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Abstract—This paper introduces an elaborative approach for indexing image feature and then applying those 
indices to a fractal-wavelet (FW) coding process. This approach reveals the texture similarities of an image by 
proposing a fractal dimension developed from the variance which measures the space filling degree of image 
roughness. The roughness-based FD was applied to the FW coding algorithm. Experiments were conducted 
using three side-scan sonar images of an undersea pipeline captured on the Polaris, Taiwan. The purpose of the 
experiment was to investigate the corresponding quality of the images in various configurations using two error 
criteria: the mean square error (MSE) and the peak signal-to-noise ratio (PSNR). The experimental results 
indicate that the roughness-based FD was adaptable to the FW coding matching process for approximating the 
experimental images. 
 
Key-Words: Fractal dimension, Fractal-wavelet coding, Image approximation, Matching process, Roughness, 
Self-similarity 
 
1 Introduction 
Texture is regarded as a similarity grouped in an 
image. Efficiently extracting texture is a powerful 
method for classifying and identifying notable 
information in an area. The fractal dimension (FD) 
technique is a widely used texture analysis 
technique [1,2]. Roughness is a perceived image 
texture property, and is used to qualify image 
texture[3]. FD technique is suitable for estimating 
roughness and has been successfully applied to 
quantitatively measure texture [4,5]. The researchers 
were motivated to conduct this study by the 
observation that an FD expresses an image through 
surface stability, and the image roughness 
distribution can be used to describe the texture 
information derived from an image, thereby 
enabling the FD texture features to be extracted. The 
roughness-based FD value describes the distribution 
of image roughness, enabling the feasible FD 
representing texture features to be extracted from 
the images. 

This study proposes a texture-based fractal-wavelet 
(FW) coding algorithm based on the roughness-
based FD. The roughness-based FW algorithm uses 
the roughness-based FD to locate each range subtree 
for the optimal matched domain subtree according 
to the minimal texture similarity distances. The 
minimal similarity distance quantifies the degree of 
texture similarity between domain-range subtrees. 
Based on the roughness-based FW algorithm, 
conducting multiresolution frequency analysis on 
image texture is possible. Because the roughness-
based FDs of images in different frequencies can be 
received on various scales, texture information can 
be acquired in a horizontal, vertical, and angular 
direction, which is seldom achieved by using other 
texture analysis methods. The proposed matching 
algorithm relies on texture similarity, thus enabling 
the roughness-based FD algorithm to effectively 
determine the appropriate domain subtrees to 
successfully approximate the range subtrees and 
preserve the image texture information of an image 
after encoding.  
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This study is organized as follows. Section II 
presents an overview of fractal techniques and the 
fractal-wavelet image coding scheme. Section III 
introduces the proposed wavelet-fractal coding 
matching algorithm. Section IV includes the 
experimental results and conclusions. The 
experimental results are discussed using the 
measurements of mean square error (MSE) and peak 
signal-to-noise ratio (PSNR). The final section 
presents a brief conclusion. 
 
 
2 Fractal Image Coding and FW 
Coding 
Fractal block coding is the most popular method 
among fractal technical which has been developed 
for decades since its first introduce in the early 1960 
[6-8]. A drawback in fractal block coding is that to 
match a group of domain blocks to a range block is 
time consuming. Many researches have been 
proposed to improve the matching process by 
reducing domain pool such as [9, 10]. Fractal block 
coding and wavelets have also been combined first 
by Pentland and Horowitz [11] in the early 1990s. In 
1998, Davis [12] published an important paper in 
which wavelets and fractal image coding were 
linked.  
 
2.1 Fractal Block Coding  
Fractal block coding is used to approximate an 
image based on the subblocks of that image. The 
following introduces the Jacquin fractal block 
coding theory. 

Let I be a gray-level image. In fractal block 
coding, Image I is partitioned into N range blocks

iR I⊆  , for i = 1, 2…, N, and M domain blocks
jD I⊆ , for j = 1,2,…, M, where the size of each 

domain block is twice the size of each range block. 
To encode an image according to self-similarity, 
each range block locates the domain block in the 
domain pool most similar to itself. The location 
process is based on minimal MSE criteria. The 
search for the optimal matched domain block jD  is 
performed using local affine transformation iw , 
such that  : i j iw D R→  , for i = 1,2, …, N and j = 1, 2, 
…, M. Theoretically, the union of the local affine 
transformations for all range blocks is the affine 
transformation τ  for the entire image, as expressed 
in (1).   

  1
N
i iwτ ==                                              (1) 

In practice, each local affine transformation iw  
is performed such that ( )i i jR w D≈ . Image encoding 
is achieved by first generating a fractal code for 
each range block iR  based on the optimal matched 
domain block jD , and then storing the fractal code 
in the codebook. Fractal codes recorded in the 
codebook can later be used in the iterating range 
approximation process to restore the image.  
 
2.2 Basics of FW Coding 
Quadtree fractal coding, suggested by Fisher [13], is 
one of the most commonly applied hierarchical 
segmentation-based coding schemes and has been 
extensively studied [12,14]. Fisher’s scheme 
suggested to locate the optimal matched domain 
subtrees to approximate the range subtrees using the 
proper affine transform, common scaling factors, 
and three fundamental coefficient trees—the 
horizontal, vertical, and diagonal trees. However, 
this restriction decreases image fidelity. Davis [12] 
provided a now widely used toolkit useful for 
implementing experiments. 

Ghazel et al. [14] considered the coefficients of 
three subtrees independently in their FW coding 
scheme, which involves the selection of the optimal 
parent subtree, which minimizes the collage error 
measured using the MSE of the noiseless image. 
This ensures to obtain a successful collage-based 
matching criterion for getting noise-free image.  

An iteration of the FW scaling and copying 
procedure produces a fixed point wavelet coefficient 
matrix that is an approximation of the original 
image. A small collage distance produces an 
accurate approximation [15]. The collage coding 
procedure used to produce the FW code is described 
as follows: First, consider a fixed set of parent-child 
level values. Then, for each unencoded child 
subtree, determine the parent subtree and the 
corresponding scaling coefficient to minimize the 
collage distance. 
 
3 Roughness-based FW Algorithm 
FD is a useful tool that can be used to measure the 
degree of roughness of a surface texture. Based on 
these concepts, this study proposes a roughness-
based FD approach to measuring image roughness. 
The novel FD efficiently extracts roughness 
properties of an image to describe the texture of 
images.  

The roughness-based FD is used to estimate 
domain-range matching in FW based on the relative 
degree of texture similarity. The smallest distance 
between the two roughness-based FD values of 
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subtrees in higher and lower frequency subbands 
must be calculated. The encoding is performed 
using an affine transformation defined by Jacquin 
[8]. Section 3.2 describes the roughness-based FW 
algorithm. 
 
3.1 Roughness-based FD  
The creation of the roughness-based FD was 
inspired by the allometric relationship between the 
number of roughness nodes and the compound path 
length. The roughness-based FD clusters the image 
roughness and subsequently structures to a 
compound based on the two-connectivity rule. The 
FD of the compound was derived according to the 
structure, which was quantified using the Horton-
Strahler order scheme [16]. Shannon entropy was 
introduced when integrating the FDs of the 
compound into an FD of an image. The entropy 
reflected the roughness contribution of the same 
type of compounds to the image. The derived FD 
summarizes the image roughness complexity as a 
single numerical value. 

Three steps are proposed to obtain the 
roughness-based FD. 
1. Image Roughness Extraction 
Image roughness was defined as a descriptor of 
pixel value variation between pixels in a small 
neighborhood. A pixel was referred to as an image 
roughness when the current pixel value was greater 
than the maximum or less than the minimum of 
surrounding pixels. The surrounding pixels were 
those pixels that are adjacent to the current pixel in 
the vertical and horizontal directions, as shown in 
Fig. 1. This study groups image roughnesses that are 
adjacent to each other into a roughness cluster.  

 
Fig. 1. Locating surrounded pixels 

 
2. Calculating the FD for Each Compound 
This study constructs a compound by structuring the 
image roughnesses in each cluster according to the 
two-connectivity rule. Let each image roughness 
have an order that defaults to one. Two adjacent 
image roughnesses construct a node. The node is 

called a roughness node and the order of this node is 
set to one order higher than the foundation. Two 
adjacent nodes of the same order construct a new 
roughness node. The order of the new node is set to 
one level higher than the foundation of the node. 
This process is repeated until all of the roughness 
nodes have been examined. The roughness 
compound is defined as a set of image roughnesses 
and roughness nodes, in which the nodes are 
constructed using the elements in the same set. The 
highest node order at the end of the node traversal 
process is assigned as the order of that compound. 
Consequently, the hierarchical structure of a 
compound is a binary tree.    

This study derives an algorithm from the Horton 
laws [17] to compute the FD by considering two 
essential features: the number of roughness nodes 
and the roughness node path length. 

The number of roughness nodes ratio, nR , is 
defined as follows:  

_ +1 _n od r od rR N N= ,                              (2) 

where _od r  is the order and _od rN  is the number 
of roughness nodes of order _od r . 

The average path length ratio, LR , is defined as 
follows:   

_ 1 _L od r od rR L L+= ,                                 (3) 

where _od rL  is the average path length of order 
_od r . The average path length of the roughness 

nodes of order i  was defined as the total path length 
of those roughness nodes divided by the number of 
roughness nodes of order i . 

If a compound contains 1N  roughness nodes, the 
number of second order roughness nodes is obtained 
as follows 

2 1 nN N R= × . 
If the structure of a compound is a symmetric 

binary tree, the number of roughness nodes in order 
k  is calculated as follows:  

1
1

k
k nN N R −= × .                                            (4) 

Consequently, the average path length in order k  is 
calculated using (5). 

1
1

k
k LL L R −= ×                                              (5) 

Apply a logarithm transformation to both sides of 
(5).  

( )
( )

( )
( )

1
1

1

1

1

log log

log log 1 log

1 log log log

1 log log

k
k L

k L

k L

k L

L L R

L L k R

k L L R

k L L R

−= ×

= + −

− = −

− =
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Substitute ( )11 log log logk Lk L L R− = − into (4) to 
obtain 

( )( )1log log
1

k LL L R
k nN N R= × . 

Based on the Change-of-Base formula of the 
logarithm, log log logb a ax x b= ,  

( )( )

( )

1

1

log log
1

log
1

k L

R kL

L L R
k n

L L
k n

N N R

N N R

= ×

= ×
. 

Based on the logarithm formula log logb aa b= ,  
( )1log

1
R kL

L L
k nN N R= ×  

( )log
1 1

R nL
R

k kN N L L= × . 
Reapply the Change-of-Base formula of the 
logarithm. 

 
( )( )

( )

log log
1 1

log log log log
1 1

n L

n L n L

R R
k k

R R R R
k k

N N L L

N N L L−

= ×

= × ×
 

Because ( )log log
1

n LR RL− and 1N are constant, let
( )log log

1 1
n LR Rc N L−= × . 

( )log logn LR R
k kN c L= ×                             (6) 

(6), which represents the structure of the 
compound, is a power-law function and is similar to 
the FD measure ( ) DN l l−∝ , which represents 
the Mandelbrot fractal relationship. These details 
are described in [6]. Therefore, the FD of a 
compound was defined as follows:  

( ) ( )log logn LD R R=  .                        (7) 
In practice, LR  is a constant, and the linear 

regression approach does not apply in calculating 
the FD. Therefore, the geometric mean was applied 
to calculate the average of nR  and subsequently 
applied to (7) to obtain the FD of the compound.  

Although (7) has been derived to obtain the FD 
of a symmetric binary tree, Frontier suggested that 
the FD of a nonhomogeneous tree can be obtained 
by using the same algorithm applied to a symmetric 
binary tree [18]. Therefore, this study applies (7) to 
every compound, regardless of structure. 
3. Calculating the FD of an Image.  
The roughness-based FD classifies the compounds 
based on the order and number of image 
roughnesses. A set of classified compounds with a 
low presence frequency reflects the texture of that 
image. This study assigned Shannon entropy to the 
classified compounds based on information theory, 
in which entropy represents compound randomness. 
The study obtains the image FD by summing the 
products of compound FDs and compound 
entropies.   

Assume that an image contains n  sets of 
classified compounds { }1 2, ,..., nc c c . Therefore, the 
presence frequency of the ith (i = 1, 2,..., n) set of 
compounds in that image is described as (8),  

_ _ _i iP n c total n C= ,                        (8) 
where _ in c  is the number of the ith set of 
compounds, and _ _total n C  is the total number of 
compounds in that image.  

The information on the ith set of compounds 
with presence frequency iP  is expressed as 
( ) ( )logi iI c P= − . The Shannon entropy assigned to 

the ith set of compounds is the product of iP  and
( )iI c . Therefore, the Shannon entropy for the ith set 

of compounds is ( )logi iP P× − . These FDs of the 
compound were integrated to form an FD of image
fE . fE is obtained by using (9)  

( )
1

log
n

i i i
i

fE P P fD∑
=

= −                      (9) 

where ifD  is the FD of the ith set of compounds 
obtained using (7). The derived FD summarizes the 
image roughness complexity as a single numerical 
value. 
 
3.2 Roughness-based FW Coding Method  
The proposed method estimates the domain-range 
matching based on the relative degree of texture 
similarity, as shown in Fig. 2. The range subtree was 
approximated by using the affine grayscale 
transformations of the domain subtrees.  
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Fig. 2. Illustration showing roughness-based FD 
works in finding the appropriated domain subtrees 
to match the range subtrees. 

The image subtrees can be split into n-level 
decomposition by using a quadtree partitioning 
scheme. Each level includes one low-frequency 
subband and three high-frequency subbands from 
various directions. The collage error was used as a 
splitting criterion and the maximal splitting depth 
decreased to a limited number, depending on the 
image size and block size. Mapping the affine 
transformation domain subtree into the 
corresponding range subtree was described in [8]. 
The encoded parameters include the position of the 
domain tree and the scaling factor. The experiment 
in this study did not implement rotation and flipping 
in the affine transformation.  
 
4 Experimental Results and 
Conclusion  
4.1 Measuring Performance  
The proposed method leads to an approximation of 
the original noise-free image. The performance 
evaluation is taken by using two well-defined error 
criteria, the MSE and PSNR.  

( ) ( )( )1 1 2

0 0

1 , ,
N M

x y
MSE B x y A x y

N M
− −
∑ ∑
= =

= −
×

     (10) 

where ( ),A x y  is the gray value expression of 
original image A, and ( ),B x y  is the gray value 

expression of decoded image B. The images are the 
same size as N M× . 

Generally, if the PSNR is sufficiently large, no 
humanly perceptible difference exists between the 
reconstruction and the original image.  

2
max

1010log
I

PSNR
MSE

= ,                                      (11) 

where maxI  is the highest intensity pixel in the 
image [19], in which the intensity is 256 in gray 
images. 
 
4.2 Experimental Results  
The performance of the proposed roughness-based 
FW algorithm was evaluated. A classical 
comparison analysis was conducted based on the 
emulated noisy image. It was built by using a high-
quality image as the original, adding Gaussian white 
noise of a given variance σ to the original image, 
and then using the denoising method to approximate 
the original image using the noisy image. Therefore, 
three side-scan sonar images of a pipeline, which 
were captured by the Polaris, Taiwan, were selected 
as the experimental objects, as shown in Fig. 3. 
They were enlarged to 2048 × 2048 pixels and 
transformed to an 8-bit gray image. Gaussian white 
noise (with zero mean and variance σ = 0.01) was 
then added to the original sonar image to create the 
noisy image. The roughness-based FW algorithm 
and a slightly modified generic FW scheme were 
used to reduce the noise in the noisy sonar images. 

The proposed method was also compared with a 
generic FW compression algorithm introduced by 
Avanaki et al. [17]. Table 1 shows that the 
roughness-based FD produced more favorable FD 
values than the generic FW algorithm did. 
 
4.3 Conclusion  
An FW denoising alternative based on applying a 
texture analysis technique to the fractal matching 
process was proposed in this study. The 
performance of the roughness-based FW algorithm 
was demonstrated by applying it to a sonar image. 
The analysis of the results indicated that the novel 
algorithm based on texture similarities demonstrates 
the adaptability of the algorithm when images are 
denoised for a side-scan sonar. 

 

 Noisy image  
(σ = 0.01) 

De-noised by 
roughness-based 

FW 
(a) 

KP27 
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(b) 
KP30 

  
(c) 

KP57 

  

Fig. 3. De-noising effects for sonar image of the 
pipeline exposure and freespan taken by the 

Polaris 
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Table1. The MSE and PSNR values for the noisy sonar image after de-noising  
 σ = 0.01 σ = 0.05 σ = 0.1 

(a) KP27 (b) KP30 (c) KP57 (a) KP27 (b) KP30 (c) KP57 (a) KP27 (b) KP30 (c) KP57 
Noisy image MSE 40693 38852 34150 40712 38871 34168 40727 38886 34181 

PSNR  2.070 2.271 2.831 2.068 2.269 2.829 2.07 2.267 2.827 
The proposed 

algorithm 
MSE 151 229 187 297 358 270 503 553 396 
PSNR  26.37 24.57 25.45 23.43 22.63 23.86 21.15 20.74 22.18 

FW coding [19]   MSE 40682 38851 34147 40683 38852 34148 40684 38853 34150 
PSNR  2.071 2.271 2.831 2.070 2.270 2.831 2.066 2.271 2.831 
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