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Abstract: The Teknomo-Fernandez (TF) Algorithm is an efficient algorithm for generating a background image
from a given video sequence. It uses a tournament-like strategy, with 3 frames per tournament (7'F'3), to approxi-
mate the background pixel value at every pixel position of an image frame. In this study we perform both theoretical
and empirical analyses of the extendibility of this TF version by considering tournament sizes of 5 (T'F'5), 7 (T'F'7)
and even higher. The expected accuracies of the TF configurations are derived which are verified by the gathered
experimental performances. A model background image and a framework for comparing the performance of the
algorithms in terms of accuracy, space and time complexities are developed. From the theoretical and empirical
results, the T'F'3 configuration is extendible to T'F'5 and T'F'7. However, it becomes impractical to extend it to
beyond T'F'7 because of the exponential growth in the required number of Boolean operations. This study also
shows T'F'3 to be the clear winner among the TF configurations in terms of marginal accuracy and processing
time. Applying a background subtraction on the generated background images validates the competitiveness of
this technique against other background modeling techniques in literature.
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1 Introduction and tracking of moving objects has relied heavily on
the background subtraction approach. Piccardi [11]
performed an extensive review on several background
subtraction techniques such as Gaussian distribution,
kernel density, median filter and eigenbackgrounds.

Segmentation of the foreground in a video sequence
is a basic step for many computer vision applications
and analyses. An accurate segmentation of the fore-
ground, or moving objects, results to an accurate ob-
ject tracking for further processing. Background sub-

traction is a commonly used technique for moving ob- 2  Review of Related Literature
ject detection by getting the difference of the fore-
ground and background images. Background image modeling in video surveillance
The efficiency of the background subtraction lies are subject to many challenges. These difficulties
on the accuracy of the generated background image were enumated by Brutzer et. al. [2] and Mad-
that is used as a reference background. It is desir- dalena et. al. [10] as gradual and sudden illumi-
able that the generated background image matches the nation changes, dynamic background, cast shadows,
ideal background image. The difficulties in generat- bootstrapping and camouflage. The ideal background
ing the background image involve the development of modeling technique should be able to avoid these
a model that should represent the ideal background challenges. Cucchiara et. al. [3] proposed the Statisti-
scene and a model that is sensitive enough to detect cal And Knowledge-Based ObjecT detection (Sakbot)
changes in the background scene such as lighting ef- that addresses the challenge of cast shadows. Toyama
fects and moving tree branches [9]. Failure to address et. al. [14] proposed the Wallflower scheme that
these difficulties results to an inaccurate background solves the issues on illumination changes and camou-
image and leads to detecting false objects. flage. Many data sets were developed such as PETS
Maintaining a model background of a scene is [17][18] that offer test sequences that account to these
a challenging task in background subtraction. The issues.
main objective of a background subtraction approach Maddalena et. al. [10] lists the common clas-
is to determine the foreground scene. Segmentation sifications of the proposed techniques as paramet-
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ric or nonparametric, unimodal or multimodal, recur-
sive or nonrecursive, and pixel-based or region-based
method. Previously proposed methods are not strictly
classified and can be a combination of these classifi-
cations. Maddalena et. al. proposed a nonparametric,
multimodal, recursive and pixel-based approach.

A background modeling method that is based on a
parametric approach estimates the background model
based on an assumed distribution of the pixel inten-
sity values. Parametric approaches that were proposed
in literature include W* [7], [12], Wallflower [14],
Pfinder [15] and [16]. A nonparametric approach does
not assume a known distribution of the pixel intensity
values. Proposed nonparametric approaches include
[5], [9] and [8]. The nonparametric approach is more
robust than the parametric approach because it can
easily adapt to pixel intensity data with unknown dis-
tribution. However, in terms of time and space com-
plexity the parametric approach remains to be gener-
ally more efficient.

The previously proposed techniques have high
computational complexity and process all or major-
ity of the frames. One technique that considers the
speed of processing is the TF algorithm [13] . This
algorithm assumes that the background image is com-
posed of pixels whose values can be approximated
by taking the most frequently occurring bit value at
each pixel bit position (e.g., each bit of a 24-bit pixel
value). This algorithm also requires significantly less
number of frames in order to generate a background
image with considerably high accuracy to that of the
model background.

The work presented in this paper presents a the-
oretical and empirical analyses of the extendibility of
the TF algorithm. The original TF algorithm uses 3
sample frames in its tournament-like main processing
step and is denoted here by T'F'3. In this algorithm,
the pixel bit mode value at a specific bit position and
at a specific pixel location is the bit that occurs in
at least 2 out of the 3 sample frames. Aggregating
these modal bits generates a level-1 background im-
age. Taking 2 other level-1 background images pro-
duces a level-2 background image and so on. Figure 1
illustrates the generalized level-wise steps of the TF
algorithm.

Abu, et al. [1], explored replacing the Boolean
operations in the 7'F'3 algorithm with a serial count-
ing of occurrences of bit values. Although this tech-
nique is slower than the T'F'3, they further showed
both theoretically and empirically, that for a fixed to-
tal number of sample frames, having fewer levels but
larger tournament size produces a more accurate back-
ground image than having more levels but smaller
tournament size. This finding has generated an in-
teresting research question: Can the TF algorithm be
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extended in order to have larger tournament sizes so
that even having fewer levels produces highly accu-
rate results? This study attempts to answer this ques-
tion using a nonparametric, unimodal, nonrecursive
and pixel-based background modeling technique.

3 Methodology

The TF algorithm combines the strategies of (1) Ran-
dom Sampling, (2) Boolean Computation and (3)
Multi-level Processing. The difficulty in extending
the TF algorithm lies in the Boolean computation.
Hence an appropriate Boolean formula was first de-
veloped for T'F'5 and T'F'7. The ease of extending this
to TF9, TF11, etc., is then investigated. A ground
truth generator (GTGen) was implemented to produce
a pixel bit mode model of the ideal background im-
age. The TF configurations T'F'3, T'F'5 and T'F'7 and
the GTGen were implemented in C++, incorporating
the OpenCV library.

Theoretical results were derived and empirical re-
sults were gathered to determine the performance of
the TF configurations based on their accuracies, and
space and time complexities. The ground truth image
is produced by the GTGen wherein all frames of the
video sequence were processed, not just a random set
of sample frames as opposed to TF. Consequently, the
computation of the pixel bit mode had to be done per
bit in a serial manner (instead of the parallel frame-to-
frame manner in TF).

The expected accuracies were derived using an
initial probability pg that describes the probability of
obtaining the ideal background pixel from a given
video stream. For the empirical results, data were col-
lected from running the TF configurations on 5 test
videos. Table 1 lists summative details of the test
video files and a sample frame for each of the test
videos are shown in Table 6.

Table 1: Test video parameters.

Test size | length | frame | width | height
Video | (MB) | (secs) | count | (pixel) | (pixel)
1[17] | 3.74 19 594 640 480
2 (2] 2.45 5 166 480 360
3[19] | 12.10 60 1824 640 480
4118] | 186.0 | 107 2695 768 576
5[18] | 150.0 | 107 2695 768 576

To obtain the empirical accuracies, the gener-
ated background images of the TF configurations were
compared to the GTGen pixel bit mode model back-
ground image. Since the number of frames and
the number of Boolean operations vary significantly
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Fig. 1: TF frame processing diagram.

among the TF configurations, a framework for com-
parison was also developed. The application of this
framework was crucial in arriving at one of the main
conclusions for this study. Finally, a background
subtraction was implemented on the generated back-
ground images.

4 Results

4.1 Boolean Formulas

Consider first a mechanism to develop Boolean for-
mulas for TF3, TF5, and TF'7. Let the frames se-
lected for 1 tournament be labeled by A, B, C' and so
on. The “2 out of 3” rule for the T'F'3 can be achieved
using the following Boolean formula:

TF3image < AB + AC + BC (1)

We use the standard representation of addition for
the Boolean OR and multiplication for the Boolean
AND in Equation (1). This formula contains 5
Boolean operations (3 AN Ds and 2 O Rs) and is said
to be in disjunctive normal form (DNF).

A correct DNF for TF5 (or TF'7) can be pro-
duced using a similar technique of exhasutively apply-
ing the “3 out of 5 (or “4 out of 7”) rule as follows:

TF5image < ABC + ABD + ABE
+ACD + ACE + ADE + BCD
+BCE + BDE + CDE

2
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TF7image < ABCD + ABCE + ABCF
+ABCG + ABDE + ABDF + ABDG
+ABEF + ABEG + ABFG + ACDE
+ACDF + ACDG + ACEF + ACEG
+ACFG + ADEF + ADEG + ADFG
+AEFG + BCDE + BCDF + BCDG
+BCEF + BCEG + BCFG + BDEF
+BDEG + BDFG + BEFG + CDEF
+CDEG + CDFG + CEFG + DEFG

3)

This demonstrates that, hypothetically, the TF al-
gorithm can be extended to any TFn (where n is an
odd number) because it is always possible to produce
a correct DNF for TFn by generating this disjunctions

n

of all unique
< [n/2] )

conjunctions among the n frames of a tournament.
The total number of Boolean operations IV, can also
be computed deterministically from the number of n
of tournament frames as follows:
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Table 2: Expected number of Boolean operations.

Frames per Total # of
Tournament | Boolean operations
3 5
5 29
7 139
9 629
11 2,771
15 51,479
21 3,879,875

Table 2 applies this formula to demonstrate the
exponential growth in the required Boolean opera-
tions per TF tournament, with respect to the number
of frames.

It is important to mention that the problem of min-
imizing the number of Boolean operations for a given
formula is an NP-Hard problem [4]. Thus, although a
transformation technique may be applied to reduce the
number of operations, such technique does not guar-
antee optimality unless an exhaustive search is done.
In order to reduce the formulas for T'F'3, T F'5 and
TFE7, we apply a Karnaugh mapping technique and
perform manual simplification. We have derived the
following simplifications:

TF3image — (A+ B)C + AB (6)

TFb5image < (D + E)(AB + AC + BC)
+DE(B+C)+ A(BC + DE)

TF7image < A(B(C(D+ E+ F + Q)

+D(E+F+G)+ E(F +G)+ FG)

+C(D(E+F+G)+ E(F+G)+ FGQG)
+D(E(F +G) 4+ FG) + EFG) (8)

+B(C(D(E+ F+G)+ E(F+G)+ FG)

+D(E(F 4+ G) + FG) + EFG)

+C(D(E(F +G) + FG) + EFG) + DEFG

Equations (1), (2) and (3) show the DNF, and their
equivalent simplified expression with fewer Boolean
operations are given in Equations (6), (7) and (8) re-
spectively. The values, therefore, listed in Table 2
may be interpreted as upper bounds for the number
of Boolean operations vis-a-vis the number of tourna-
ment frames.
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4.2 Ground Truth Generator

The Ground Truth Generator (GTGen) is developed
to generate the model background image. This is used
as a reference image to determine the accuracies of
the empirical results. Given a video sequence with n
frames, each with r rows and ¢ columns of pixel per
frame, the GTGen runs through all the RGB pixels
components (7, c) and selects the pixel bit mode from
start frame to frame n.

Figure 2 illustrates the pixel bit mode processing
and differentiates this method with the conventional
modal pixel value. As an example, with N = 6 at pixel
location (r, c), the 8-bit R component values are listed
in Fig. 2. The GTGen selects the modal pixel value
per bit position 0 to 7 and the resulting 8 bit value
represents the pixel bit mode.

If the modal pixel value (for a fixed position) oc-
curs in the majority of the frames, then GTGen pixel
bit mode method guarantees to produce the modal
pixel value also, as illustrated in Figure 2(b). More-
over, assuming that the modal pixel corresponds to the
background, and that the bit values at a specific bit po-
sition is uniformly distributed for the non-background
images, then the pixel bit mode would also correspond
to the modal pixel.

(a)Modal pixel (b) Modal pixel
is not majority  is also majority
1111 0000 1111 0000
1111 0000 1111 0000
1111 0000 1111 0000
0000 0111 1111 0000
0000 0111 1010 1010
0001 1100 1100 1100
0001 1100 1110 0111
Modal Pixel: 1111 0000 1111 0000
Pixel Bit Mode: 0001 0100 1111 0000

Fig. 2: Modal Pixel vs Pixel Bit Mode.

4.3 Performances
4.3.1 Theoretical Accuracy

To analyze the expected accuracy of each of the TF
configurations, a probabilistic estimation is applied.
The usual assumption that the background image con-
sists of the modal pixel value at each of the (r,c) posi-
tions is considered.

To derive the expected accuracy of the different
TF configurations, an analysis is first made based on
the pixel bit mode value. First, we fix the bit posi-
tion and pixel location. Let pg be the probability that
the bit from the randomly selected frame is the same
as the actual pixel bit mode. Numerically, this is just
given by
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Theoretical Bit Level Accuracy
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Fig. 3: Graph of theoretical bit level accuracies of
TF3, TF5and TF7.

# of occurrences of the modal bit
# of frames

Po = 9)

The number of different possible cases where the
pixel bit mode is actually generated (from the random
samples) is a function of the number S of samples
taken. For example for S = 5, as long as any 3, 4
or 5 of the bits are the same, then the correct pixel
bit mode ”wins”, i.e., is generated. Thus the probabil-
ity of the correctness of the generated pixel bit mode
should consider each of these winning cases. This
probability formula is

S
p= > <}j>(po)’“(1—po)5_k (10)
=E

For multi-level computations, the probability that
the output bit on the ith level (¢ > 0) is dependent on
the probability of success in the previous level, and is
given by

S

i = Z
k=[$]
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Empirical Bit Level Accuracy
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Fig. 4: Graph of empirical bit level accuracies run on
5 sample test videoes.

Applying the formula allows us to compute for
the expected accuracy, on a bit level, for each of
the TF configurations. The graphs of the theoretical
bit level accuracies of the different configurations are
given in Fig. 3. As expected, the higher the initial
probability pg, the higher is the theoretical accuracy
of the final result.

Furthermore, for a fixed tournament size, the
higher the number of levels, the better is the ex-
pected accuracy.  Thus, in terms of accuracy,
TF574 > TF573 > TF572 > TF571. This is to be ex-
pected since the number of sample frames in a con-
figuration T'F;, 1, increases by a factor of n (the tour-
nament size) for every increment in L (the number of
processing levels).

These graphs also show that, generally, the accu-
racy of the TF algorithm increases as the tournament
size increases. Thatis, T'F3 1 <TF5 1, <T'F7 1, when
only accuracy is considered. Again, this can be ex-
plained by infering the total number of samples used
to generate the background image.

4.3.2 Empirical Accuracy

To support the theoretical results, we run the TF con-
figurations on 5 sample test videos. We report the in-
teresting results for TF configurations where the tour-
nament size is increased while the number of levels is
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decreased: T'F34, TF53 and T'F7 5. At a fixed ini-
tial probability pg = 0.60, the expected accuracies of
the final results of T'F3 4, T'F5 3 and T'F7 5 are 0.8991,
0.9516 and 0.8868 respectively. Thus, in terms of ex-
pected accuracy, T'F53 > TF34 > TFr75. This is
again consistent with correlating the accuracy with the
sampling size (since 53 > 3* > 72).

A threshold value is used so that if the pixel value
returned by a TF configuration is not significantly dif-
ferent from the corresponding pixel bit mode value of
the GTGen, then the pixels are still considered simi-
lar. To illustrate, if the threshold value is 10, then cor-
responding pixels from different configuration results
are considered the same if they do not differ by more
than 10, in any of the color bands (RGB). Note that in
this scheme, if the threshold is zero then the pixel val-
ues between corresponding frame locations have to be
completely identical for them to be considered similar.

Figure 4 illustrates the competitive accuracy of
the TF configurations that can attain an accuracy of
0.9 and above at threshold of £5. Empirical results
show the efficiency of the TF configurations in terms
of accuracy considering that it processed significantly
fewer frames than the GTGen.

4.3.3 Space and Time Complexities

Since the GTGen based on pixel bit mode values pro-
cesses all frames in a given video sequence, this al-
ready signifies that it requires a very high space com-
plexity. The TF algorithm, on the other hand, requires
only S frames to generate a background image of
considerably high accuracy. With sufficiently small
S and L values, the TF algorithm requires a much
smaller computing space than GTGen.

Between the TF configurations, a lower number
of sample S and level L of processing results to fewer
initial frames to be saved into an array. Taking for
example a 4-level processing, TF3, TF5 and TF'7
would require a space allocation that can handle the
initial random frame samples of 81, 625 and 2,401
respectively.

Running over Test Video 1, the GTGen needs a
space allocation for all 594 frames of the video se-
quence to generate the background image. T'F3 4 on
the other hand, would only require 3* = 81 random
frames (including possible repetitions). As for the
T'F7 4 configuration, it requires 74 = 2,401 sample
frames, which is more than the total number of frames
of the video.

The theoretical runtime of the TF algorithm is
O(nrc) where n is the number of frames, with 7 rows
and c columns of pixels and each pixel having a con-
stant number of bits.

To further test the performance of the algorithms,
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the time elapsed of each configuration was monitored.
This time starts from reading an input video file, sav-
ing the required number of random frames in an array,
processing the frames and saving the generated back-
ground image.

Since the frames are randomly selected, 30 sets of
simulations were conducted and the mean results were
recorded. Table 3 shows the mean actual processing
time for each algorithm and TF configuration.

Table 3: Actual elapsed time in seconds.

Sample GTGen TF374 TF5’3 TF7’2
Video 1 | 466.610 | 1.0952 | 1.0608 | 0.7546
Video 2 64.270 | 0.2506 | 0.2376 | 0.2730
Video 3 | 1518.740 | 1.1185 | 1.8101 | 0.7883
Video 4 | 3544.074 | 7.1101 | 11.2184 | 4.4499
Video 5 | 3797.248 | 6.8176 | 10.5740 | 4.1298

Actual simulation results therefore show that the
TF configurations remain more efficient in terms of
space allocation and processing time compared to the
GTGen. However, for the configurations of the TF
algorithm, as the number of frames S and level of
processing L increases, the space allocation and pro-
cessing time increase also. In addition, the number of
Boolean operations significantly increases and thus an
additional time is needed for processing.

4.4 Framework of Comparison

The general observation that the number of sample
frames correlates positively with accuracy introduces
some bias for configurations that require more sample
frames. Thus, marginal accuracy and marginal time
are introduced for a better comparison of the differ-
ent TF configurations. This framework is important
especially when both the tournament size S and the
number of levels L are different (e.g., T'F3 4, T'F53
and TF 772).

The marginal accuracy is computed by divid-
ing the empirical accuracy by the number of sample
frames used. The accuracy of the TF configuration, on
the other hand, is based on the similarity of the gen-
erated background to the ground truth GTGen. This
similarity compares pixel bit mode values.

Table 4 lists the marginal accuracy of each config-
uration at threshold equal to 10. From Table 4, the TF
configurations still show significantly higher marginal
accuracy than the GTGen. With this, the TF algo-
rithm exhibits very high efficiency taking into consid-
eration that it generated the background image using
just a small number of frames (i.e., 81, 125 and 49) as
compared to 594 frames processed by GTGen for Test



Applied Computational Science

Table 4: Marginal accuracy and marginal time run on
the test videos at threshold = 10.

Sample ‘ GTGen ‘ TF374 ‘ TF5’3 ‘ TF772
Marginal Accuracy ( % per processed frame)

Video 1 | 0.0016 | 0.0117 | 0.0077 | 0.0197
Video 2 | 0.0057 | 0.0118 | 0.0077 | 0.0197
Video 3 | 0.0005 | 0.0112 | 0.0075 | 0.0194
Video 4 | 0.0004 | 0.0122 | 0.0079 | 0.0201
Video 5 | 0.0004 | 0.0123 | 0.0080 | 0.0203
Marginal Time (seconds per processed frame)
Video 1 | 0.7855 | 0.0135 | 0.0085 | 0.0154
Video 2 | 0.3872 | 0.0031 | 0.0019 | 0.0056
Video 3 | 0.8326 | 0.0138 | 0.0145 | 0.0161
Video 4 | 1.3151 | 0.0878 | 0.0897 | 0.0908
Video 5 | 1.4090 | 0.0842 | 0.0842 | 0.0843
Marginal Accuracy

"GTGen "TF34 “TF53 “TF72

ilall

Test Video 1 Test Video 2 Test Video3 Test Video 4 Test Video 5

=} [=] (=}
-
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°
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Fig. 5: Marginal accuracy vs threshold graph of each
configuration run on test videos.

Marginal Runtime

®GTGen ®TF3,4 "TF53 ®TF7,2

1.4
12 -
210+
E=}
o
208
z
g 06 1
&
0.4 1
02 1
0.0 . : ‘

Test Video 1  Test Video2 Test Video3  Test Video4  Test Video 5

Fig. 6: Marginal processing time of each configura-
tion.

Video 1. Similar results were gathered for the rest of
the test videos.

Referring back to the theoretical bit level accura-
cies on Figure 3, actual simulation results show that
as the number of frame sample .S increases and as the
level of processing L increases, the accuracy of the TF
configuration increases as well. Figure 5 illustrates
the graph of the marginal accuracies of each configu-
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ration across 5 test videos.

Table 4 shows also the marginal processing time,
each computed by dividing the actual runtime by the
total number of sample frames processed. It is clear
from these results that the TF algorithm is more effi-
cient than the GTGen in terms of processing time and
is clearly illustrated in Figure 6.

4.5 Background Image Generation

Table 5 shows the generated background image at the
first and final level of frame processing for T'F3 4,
TF53 and T'F7o. From the level 1 output images,
moving objects are still visible. However, as the level
increases the generated background images become
“cleaner”, with lesser foreground pixels.

Table 5: Level 1 and final background images.

TF;1Level 1| TF:qLevel 1| TF341 Level 1| Sample Input

TF-9Level 2| TFy q Level 3| T'F3 4 Level 4

The TF configurations were evaluated in several
test videos. Extensive experimental results illustrate a
good performance of the TF configurations. Table 6
shows the generated background of the extended TF
configurations and the GTGen.
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Table 6: Generated background images of GTGen and TF configurations on all test videos.

Test Video 1 Test Video 2

Sample Frame

GTGen

F3

TF5

TFy

Test Video 3

Test Video 4

—

Test Video 5

4.6 Background Subtraction

By computing the difference between an observed
frame and the generated background image, the fore-
ground becomes prominent. The difference is imple-
mented on all RGB pixel components. A large and
small absolute difference determines if the particular
pixel component is to be considered as a moving ob-
ject or part of the background. The differences were
saved in a binary image frame with values O and 1
that pertains to a moving object or a background pixel.
To have a fair comparison, the difference was imple-
mented without any denoising or post processing.

The difference images of the TF configurations
were compared with commonly used baseline meth-
ods — MOG, Mean, Median and Mode, which were
also used as a basis to develop the promising tech-
niques proposed in [3], [6], [8], [10], [12] and [16].
These baseline methods were also implemented and
developed in C++ using OpenCV library. The MOG
used is the built-in BackgroundSubtractorMOG2( )
with default values provided by OpenCV that imple-
ments the technique proposed by Zivkovic in [16].
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The mean, median and mode methods were devel-
oped by computing the corresponding mean, median
and mode pixel value of each pixel location across all
frames in the video file.

The test sequences in Table 1 were selected so as
to cover different senarios that are considered to be the
difficult conditions for background subtraction. These
scenerios range from slow to fast moving persons and
vehicles, low to high density crowd, indoor and out-
door scenes with bright sunshine and shadows, cam-
ouflage, and a multimodal background with waving
tree branches.

The difference images are shown in Fig. 7. For
slow moving-object and dynamic background condi-
tions, T'F3 4 in Fig. 7(n) performs better than MOG in
Fig. 7(j). TF3 4 exhibits mode pixel intensity based
processing that is tolerant to outliers as opposed to the
means of Gaussians that is sensitive to outliers. The
resulting images validate that the TF algorithm can
have competitive high accuracy as that of the baseline
methods by processing as few as 49 frames as opposed
to the baseline methods that process all the frames in
the test sequence.
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(a) Sample Frame (b) MOG (c) Mean (d) Median
(e) Mode | H) TF34 (@) TFs3 (h) TF7 2

(q) Sample Frame

=

(ll) Mode (V) TF374 (X) TF772

Fig. 7: Background Subtraction application and comparison to commonly used baseline methods.
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5 Conclusion

In this paper, the TF algorithm was shown to be ex-
tendible to T'F'5, T'F'7 and even higher configurations.
However, both theoretical and simulation results re-
veal that the extendibility of the TF algorithm involves
practical issues such as increasing number of Boolean
operations and space and time requirements.

Based on the model background image and
framework that was developed for comparison of sim-
ulation results, 7'F'3 still remains to be most efficient
and is the best TF configuration for actual implemen-
tation. An application of a background subtraction
on the TF generated background images validates the
efficiency and competitive high accuracy with fewer
processed frames of the TF configurations compared
to commonly used baseline methods.

Further improvements on this study may include
the development of a performance index that incorpo-
rates properly the factors of accuracy, space and time
complexities of the TF configurations.
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