By using Hammerstein or Wiener series it is possible to represent the input-output relationship of nonlinear systems. These two methods could be generalised using Volterra model. It uses a set of impulse responses to describe the system and not only one as before. By an enhanced impulse response measurement method it is possible to obtain this set of impulses and then with Volterra series it would be possible to have the output of the audio system driven by any input.

A special numerical tool has been developed to recreate the system behaviour by using this method. Finally, satisfactory results have been obtained in comparison with the traditional linear convolution based approach, and will be shown during the lecture.

Brief Biography of the Speaker: Dr Lamberto Tronchin is Associate Professor in Environmental Physics from the University of Bologna and is recognised internationally as a leading authority on the subject of sound and acoustics. A pianist himself, with a diploma in piano from the Conservatory of Reggio Emilia, Dr Tronchin's principal area of research has been musical acoustics, room acoustics and signal processing. He is Associate Editor of the Journal of AES, and the author of more than 190 papers and was Chair of the Musical Acoustics Group of the Italian Association of Acoustics from 2000 to 2008. Dr Tronchin is a member of the Scientific Committee of the CIARM, the Inter-University Centre of Acoustics and Musical research, has chaired sessions of architectural and musical acoustics during several international symposiums, been a referee for a number of International journals and is Chair of Organising and Scientific Committees of IACMA (International Advanced Course on Musical Acoustics). He was a visiting researcher at the University of Kobe in Japan, a visiting professor at the University of Graz in Austria and Special honored International Guest at the International Workshop, ‘Analysis, Synthesis and Perception of Music Signals’, at Jadavpur University of Kolkata, India in 2005. He has chaired the International Advanced Course on Musical Acoustics (IACMA), organised with the European Association of Acoustics, which was held in Bologna, in 2006. In 2008 and 2009 he gave plenary lectures at International Congresses on Acoustics in Vancouver, Prague, Bucharest, Santander, Kos, Malta, Paris and Cambridge (UK). He designed theatres and other buildings, as acoustic consultant, in collaboration with several Architects, among them Richard Meier and Paolo Portoghesi.