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Abstract:  Throughout the last century, flooding has been one of the most costly natural disasters concerning of 

human casualties, property damage, and environment degradations. Flooding is a complex natural phenomenon 

which is highly constrained by the geospatial environment where it evolves. The need for flood prediction and 

risk assessment is increasing, and decision makers still lack intelligent tools to study flooding. Artificial 

intelligence and knowledge discovery advances offer approaches for the modeling and simulation of such 

complex phenomena. To this extent, we propose to build a computer simulation platform to support flood 

prediction and risk assessment using advanced geo-visualization and data mining techniques. The outcomes and 

results of our simulations aim to better manage floods through prevention, protection, and emergency response 

perspectives.  
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1 Introduction 

After the record floods of 1997, communities 

all along the Red River of the North took 

different approaches to protect themselves from 

future floods. Floodwaters spread over large 

areas of Grand Forks, ND and East Grand 

Forks, MN; 60,000 people were forced out of 

their homes and downtown Grand Forks was 

burning (Figure 1). Even cities such as 

Crookston miles away from the Red River need 

protection, which feeds into the Red River. 

Moreover, in June 2008, the levees of the 

Mississippi River were breached by a large 

flood. More than 22 breached levees flooded 

many areas in several days with 24 fatalities. 

Thousands of people were affected and lost 

their homes; many industries and farmers in 51 

counties of 5 states (Illinois, Missouri, 

Wisconsin, Iowa, and Minnesota) lost their 

products and ability to recover. Catastrophic 

flooding is a major security concern in the 

United States. Failure of dams, levees, and 

flood gates of water infrastructures such as on 

reservoirs, lakes, rivers, and coastal water will 

result in losses including many lives, billions of 

dollars in property damage, and environmental 

degradation. Although most of the rivers in the 

US are confined within manmade levee 

systems, these existing infrastructures are in 

great need of improvement and strengthening.  

The need for flood prediction and risk 

assessment is increasing yet decision makers 

still lack intelligent tools to study flooding. 

Indeed, flooding is a complex natural 

phenomenon which is highly constrained by the 

geospatial environment. In order to study 

flooding, a number of challenges need to be 

addressed: (1) we need to reproduce and 

simulate such phenomena in a virtual 

environment using computer simulation; (2) we 

need to analyze large amounts of data 

representing collected observations for frequent 

pattern discovery and flood prediction purposes; 

(3) we need accurate and intelligent predictive 

models to predict floods ahead of time based on 

the related attributes; and (4) we need to geo-

visualize and assess risks entailing potential 

flooding phenomena. 

Applied Computational Science

ISBN: 978-960-474-368-1 18



 

  

(a) (b) 

Figure 1: (a) The Sorlie Bridge between Grand Forks, North Dakota, and East Grand Forks, Minnesota, during the 1997 

Red River of the North flood (photograph by Steven W. Norbeck, U.S. Geological Survey). (b) A forest service plane 

bombards downtown Grand Forks with fire retardant chemicals in a last ditch effort to knock down fires raging out of 

control (source: http://www.usgs.gov). 

Advances in artificial intelligence evolved the 

geo-simulation paradigm for the modeling and 

simulation of complex natural phenomena. In 

addition, data mining which is concerned with 

new knowledge discovery from large databases 

can be applied to analyze collected observations 

such as: flood history, water levels, snow-fall 

amounts, weather conditions, and geospatial 

data. Moreover, virtual reality provides 

techniques nowadays that enable accurate geo-

visualization of large scale environments. The 

integration of the aforementioned techniques 

within a simulation platform aims to support 

flood prediction and risk assessment. 

In this research paper, we propose to build a 

computer simulation platform to support flood 

prediction and risk assessment using advanced 

geo-visualization and data mining techniques. 

We intend to collect and analyze observation 

data in order to identify frequent patterns and to 

discover important relationships between the 

data variables using predictive modeling that 

we propose to build. These models will be 

integrated into a Geo-Simulation platform 

which offers 3-D geo-visualization to help 

decision makers predict potential floods and 

assess associated risks. 

The goal of this research paper is to help the 

local Red Lake Valley community with better 

flood prevention planning. We believe that the 

proposed platform, associated set of models, 

and algorithms will be of interest to community 

leaders to help with the elaboration of effective 

strategic flood prevention planning. We will 

first target local areas surrounding the Red 

River as a case study, but we anticipate that our 

geo-simulation platform can be adapted to other 

geographic areas. 

2 Literature Review 

Flood models are a major tool for mitigating the 

effects of flooding [1]. They provide predictions 

of flood extent and depth that are used in the 

development of spatially accurate hazard maps 

[2]. Predictive models allow for the assessment 

of risk to life and property and the prioritization 

of either the maintenance of existing flood 

defences or the construction of new ones [3]. 

Computer simulation and geo-visualization 

techniques enable the study of such scenarios. 

In this section, we provide the present state of 

work in the field of predictive modeling, flood 

modeling, and simulation using GIS data.  

Predictive modeling (supervised learning) has 

been widely studied for a broad number of 
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applications such as: medical diagnoses [4], 

classifying web services [5], and fraud detection 

[6]. The needs for flood prediction models are 

of the highest importance since they critically 

impact the lives of people and their properties. 

In the past few years, several flood prediction 

models have been proposed. A web GIS system 

has been developed for decision support [3]. 

Artificial Neural Networks (ANN) with fuzzy 

theory has been used to enhance flood 

predictions [7]. A model based on support 

vector machines has been created to predict 

flood velocity [8]. A model to predict flood 

occurrence patterns [9] is presented. A series of 

data mining techniques has been proposed in for 

flood prediction [10].  

There have been significant advances in flood 

modeling over the past decade. Progress has 

been made in the understanding of the processes 

controlling runoff and flood wave propagation, 

simulation techniques, uncertainty handling and 

risk assessment, and in collecting and analyzing 

of data [11].  

The flood phenomenon is highly constrained by 

the spatial environment in which it takes place 

[2]. Existing analytical models usually fail to 

capture the interaction between this 

phenomenon and the geospatial environment in 

which it evolves [12]. The movement of flood 

waters through the landscape can be 

approximated using many different methods. 

Describing natural physical phenomena using 

numerical methods requires making broad 

assumptions to develop governing equations 

[3]. While simple hydraulic modeling methods 

may be sufficient for approximating 

propagation of flood peaks through river 

channels,  more complex hydraulic analyses 

may be necessary to incorporate effects of 

infrastructure (i.e. bridge, building, roads, etc.) 

or complex overland flow [2].  

There are several well-known methods to assess 

the impact of a flood on the urban areas. Some 

of them consider the economic effects of 

flooding [1], while others focus on estimating 

the number of fatalities [11] [12] [13]. Some of 

these use empirical models which try to predict 

the number of casualties by some heuristic 

rules. For example [12] uses numerical flood 

simulation to estimate the flood characteristics 

(depth, flow speed, and so on) in the modeled 

area. They apply an empirical formula to 

estimate the fraction of fatalities (mortality 

function) for each spatial location. Given the 

initial population distribution, this can provide a 

useful estimate of the number of loss of life 

events.  

Some researchers use agent-based modeling 

(ABM) to employ more details of population 

behavior into the simulation. For example [11] 

uses ABM to model the cycle of daytime 

routines being interrupted by a flood. The 

researchers consider the case of vehicle 

evacuation over a road network. The Life 

Safety Model [13] is another agent-based model 

of flood evacuation; it uses a sophisticated set 

of rules to predict loss-of-life events depending 

on an agent’s health condition and actual 

location (building, vehicle, pedestrian).  

Although, several flood prediction models have 

been proposed, none of these models have been 

adapted to take into account the characteristics 

of the geospatial environment. In addition, none 

of the aforementioned models integrate GIS 

data and supports agent-based geo-simulation 

with geo-visualization that enables “what-if 

analysis”. 

Geospatial environments are usually complex 

and large-scale. The creation of computer 

generated virtual geospatial environments is 

difficult and needs large quantities of 

geometrical data originating from the 

environment characteristics (terrain elevation, 

location of objects and agents, etc.) as well as 

semantic information that qualifies space 

(building, road, river, park, etc.)  [14]. Most 

current agent-based simulation models consider 

the environment as a monolithic structure, 

which considerably reduces the capacity to 

handle large-scale, real world geographic 

environments as well as agent’s spatial 

reasoning capabilities [15]. These models do 

not take into account the valuable semantic 

information associated with the geospatial 
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features [2]. The complexity of building such a 

description should only depend on the 

geometrical complexity of the geospatial 

environment rather than on its scale [16].  

3 Methods 

We propose to build a multi-agent geo 

simulation platform to support flood prediction 

and risk assessment using advanced geo-

visualization and data mining techniques. First, 

we will introduce the data mining concept while 

emphasizing the fundamental processes 

including the data collection, data cleaning, data 

warehouse construction, and data cube creation. 

Next, we provide an overview of multi-agent 

geo-simulation techniques. 

3.1 Data Mining 

Data mining (DM), also known as knowledge 

discovery from data (KDD), is the process of 

extracting interesting non-trivial, previously 

unknown patterns or knowledge from large 

amounts of data. The process of finding new 

knowledge consists of a series of steps 

including: 1) data cleaning, 2) integration of 

multiple sources, 3) data warehouse (DW) 

construction, 4) data selection, 5) knowledge 

discovery, and 6) pattern evaluation. Below we 

discuss how we can adapt these general DM 

tasks to flood prediction and risk assessment. 

3.1.1 Data Collection 

This step aims to collect statistic and 

geographic data including: 

 historical rainfall and runoff data across a 

catchment;  

 historical river height and discharge 

information;  

 catchment topography and land use;  

 surveys of river and floodplain levels and 

cross sections;  

 models of the hydrologic processes (rainfall, 

runoff, infiltration, concentration etc.); 

 models of the hydraulic processes 

(propagation, attenuation etc.). 

Table 1 shows the data sources. The collected 

data are time series. Relevant attributes such as 

rainfalls, snow amounts, and temperatures are 

measured over time. Our aim is to integrate all 

these multiple-source data sets into a single 

coherent and consistent data warehouse 

repository. 

3.1.2 Data Cleaning  

The collected data will be analyzed and pre-

processed in order to use the most relevant data. 

We will evaluate and pre-process the data using 

the following criteria: 

 Data completeness: we will use statistical 

measures, such as parameter mean or 

median to pre-process missing data. In 

addition, inference-based methods can be 

used, such as Bayesian theory or decision 

trees to infer missing data expected values. 

 Data Integration: data collected from 

multiple sources will be integrated in a 

systematic manner to ensure the elimination 

of redundant data and detect and resolve 

value conflicts. 

The GIS data will be used to build the virtual 

geographic environment. Maps depicting 

elevation, population, infrastructures, and land 

coverage and use will be used. 

3.1.3 Data Warehouse Construction 

A Data Warehouse (DW) will be created by 

integrating the entire collected multiple source 

data. The planned data warehouse will contain 

historical Red-lake River data represented in 

multiple dimensions. This DW will help 

community leaders in decision making for 

potential floods. 

Next we will build the simulation engine and 

integrate the hydraulic models that will be used 

to produce inundation maps. The final step in 

the DW process involves integrating the virtual 

geographic environment and the specification of 

the experimental simulation scenario. 
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3.1.4 Data cubes creation  

Several data cubes can be created from the DW. 

These data cubes will allow extracting task-

relevant data to be analyzed. These data cubes 

can be created by integrating as many 

parameters as needed. Below we provide a 

schematic of a sample data cube representation 

for 3 parameters: snow amounts, water level, 

and time. These data cubes will be used in step 

5 for prediction purposes and step 6 to extract 

interesting patterns (Figure 2). 

In this step, we will integrate the data 

warehouse with the simulation engine and 

perform the required validations and 

calibrations of all developed models. 

 

Figure 2: Schematic of data representation using data 

cube technology of 3 parameters: 2 variables over time. 

3.1.5 Predictive Modeling 

Classification is one major task in DM that has 

been widely used for predictive modeling. 

Classification consists of two main steps: first, 

establishing the classifier model through 

supervised learning. This model is trained using 

historical data. Second, the classification model 

is evaluated using accuracy measures. The 

accuracy is measured by splitting the data into 

two sets, testing and training. This model will 

be consulted to predict the testing data class 

labels. This model then can be used to predict 

new instances once it is accurate enough (at 

least 80% accuracy).  

The aforementioned general data mining tasks 

can be adapted to our problem statement for 

potential flood prediction. The collected 

historical data stored in the modeled DW will 

be used to train several classifier models such 

K-Nearest Neighbors (KNN), Decision Trees 

(DT) and Bayesian Networks (BN). These 

classifiers will be evaluated and if accurate 

enough, they can be used for predicting 

potential floods. The aforementioned data cubes 

will be used to train these classifiers (supervised 

learning). The collected time series dimensions 

will be used as classifier attributes to predict 

potential floods (which will be represented as a 

binary class label). These models will be built 

based on decision tree theory, Bayes theory, and 

rule-based classification. All the models will be 

evaluated using standard classification 

measures: accuracy, sensitivity, and specificity. 

The results of a classification style data is 

represented in (2 X 2) confusion matrix as can 

be seen in the below table: 
Table 2: Classification Style Confusion Matrix 

TP FN 

FP TN 

Where, 

• TP: are the true positives. Data with class 

label 1 and predicted as 1. 

• FN: are the false negatives. Data with class 

label 1 and predicted as 0 (type I error). 

• FP: are the false positives. Data with class 

label 0 and predicted as 1 (type II error). 

• TN: are the true negatives. Data with class 

label 0 and predicted as 0. 

The below measures are used to evaluate the 

classifier performance: 

 

 

(1) 

(2) 

(3) 
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The aforementioned models will be integrated 

to the simulation engine and perform usual 

testing and validation tasks. This will include 

building and integrating the geo-visualization 

modules to support the geo-simulation engine.  

3.1.6 Association Rule Mining (ARM) 

Association Rule Mining (ARM) is another task 

in data mining used to discover interesting 

relationships and patterns between variables in 

a large database. ARM is well known for 

market-basket analysis which is a modeling 

theory that states that, based on historical data, 

if you buy a set of items, you are most likely to 

buy another group of items. The discovered 

rules can be evaluated using the support 

(proportion of transactions in the data which 

contains the item set) and confidence 

(percentage value that shows the rule head 

frequency among all groups containing the rule 

body). 

We will use association rule mining theory to 

find the most interesting patterns that relate to 

higher probabilities for folding. We intend to 

analyze all parameters and establish rules, using 

Apriori and Frequent Pattern (FP) Growth 

Algorithms. The derived rules will be evaluated 

using standard support and confidence 

measures. 

Data cubes will be further evaluated to derive 

interesting patterns that occur frequently. For 

example, finding the relationship between 

specific latitude and longitude coordinates and 

water fall amounts at certain times with flood 

probability. All the derived patterns will be 

represented as association rules between data 

parameters that induct an event with specific 

support and confidence.  

The user-interface then will be built for 

simulation geo-visualization, data collection, 

and results display. 

 

3.2 Multi-Agent Geo-Simulation 

A fundamental idea underlying our approach is 

to reproduce, in a realistic manner, the real 

world in a virtual environment. Indeed, in this 

virtual environment, which imposes no physical 

limits, it is possible to create a system for the 

simulation of flooding phenomena. In order to 

faithfully mimic the dynamics of water 

resources (i.e. river) in an area of interest, we 

need to simulate the water resource, the weather 

conditions as well as the geographic 

environment. We propose to use software 

agents for the virtual representation of 

geographic features. An agent is a program with 

domain knowledge, goals and actions [17]. An 

agent can observe and sense its environment as 

well as affect it. Agents’ capabilities may 

include (quasi-) autonomy, perception, 

reasoning, assessing, understanding, learning, 

goal processing, and goal-directed knowledge 

processing [18]. The reproduction of the 

geographic environment in which physical 

sensor nodes are deployed should be based on 

reliable data obtained from Geographic 

Information Systems (GIS) [2]. The concept of 

Multi-Agent Geo-Simulation (MAGS) evolves 

from such type of simulations involving 

software agents immersed in a virtual 

geographic environment.  

MAGS has attracted a growing interest from 

researchers and practitioners to simulate various 

phenomena in a variety of domains including 

traffic simulation, crowd simulation, urban 

dynamics, and changes of land use and cover, to 

name a few [19]. Such approaches are used to 

study various spatial and complex phenomena 

(i.e. car traffic, crowd behaviors, etc.) involving 

a large number of simulated actors 

(implemented as software agents) evolving in, 

and interacting with, an explicit description of 

the geographic environment called Virtual 

Geographic Environment (VGE) [14].  

MAGS is a useful approach to integrate the 

spatial dimension in models involving different 

kinds of interactions (economic, political, 

social, etc.) [20]. From this perspective, the 

Geographic Information System (GIS) plays an 
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important role in the development of geo-

simulation models. MAGS can be thought of as 

a coupling of two technologies: the Multi-Agent 

Systems (MAS) and the GIS [19]. Based on the 

MAS technology, the simulated entities are 

represented by software agents that can be 

behave and make decisions autonomously. 

They can interact with other agents and with a 

virtual representation of the actual geographic 

environment. They may be reactive, proactive, 

stationary or mobile, social or cognitive [21]. 

These agents evolve and interact with their 

VGE. 

An accurate VGE requires the use of reliable 

GIS data. GIS data are usually available in 

either raster or vector formats [22]. The raster 

format subdivides the space into regular square 

cells, each associated with an attribute related to 

the space. In contrast, the vector format 

describes geographic information using 

unconstrained geometric shapes, and generally 

associates one qualitative object with each 

shape. Such data are usually exploited by a 

VGE in two ways [2]: the approximate 

geometric subdivision and the exact geometric 

subdivision methods. The approximate 

geometric subdivision method is the direct 

mapping of the raster format, but it can also be 

applied to the vector format (Figure 3(c)). This 

discrete representation can be used to merge 

multiple semantic data, the locations where 

these data are stored being predefined by the 

grid cells. The main drawback of the grid 

method is related to a loss in spatial precision, 

making it difficult to accurately position any 

information which is not aligned with the 

subdivision. Another drawback arises when 

trying to precisely represent large environments 

using a grid: the number of cells tends to 

increase dramatically, which makes the 

environment description very costly. The grid-

based method is mainly used for overlay and 

animation purposes because of the fast data 

access it provides [23].  

The second method, called exact geometric 

subdivision, consists in subdividing the 

environment in convex cells using the vector 

format as an input. The convex cells can be 

generated by several algorithms, among which 

the most popular is the Constrained Delaunay 

Triangulation (CDT) [24]. The CDT produces 

triangles while keeping the original geometry 

segments which are named constraints (Figure 

3(b)). The first advantage of the exact 

subdivision method is to preserve the geometry 

of the input data, allowing accurately 

manipulating and visualizing the environment at 

different scales. Another advantage of this 

approach is that the number of produced cells 

only depends on the complexity of the input 

shapes, but not on the environment’s size and 

scale as is the case with the grid method. The 

main drawback of this approach is the difficulty 

to merge multiple semantic data for overlapping 

shapes. Moreover, this method is generally used 

to represent planar environments because the 

CDT can only handle 2D geometries. This 

method tends to be used for micro-scale 

simulations centered on individuals where 

motion accuracy is essential [24]. 

 
Figure 3: The two common cell decomposition 

techniques used to represent environments. 

4 Conclusions and Future Work 

In this paper, we presented an approach to 

predict potential flooding using historical time 

series data. Our goal is to combine well 

established data mining paradigms with novel 

geo-visualization technique along with 
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intelligent computer simulation involving 

software agents.  

First, we propose to build a data warehouse for 

the Red-Lake River Valley by integrating 

historical multiple sources time series data. 

Task relevant data can be extracted from the 

DW in the form of data cubes. Interesting 

knowledge and patterns can be found from 

these data cubes. Such knowledge includes 

future flood predictions by using the 

aforementioned predictive models and 

interesting patterns and associations between 

several data variables. All predictions and 

discovered patterns will be evaluated using 

standard DM measure.  

Second, we are currently implementing the 

multi-agent geo-simulation platform. Indeed, 

since a geographic environment may be 

complex and large-scale, the creation of a 

plausible virtual geospatial environment is 

difficult and needs large quantities of 

geometrical data originating from the 

environment characteristics (terrain elevation, 

location of objects and agents, etc.) as well as 

semantic information that qualifies space 

(building, road, park, etc.). The virtual 

geospatial environment’s description should 

rely on an efficient structure which supports 

easy and optimized access and query 

techniques. The complexity of building such a 

description should only depend on the 

geometrical complexity of the geographic 

environment rather than on its scale. 

A number of challenges arise when creating 

such an informed VGE, among which we 

mention: 1) automatically creating a precise 

geometric representation of a 3D VGE; 2) 

automatically integrating several types of 

semantic information in the geometric 

representation; and 3) making use of this 

representation in spatial reasoning algorithms 

for flooding study and simulation. 

To enable an autonomous agent to interact with 

its environment, we might think of storing the 

entire interaction process within the agent’s 

knowledge model. Thus, the agent would be 

able to observe the world that surrounds it and 

to gather raw information from its sensors. 

After that, it would process this raw data 

through a complex reasoning module in order to 

try to derive high-level information and to 

determine the interaction possibilities offered 

by the objects it is observing. This approach is 

extremely complex, very difficult to implement, 

and is rarely applicable to complex interaction 

processes. The more complex the object is, the 

harder it is to derive abstract information and 

the more complex the reasoning algorithm 

needs to be. This process can become extremely 

costly in terms of calculation time and resources 

when the complexity of the environment and 

the objects contained in it increases. 

Future work will mainly focus on the 

integration of data mining results in order to 

feed the software agents’ reasoning algorithms 

in order to reach plausible and realistic 

simulation of flood phenomena never achieved 

before.  

The current case study aims to study, analyse 

and predict flooding phenomena and assess risk 

in the red river valley. However, our goal is to 

develop a generic intelligent flooding 

simulation platform which supports planners 

and decision makers.  
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Table 1: Overview of sources of data collection 

Source Period Records Attributes Data Type Station Information 

Midwestern 

Regional  

Climate 

Center 

2002-

2013 

95 690 1) Date, 2) Local Std Time, 3) 

Air Temp (F), 4) Dew Point 

Temp (F), 5) Wet Bulb Temp 

(F), 6) Rel Hum (%), 7) -Stn 

Pres (in), 8) SeaLevPres (in), 9) 

Wind Speed (kt), 10) Wind Dir 

(deg), 11) PrecipTotal 

Hourly 

Data 

Station name: 

CRKSTN MUNI 

KRKWOD FLD APT. 

Station location: 

CROOKSTON, MN 

Western 

Regional 

Climate 

Center 

1948-

2013 

780 1) Monthly sow falls (inches) Monthly 

Data 

Station name: 

CROOKSTON NW 

EXP.STN 

Station location: 

CROOKSTON, MN 

US Army 

Corps of 

Engineers 

1965-

2014 

161 520 1) Time 2) Date, 3) Flood stage Hourly 

Data 

Station name:  - 

Station location: 

CROOKSTON, MN 

U.S 

Geological 

Survey 

database(US

GS) 

 

2007-

2014 

132 409 Agency info: 1) site_no, 2) date 

and time, 3)  Time Zone, 4)  

Gage height, feet, 5)  Data-value 

qualification codes, 6) River 

discharge(cubic feet/s), 7) Data-

value qualification codes 

Hourly 

Data 

Station name: USGS 

05079000 

Station location: Red 

Lake River at 

CROOKSTON, MN 

National 

Climatic 

Data Center 

1948-

2013 

783 1) Station, 2) Station Name3) 

Elevation, 4) Latitude, 5) 

Longitude, 6) Date, 7) Maximum 

snow depth reported during 

month (inches), 8) Number days 

with snow depth > 1 inch, 9)  

Total precipitation amount for 

the month, 10)  Total snow fall 

amount for the month, 11)  

Monthly mean maximum 

temperature, 12)  Monthly mean 

minimum temperature, 13) 

Monthly mean temperature 

Annual 

data 

Station name: 

CROOKSTON 1.0 NE 

Station location: 

CROOKSTON, MN 

Weather 

Warehouse 
1985-

2014 

 

Not 

available 

1) Temperature, 2) dew point, 3) 

relative humidity, 4)  visibility, 

5) cloud cover, 6) wind speed, 7) 

wind direction, 8) 

precipitation(rainfall and/or 

snow) 

Hourly 

Data 

Station name: 

Crookston Municipal 

Kirkwood F 

Station location: 

CROOKSTON, MN 
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