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Abstract: - This paper proposes an algorithm called multi-objective optimization using differential evolution 
(MOODE) for providing the optimal mathematical model of automotive palm oil biodiesel engine. The 
biodiesel engine is treated as a black box where the acquired input-output data is used in the modeling 
processes. Two objective functions are considered for optimization; minimizing the number of term of a model 
structure and minimizing the mean square error between actual and predicted outputs. Nonlinear auto-
regressive with exogenous input (NARX) model is used to represent the mathematical model of the 
investigated system. To obtain an optimal model for representing the dynamic behavior of automotive palm oil 
biodiesel engine, the model validity tests have been applied. 
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1 Introduction 
System identification is the science and art of 
developing mathematical models of dynamic 
systems from measured input-output data. This 
method is a very large topic, with different 
techniques that depends on the characteristics of the 
estimated models such as linear, nonlinear, hybrid, 
and nonparametric [1]. In this chapter, the literature 
reviews are presented. The study is concentrated on 
selecting a compact and adequate model structure 
that is one of the important parts in system 
identification. In short, numerous researched in 
system identification are focused on selecting 
appropriate model to be used in controlling the 

dynamic systems. Beside, parameter estimation 
algorithms have also attracted many researchers to 
propose new algorithms that are suitable for the 
model parameters to be estimated. 

One of the main problems in system 
identification is to represent a dynamic system with 
an adequate and parsimonious model. A dynamic 
system can be considered as a black box and can be 
modeled based on measured input-output data [2]. 
The task of system identification is to develop an 
adequate and parsimonious mathematical model 
representing a linear or nonlinear system. This task 
has been studied by many researchers [3-8]. An 
ultimate objective in modeling a dynamic system is 

Manufacturing Engineering, Automatic Control and Robotics

ISBN: 978-960-474-371-1 215

mailto:zakimizakaria@unimap.edu.my*
mailto:azuwir@unimap.edu.my
mailto:hishamj@fkm.utm.my


 

 

to produce a compact model structure with only 
significant terms included in the final model. 

Differential evolution (DE) is one of EA was 
first published as a technical report by Storn and 
Price [9]. They developed DE with simple 
algorithm and easy to use but reliable and versatile 
function optimizer. Since then, DE is the most 
chosen algorithm to global optimization in various 
applications [10-14]. DE is a population-based 
optimizer likes all EAs. It starts randomly chosen 
initial points from the initial population by 
sampling the objective function involved. Further, 
DE was extended to multi-objective optimization 
(MOO) problem by Babu et al. [15] called Multi-
Objective Differential Evolution (MODE). Babu et 
al. [15]  applied MODE in solving optimization 
problems in chemical engineering. Industrial 
adiabatic styrene reactor was considered as a 
problem to be optimized by considering 
productivity, selectivity and yield as the main 
objectives. The results were compared with NSGA 
and shown its superiority. 

In this study, the proposed algorithm is named 
Multi-Objective Optimization using Differential 
Evolution (MOODE). This proposed algorithm is 
applied in system identification for model structure 
selection, whereas two objective functions are 
considered: model predictive error and model 
complexity. 

 An automotive diesel engine fuelled with palm 
oil biodiesel is considered in this case study. This 
system is referred as POB system. The palm waste 
was converted to palm oil biodiesel that is used as 
an alternative energy to feed the POB system. The 
performance of the system is analyzed to study the 
dynamic behaviors of using biodiesel in running the 
engine. An adequate modeling of the system is 
needed to design an exclusive engine controller. In 
this case study, MOODE is applied to obtain some 
models to be chosen from for POB system. These 
identified models are validated using model 
validity tests. These tests are applied to select a 
model that is adequate to represent the dynamic 
behavior of the POB system. 

Since the process systems have input output 
data, the proposed algorithm integrating with 

system identification technique shall be used as a 
modeler to predict the behavior of those systems. 
Therefore, MOODE can be applied in another 
process as shown in the case study from this paper.    

 

2 Model Structure Representation  
Representing a dynamic nonlinear system from 
acquired input output data needs to define the type 
of model representation. Most nonlinear systems 
are modeled and identified by using mathematical 
and signal models, block diagram models, and 
simulation models. In this study, the mathematical 
and signal model is considered. A very common 
polynomial linear discrete-time system model 
representations is ARX (AutoRegressive with 
eXegenous input) model where the system output 
can be predicted by the past inputs and outputs of 
the system [2]. This model is defined as 
 

 

                  

                   (1) 

where output, input, and noise signal are 
represented by ,  and  respectively, 
while C, , and  representing a constant, the 
maximum output and input lags in the model 
respectively. The coefficients of the model are 
represented by  and . The 
nonlinear version for ARX model is called NARX 
model. Chen and Billings [16] presented a Non-
linear AutoRegressive Moving Average with 
eXogeneous inputs (NARMAX) model which 
provides a wide class of a nonlinear model 
representation with the special case as a NARX 
model. The NARX model can be defined as 
 
    

           (2)                   
 
where  is a polynomial non-linear function 
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with l degree of nonlinearity. The NARX model 
can be transformed into a linear regression model 
represented by 

 

  

                                  (3) 

where  and  are unknown coefficients or 
parameters and regressors respectively, M is the 
maximum number of terms of the regressors and N 
is the size of data. The maximum number of 
possible terms, Lt in the NARX model in Equation 
(2) can be calculated as [16] 

 

 where  and 

                               (4) 

 
For example, a NARX model with  

and  a second order degree of nonlinearity, 
would contain 28 terms respectively. Thus, the 
possible models need to be considered can be 
calculate as , which is 268 435 455. Thus, 
increasing the orders of input and output lags and 
degree of nonlinearity, will increase the maximum 
number of terms of NARX model and the possible 
models that need to be searched. Thus, the user 
defined parameters such as the orders of input and 
output lags, and degree of nonlinearity will affect 
the difficulty of model structure selection. The 
search space become large and impractical when 
large user defined parameters are used. Therefore, 
selecting significant terms to be included in the 
final model become challenging and needs an 
automated and suitable tool for this task.  

 

3 Modeling procedures   

3.1 Model Validity Tests 
The final procedure in system identification is 
model validation. After a set of models are 
identified, the model validity tests are used to ease 
decision maker to choose a good model. The main 
objective of model validation is to check whether 
the model fits the data adequately without any 
biased. In this study, two model validity tests are 
considered; model predicted output (MPO) and 
correlation tests.  

First model assessment used in this study is 
MPO test [17]. This test has slightly different 
compared with one step ahead (OSA) test, whereas 
it based on previous predicted output and input 
data. MPO is given by: 

1, …, −                 (5)               

 
A further study for model validation is correlation 
tests to validate the models obtained by MOODE. 
Correlation tests can be applied to both linear and 
nonlinear systems. The following equations show 
the correlation functions [18] used in this study: 

 
 
 
                                 
 
 

 
 
where , , , and  represent the standard 
correlation function, the residual sequence, the 
input of system, and the delta function or impulse 
function, respectively, and E[.] is the expectation 
operator. An identified model is adequate if all five 
correlation functions as shown in Equation (6) are 
satisfied. These functions can be analyzed visually 
by plotting on a graph paper with the confidence 
bands. The confidence bands plotted on the graphs 
reveal if the identified model is adequate or not. 

(6) 
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The confidence bands are estimated as 95% 
confidence limits that are approximately 

 where N is the data length. 
All the model validity tests are used to check the 

selected models obtained by MOODE algorithm. 
To select a good model among the selected models, 
the results from the all model validations are 
observed. If the selected model is good in OSA and 
MPO tests, it is not guarantee to satisfy the 
correlation tests. Meanwhile, if the selected model 
is satisfied the correlation tests, then it is biased for 
OSA and MPO tests. Thus, all three model validity 
tests must fulfill in order to choose a good and 
adequate model for the real process data. 

 

3.2 Description Data of POB System 
The input-output data was collected from an 
experimental setup. The developed system is 
DOHC Mitsubishi Diesel Engine with capacity 
engine of 2000 cc using direct injection. The 
procedures and experimental setup to obtain the 
input-output data of the system were designed by 
Azuwir et al. [19]. The acquired input-output data 
were used for the identification purposes. The 
block diagram of experimental setup to acquire the 
input-output data of system is shown in Fig. 1.  

A PRBS signal was used to excite the actuator 
that gives voltage to the engine system. The input 
of the system is voltage with values between 1 V 
and 1.2 V. The POB system was operated with 
speed range of around 2100 RPM. The speed 
sensor is used to count the speed of engine in 
operation. Thus, the output of the system is the 
speed of engine in RPM (revolutions per minute). 
The collection of data consists of 720 data points. 
There are two separation sets for this data. The first 
data set consists of 300 data and it is used for the 
estimation set. Meanwhile, the second data set 
consists of 420 data is used for validation set. The 
input-output data of POB system is illustrated in 
Fig. 2.    

 
               

 
 
 

Fig.1. The experimental setup for collecting data from 
POB system 

 
 

Fig. 2.  Input and output data of POB system 

 

3.3 MOODE for Model Structure Selection 
The MOODE algorithm is the integration of DE 
into NSGA-II procedure but without the DE 
selection process. This technique was proposed by 
Peng et al.[20] and in this study it is adapted to 
system identification problem. The main difference 
compared with single-objective optimization of DE 
[21] is to produce a set of possible solutions instead 
of a single solution. The set of solutions are 
represented as points along the Pareto-optimal 
front. The Pareto-optimal front is a dense set of the 
selected solutions between two contradicting 
objective functions i.e. model predictive accuracy 

PC DAQ Actuator 

Speed Sensor 

Diesel Engine 
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and model complexity that are considered in 
selection of model structure. Therefore, the 
algorithm is designed to generate population of 
possible solutions that scatters as points along 
Pareto-optimal front that optimized both objective 
functions. In MOO, the potential solution is 
selected from the Pareto-optimal front obtained. 
The flowchart of model structure determination that 
is formulated by using MOODE is shown in Fig. 3. 
This flowchart shows the implementation of 
MOODE that produces a set of optimal model 
structures.  

 

 
 

Fig. 3.  MOODE’s flowchart 
 

4 Results and Discussion 

4.1 Modeling POB system 
A NARX model is used as model representation for 
the system. The model parameters used are five 
input-output lags (nu = ny = 5) and two degree of 
nonlinearity (l = 2), with the genetic parameters of 
MOODE used is given in Table 1. The tradeoff 
between two objective functions i.e. model 
predictive error (OFn1) and model complexity 
(OFn2) from the final generation is illustrated. This 
illustration called Pareto-optimal front to show the 
number of models that represent the POB system. 
 

Table 1. MOODE parameters used in this study 

MOODE Parameters Values 
CR 0.7 
MR 0.3 
NP 50 

Gen 100 
L 0.1 
H 0.4 

 

Fig. 4 shows the non-dominated models 
obtained from the final generation using the 
MOODE algorithm. The non-dominated models 
consist of 21 models of representing the dynamic 
behavior of POB system. Four out of those models 
are selected and marked as D1, D2, D3, and D4. 
All selected models are chosen based on their 
complexity whereas the model predictive error of 
each model is not much different. The highest 
model complexity is 31 terms while the lowest 
model complexity is 2 terms only as shown in Fig. 
4 which gives big difference between these two. 
However, the model complexity is given priority in 
choosing the compact model but adequately capture 
dynamic of the system [8]. The detail of the 
selected models is listed in Table 2. 

Each selected model shows the nonlinear model 
which consists of single term and cross term as can 
be seen in Table 2. The model predictive errors of 
optimal models are all within the range of 1.10 – 
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1.20×10-03. However, the model complexity of 
marked models are diverse where the lowest model 
complexity is 2 terms for model D4 while the 
highest model complexity is 10 terms for model 
D1. Observing to the number of repeated solution, 
model D3 indicates the higher value of repeated 
solutions with 5 repetitions. Meanwhile, the second 
higher value of repeated solution comes from 
models D1 and D4. From the previous study on the 
simulated systems, the model with the highest 
number of repeated solution should be given 
priority to be chosen. Therefore, model D3 is a 
possible model to be chosen to represent the 
dynamic behavior of POB system. However, all 
models have to be validated using the model 
validity tests, before selecting a good and adequate 
model.         
 

 
 
Fig. 4. The non-dominated models obtained for POB 
system  
 

Table 2. Details of selected models for POB system 

 

 

4.2 Model Validation 
Two model validity tests are considered in this 
study i.e. MPO test and correlation tests. First set of 
data which consist of 300 data points are used for 
estimation set, while the second set of data is used 
for the validation tests which consist of 420 data 
points. Figs. 5 to 8 illustrate the MPO test for each 
selected model. These figures show the output of 
POB system which is engine speed superimposed 
on predicted model output and its residual plot.  

As can be seen in Figs. 8, result for model D4 
show that the MPO outputs do not follow the 
system output. Average of the residuals of model 
D4 is more than 1% indicating that model D4 is 
unable to capture the dynamic of the system. The 
results for models D2 and D3 show that the MPO 
outputs follow the system outputs very well. These 
are shown in Figs. 6 and 7 for MPO test. However, 
both models are biased in process model where 
most of their residuals are only positive values for 
model D2 and negative values for model D3.  

For model D1, the validation test show good 
result with the MPO outputs follow the system 
output very well without biased. This can be shown 
in Figs. 5. The MSE values in estimation and 
validation sets for MPO tests are listed in Table 3. 
Model D1 shows the lowest MSE values in both 
estimation and validation sets. Therefore, model D1 
is given priority to be chosen in representing the 
dynamic behavior of the POB system. 

   

 Terms D1 D2 D3 D4 
Constant -0.9930 -- -- -- 

y(t-1) 2.0000 1.0800 1.0600 -- 
y(t-1)y(t-3) -0.2090 -0.0646 -- -- 
y(t-1)u(t-1) -0.5480 -0.0010 -0.0015 0.0285 

y2 (t-2) -- -- -0.0098 0.4500 
y(t-2)y(t-5) -0.0111 -- -- -- 
y(t-2)u(t-4) 0.0028 -- -- -- 

y2 (t-3) -- 0.0731 -- -- 
y(t-3)y(t-4) -- -- -- -- 
y(t-3)y(t-5) -0.0354 -0.0476 -0.0224 -- 
y(t-3)u(t-1) 0.5470 -- -- -- 

u2 (t-3) -- 0.0126 -- -- 
u(t-3)u(t-5) 0.0098 -0.0128 0.0154 -- 

u2 (t-5) 0.0049 0.0176 -- -- 
Number of repeated solution 4 2 5 4 

OFn1×10-05 1.10 1.12 1.16 64.4 
OFn2 10 8 5 2 
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Fig. 5. The engine speed of the POB system 
superimposed on MPO output of model D1 and its 
residual plot. 
 

 

 
Fig. 6. The engine speed of the POB system 
superimposed on MPO output of model  D2 and its 
residual plot. 
 
 

 

Fig. 7. The engine speed of the POB system 
superimposed on MPO output of model D3 and its 
residual plot. 
 

 

 
Fig. 8. The engine speed of the POB system 
superimposed on MPO output of model D4 and its 
residual plot. 

 
 

Table 3. MSE estimation and validation values of MPO 
tests for POB system 

Models 
MPO test 

MSE 
Estimation set Validation Set 

D1 3.20×10-5 3.76×10-5 
D2 1.18×10-4 1.09×10-4 
D3 4.11×10-5 4.48×10-5 
D4 2.60×10-3 2.20×10-3 

 
The illustrations of correlation tests for each model 
are shown in Figs. 9 to 12. The correlation tests for 
model D4 are laid outside of the 95% confidence 
band for each correlation function of Equation (6). 
These correlation functions as shown in Figure 12 
are clearly not satisfied. Therefore, this model is 
inadequate to represent the dynamic behavior of 
POB system. The correlation tests for other models 
(D1, D2, and D3) also unsatisfactory. Two out of 
five correlation functions are unsatisfied:  and 

 as shown in Figs. 9 to 11. However, these 
models are better than model D4 in term of 
correlation tests. 
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Considering all the model validity tests, model 
D1 is the best model among the selected models to 
represent the dynamic of POB system. Even though 
model D1 does not satisfied all the correlation tests, 
it still can be selected as the best model if based on 
MPO and OSA tests. This study is focused on 
selecting an adequate and parsimonious final model 
based on three model validity tests from the final 
models in the Pareto-optimal front produced by the 
developed algorithm. Therefore, details for models 
that do not satisfy the correlation tests are not 
discussed here because it is beyond the scopes of 
work defined. Model D1 can be expressed as: 

 

 

 

 

Fig. 9.  Correlation tests for model D1 

 

 

Fig. 10.  Correlation tests for model D2 

 
 

Fig. 11.  Correlation tests for model D3 

 
 

Fig. 12.  Correlation tests for model D4 
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5 Conclusion 
In this study, the input-output data collected from 
the automotive diesel engine or called POB system 
was considered. Modeling POB system using 
MOODE produces a set of possible models to be 
chosen from. Four models from the non-dominated 
front of final generation of MOODE algorithm are 
selected. The MPO test indicates that each model is 
good in estimating the predicted output of POB 
system. However, not all models fit to represent the 
dynamic behavior of this system. The results of 
correlation tests show that model D1 is the most 
satisfied compared with the other models. The 
needs of model validity tests i.e. MPO and 
correlation tests to select a good and adequate 
model in representing the systems to be used 
concurrently. Therefore, the model validation stage 
is the important procedure in selecting a good 
model from the obtained models by MOODE 
algorithm. The results presented in this study show 
that the proposed algorithm can be applied as an 
alternative algorithm to model the dynamic 
behavior of any process systems.  
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