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Abstract: We present new sufficient conditions for existence of solutions to some nonconvex and noncoercive
Lagrange optimal control problems.
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1 Introduction
Consider the nonconvex Lagrange optimal control
problem (OCP) which consists in minimizing the
integral functional

J (x, u) :=
∫ b
a f0 (x (t) , u (t)) dt

over all pairs (x (·) , u (·)), with x (·) ∈
W 1,1 ([a, b] ,Rn) and u : [a, b] → Rm measurable,
satisfying

x (t) ∈ Ω ⊂ Rn ∀ t ∈ [a, b]

x (a) = A, x (b) = B

u (t) ∈ U (x (t)) for a.e. t ∈ [a, b]

x ′ (t) = f (x (t) , u (t)) for a.e. t ∈ [a, b] ,

where
U : Ω→ 2R

m \ ∅

f0 : graph (U)→ [0,∞)

f : graph (coU)→ Rn.

Under adequate hypotheses – which we will state
below – our strategy to prove existence of solutions to
(OCP) consists in the following steps :

Step 1. Take a solution (xc (·) , uc (·)) for the associated
convexified problem (OCPc) :

minimize

Jc (x, u) :=
∫ b
a f
∗∗

0 (x (t) , u (t)) dt

where f ∗∗0 (s, · ) is the bipolar of f0 (s, · ),
defined by epi f∗∗0 (s, · ) = co epi f0 (s, · )
(namely : the epigraph of f∗∗0 (s, · ) is the

closed convex hull of the epigraph of f0 (s, · )),
over all pairs (x (·) , u (·)), with x (·) ∈
W 1,1 ([a, b] ,Rn) and u : [a, b] → Rm mea-
surable, satisfying

x (t) ∈ Ω ∀ t ∈ [a, b]

x (a) = A, x (b) = B

u (t) ∈ coU (x (t)) for a.e. t ∈ [a, b]

x ′ (t) = f (x (t) , u (t)) for a.e. t ∈ [a, b] .

Step 2. Reformulate (OCPc) as an adequate Lagrange
problem of the calculus of variations (CVPc) :

minimize

Ic (x) :=
∫ b
a L
∗∗ (x (t) , x ′ (t)) dt

on

X nA,B :=

{
x (·) ∈W 1,1 ([a, b] ,Rn) :

x (a) = A, x (b) = B

}
,

for which xc (·) is a solution.

Step 3. Prove existence of a solution x (·) for the non-
convex problem (CVP) :

minimize

I (x) :=
∫ b
a L (x (t) , x ′ (t)) dt

on X nA,B .

Step 4. Use such x (·) to obtain a solution
(x (·) , u (·)) for the nonconvex problem
(OCP).
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In this paper we present new hypotheses under
which – through the above-stated strategy – we can
prove existence of solutions to our nonconvex optimal
control problem (OCP).

To begin with we describe our recent result of ex-
istence of minimizers to the integral I (·). This will
be a crucial tool to prove the main result of this paper.

2 The Lagrange problem of the cal-
culus of variations

Let L : Rn×Rn → (−∞,∞]. We say that L (s, · )
is almost convex provided

∀ ξ where L ∗∗ (s, ξ) < L (s, ξ) ,

∃λ = λ (s, ξ) ∈ [0, 1] ∃Λ = Λ (s, ξ) ∈ [1,∞)

∃α = α (s, ξ) ∈ [0, 1] :

L ∗∗ (s, ξ) = (1− α) L (s, λ ξ) + αL (s,Λ ξ)

ξ = (1− α) (λ ξ) + α (Λ ξ)

(we set λ = 1 = Λ = α where L ∗∗ (s, ξ) = L (s, ξ)
and use 0 · ∞ := 0 ).

Remark 1 If L (s, · ) is almost convex, then

(i) L ∗∗ (s, 0) = L (s, 0)

(ii) L ∗∗ (s, λ ξ) = L (s, λ ξ) &

L ∗∗ (s,Λ ξ) = L (s,Λ ξ) ∀ ξ ∈ Rn

(iii) L ∗∗ (s, · ) restricted to the segment [λ ξ,Λ ξ] is
affine.

Remark 2 The concept of almost convexity was in-
troduced by A. Cellina & A. Ornelas in the paper [3],
for sets, to prove existence of solutions to nonconvex
upper semicontinuous differential inclusions and time
optimal control problems. For functions, it was intro-
duced in [2] to prove results of existence of solutions
to nonconvex problems of the calculus of variations.

Proposition 3 (See [1].) Let L : Rn × Rn →
[0,∞] be a Borel function bounded from below, hav-
ing L ∗∗ (· , ·) Borel and L (s, · ) almost convex
lower semicontinuous (lsc) for each s.

Assume also the following extra hypothesis
(EH ) :

there exists a minimizer xc (·) of Ic (·) for which
either the set

E0 := {t ∈ [a, b] : λ (xc (t) , x ′c (t) ) = 0}
has zero measure
or else :

E0 \E0 is a null set (with E0 the closure of E0)

and

∃ c ∈ [a, b] such that

L (x (c) , 0 ) ≤ L (x (t) , 0 ) ∀ t ∈ [a, b] .

Then there exists a minimizer x (·) to the non-
convex integral I (·).

3 Main result
Assume that :

(H1) Ω ⊂ Rn is closed

(H2) U : Ω→ 2R
m \ ∅ is such that

(H2.1) graph (U) :=

{
(s, u) ∈ Rn × Rm :

s ∈ Ω, u ∈ U (s)

}
is closed

(H2.2) graph (coU) is closed

(H3) f0 : graph (U)→ [0,∞) is lsc

(H4) f∗∗0 : graph (coU)→ [0,∞) is lsc

(H5) f : graph (coU) → Rn, f (s, u) = A0 (s) +
B0 (s)u ,

where, for every s ∈ Ω ,

A0 (s) is a n× 1 matrix
B0 (s) is a n×m matrix
A0 (·)i1 , B0 (·)ij : Ω→ R are continuous
(i = 1, ..., n ; j = 1, ...,m)

(H6) for every s ∈ Ω , the sets

f (s, coU (s))

{(f (s, u) , f0 (s, u) + v) : u ∈ U (s) , v ≥ 0}

{(f (s, u) , f0 (s, u) + v) : u ∈ coU (s) , v ≥ 0}

are closed
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(H7) ∃ (xc (·) , uc (·)) solution for (OCPc) and
Ic (xc, uc) <∞ .

Moreover, defining for every s ∈ Ω ,

R (s, γv) :=

{
u ∈ U (s) :

B0 (s) (γv − u) = (1− γ)A0 (s)

}
∀ v ∈ U (s) , ∀ γ ≥ 0 ,

R0 (s, v0) :=

{
u ∈ coU (s) :

B0 (s) (v0 − u) = 0

}
∀ v0 ∈ coU (s) ,

suppose

(H8)

∀u0 ∈ coU (s) with

inf f∗∗0 (s,R0 (s, u0)) < inf f0 (s,R (s, u0))

∃ λ = λ (s, u0) ∈ [0, 1]

∃ Λ = Λ (s, u0) ∈ [1,+∞) for which

inf f∗∗0 (s,R0 (s, u0)) =

= (1− α) inf f0 (s,R (s, λ u0)) +
+α inf f0 (s,R (s,Λu0))

with α := 1−λ
Λ−λ and 0 · ∞ =: 0 ; if

inf f∗∗0 (s,R0 (s, u0)) = inf f0 (s,R (s, u0)) ,

set α = 1 = λ = Λ .

Finally,

(H9) in case the set

D0 := {t ∈ [a, b] : λ (xc (t) , uc (t)) = 0}

has positive measure, assume

D0 \D0 is a null set

and ∃ c ∈ [a, b] for which we can find some
uc ∈ U (x (c)) satisfying :

A0 (x (c)) +B0 (x (c))uc = 0

f0 (x (c) , uc) ≤

≤ inf


f0 (x (t) , u) :

u ∈ U (x (t)) &

A0 (x (t)) +B0 (x (t))u = 0


∀ t ∈ [a, b] .

Then our main result is

Theorem 4 Under (H1) − (H9) problem (OCP)
has a solution.

Proof: Let L : Rn × Rn → [0,∞] be the function
defined by

L (s, ξ) := inf {f0 (s, u) : u ∈ H (s, ξ)} ,

where

H (s, ξ) := {u ∈ U (s) : ξ = f (s, u)}

= (f (s, ·))−1 (ξ) ∩ U (s) .

Hypotheses (H1) to (H6) guarantee that L (·)
is a well-defined Borel function having L ∗∗ (·) Borel
and L (s, · ) lsc ∀s ; L (s, · ) is also almost convex
∀s, by (H8).

On the other hand, xc (·) is a minimizer of Ic (·)
for which, due to assumption (H9), the extra hypoth-
esis (EH) is satisfied.

Therefore, by proposition 3, there exists a mini-
mizer x (·) for (CVP). It follows that there also
exists a measurable u : [a, b] → Rm such that
x ′ (t) = f (x (t) , u (t)) for a.e. t ∈ [a, b] and
(x (·) , u (·)) is a solution for the nonconvex problem
(OCP). ut
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