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Abstract: - The concept of predictive maintenance, whose application became every day more and more diffused 

was born some years ago. The fundamental idea on which the predictive maintenance is based on is the 

monitoring of specific parameters that can supply useful information on the system state of health. In the 

presented application, vibrational levels represent one of these parameters and relative continuous monitoring is 

proposed. As a drawback of this approach, the availability of monitoring devices and their correct installation is 

needed, even if many times not availablr for cost or installation reasons. To avoid such limitations, the  present 

work present an Artificial Neaural Network based approach for the management of “virtual” sensors whose data 

are derived from a limited set of sub-data. The presented application will show interesting results obtained with 

reference to a traction converter system as an example of the proposed technique. 
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1 Introduction 
The task of this work is to investigate the reliability 

of a structural health monitoring system for a train 

under-floor electric-mechanic component. In the 

public transportation, the maintenance and safety 

represent two very important aspects. This two 

aspects are not easy to accord each other. A good 

maintenance level is necessary to guarantee the 

safety on board but is also expensive. In 

transportation history (airplanes, trains, ships, cars, 

trucks, buses) there are many accidents due to 

maintenance lack. The real problem in the 

maintenance field in that, sometimes, some critical 

components are not easy to check. During the last 

decade the predictive maintenance has acquired an 

important role in all engineering fields. In the 

proceeding of the paper the predictive maintenance 

will be explained and an analytical model, based on 

the neural network approach, will be presented. The 

final task is to predict the behavior of the mechanical 

component without any human action. 

 

2 Introduction to maintenance 
The task of the maintenance is to preserve the 

mechanical properties of the system. The 

maintenance is a mixture of ideas and knowledge of 

different fields like engineering, physic and 

management. An important aspect of the 

maintenance is the approach to the upgrading or 

optimization in the life-cycle of the product. The 

maintenance is a complex process based on two 

aspects 

 Reliability: is the probability the component 

failure during his life; 

 Availability: is the percentage of time the 

component work on the total life time; 

The ideal machine have an infinite availability (all 

life time) and a very high reliability, the common 

practice is two find a good compromise between the 

availability – reliability aspect and economic one. To 

do so is useful to operate in the strict neighborhood 

to the minimum cost point on the curve of Fig. 1. 

 

 

Fig. 1: availability – reliability Vs cost curve 

 

2.1 Maintenance types 
The maintenance is a very complex field in which the 

choice of the maintenance operation increment can 

be dangerous and make the machine less efficient and 

productive with an increasing of costs. The right 

choice is to schedule a complete series of 

maintenance operation studied to maximize the 

efficiency and the productivity of the component. In 
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a preliminary way we can identify three different 

maintenance approach 

 Corrective maintenance; 

 Preventive maintenance; 

 Predictive maintenance; 

 

2.1.1 Corrective maintenance  

It is applied when an unexpected damage occur in the 

machine preventing the correct function the machine 

itself. This type of maintenance is expensive and 

impossible to prevent and can be applied only for 

very simple and cheap mechanical components. This 

type of maintenance is applied to non-critical 

components. 

 

2.1.2 Preventive maintenance  

In this case, the maintenance is performed after a 

specific time interval without damage also. The task 

is to minimize the damage possibilities between two 

maintenance inspections. The great advantage of this 

approach is the opportunity to choice the period for 

maintenance, usually, this period is chosen according 

the age, the fatigue of the components, the  period of 

the year in which the components is not required to 

be used. 

To be clearer the period between two maintenance 

inspections can be: 

 Static, the period is fixed by the 

manufacturer and is valid for all the 

component life cycle; 

 Dynamic, is fixed by the customer according 

his knowledge of the component and the 

preceding experience on similar 

components; 

 On condition, the maintenance is done after 

a visual inspection if necessary. The risk is to 

do maintenance operation when not 

necessary, or the contrary, not do 

maintenance when it is necessary; 

 

2.1.3 Predictive maintenance 

The concept of predictive maintenance was born 

some years ago. The fundamental idea on which the 

predictive maintenance is based on is to follow the 

behavior of the component monitoring some 

particular parameters from that parameters the health 

status of all components can be investigated. The 

monitoring of these parameters is done using some 

sensors (accelerometers, temperature probe, 

flowmeter, etc.) in real time. In this case, it is the 

component itself to check is status giving a warning 

when one or more investigated parameters are out of 

the normal range. This is the alert that something 

inside the system is damaged and a maintenance 

operation is required. The maintenance is done when 

and if necessary reducing costs. 

 

3 Traction converter 
The motion of the train is guaranteed by the traction 

converter unit, composed of three inverters, a 

Traction Unit Control (TCU in the following) and a 

breaking chopper. The system is powered by a 

continue current (the electrical line) and is governed 

by a control signal from the cab hood to the TCU. 

The combined effect of electrical power and manual 

control of driver make the inverters generating the 

wave form for the motion and breaking of the 

asynchronous (electrical) engines. During the 

breaking phase the kinetic energy is recovered and 

turned in electrical energy for the line. 

 

 

Fig. 2: Power unit logical scheme 

The traction converter is installed under the train 

floor and fixed by bolts. The whole component is 

composed of  three power unit modules (each module 

is the inverters, TCU) and a control panel. Each 

module can work independently from others and is 

the same for engine and chopper. The control panel 

is centered in the traction converter. It contains the 

control units, the electro-mechanic system, voltage 

and current transducer, high voltage and low voltage 

connectors to the train. The whole system in 

encapsulated to prevent the contact with water and 

dust. The hot flow generated by the inverters is 

dissipated by a static fan and the air flow is 

guaranteed by the train movement. No rotating fan 

are mounted on board. 

 

Fig. 3: Traction converter 
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3.1 The control panel 
The control panel is the real object under 

investigation. It is centered in the traction converter 

and contains a certain number of components that can 

be subject to damaging in case of vibration or shocks. 

The component inside the control panel are: 

 TCU module; 

 1 line tension transducer (TVL); 

 1 filter tension tranducer (TVF); 

 1 line current transducer (TAL); 

 1 principal filter counter (CPF); 

 1 filter charge counter (CCF); 

 4 charge filter resistant (RCF); 

 1 charge filter fusible (RCF); 

 1 filter transducer fusible (FTV); 

 

Fig. 4: Control panel 

4 CAD model 
The CAD process has been done using CATIA V5 

software. The starting point have been the 

constitutive drawing of the object (see fig. 5). In the 

CAD model some details have been deleted to 

simplify the geometry and reduce the computational 

cost. The neglected details are not relevant for the 

final results so the computer model is really 

equivalent to the real object. From Fig. 5 are evident 

the iron beam structure (thickness 2mm) and the 

closing plate in the back side and lateral one. The 

plates are done of iron and have a thickness of 2mm 

also. The front side have two inspection doors not 

shown in Fig. 5. They have been neglected because 

they give no contribution to the structure stiffness. 

The real effect of both inspection doors is the change 

in mass distribution but it can be neglected 

considering the door’s mass relatively small when 

compared  to the traction converter’s mass. 

 

 

Fig. 5: Traction converter drawing 

In the upper side of the traction converter are 

collocated the attachment points between the traction 

converter and the train. The connection is realized by 

bolts and no anti-vibration system are mounted on 

board. Inside the control panel are surely presents 

some components to attach the electrical boards to 

the structures. These components are not shown in 

Fig. 5 but they will be considered in the CAD model 

because they are the point for which the vibration 

path from the train to the boards. The final 

dimensions are 1.2x0.68x0.65 meters for a whole 

mass of 89 kg. The output file is step (.stp) extension 

file for the FEM model import. 
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Fig. 6: Control panel CAD model 

5 FEM model 

5.1 Construction of the model 
The geometry, as described in chapter 4, has later 

been  used for the FEM model. The FEM analysis has 

been  done using the Patran (pre and post processor) 

and Nastran NX (solutor) combination. The 

preprocessor Patran software has a proprietary 

geometry module. In this case the module has been 

used to import the geometry of chapter 4 (see next 

Fig 7).  

 

 

Fig. 7: Geometry imported in Patran 

The geometry has then been treated like a single 

object so the solid mesh is the only possible. The 

mesh has been composed by thetrahedrical elements 

(TET4). 

 

Fig. 8: TET4 element 

The TET4 element is in-fact, flexible and can accord 

a large number of different geometry. The mesh has 

a maximum dimension of 0.016 meters with a 

number of about 150000 elements. 

 

Fig. 9: mesh of model 

The structure’s material is steel s235jr. The material 

is isotropic and the value of properties are shown in 

Table 1. 

Young modulus (GPa) 198 

Poisson modulus 0.33 

Density (kg/m3) 7850 

Table 1: Material properties 

 

In the control panel are presented some components 

not draw in the CAD model. To simulate the presence 

of this component single lumped masses have been 

used. This points have been linked to the structure 

with RBE3 elements. The points (six in total) are 

shown in Fig. 10 and the respective masses are listed 

in Table 2. 

 

 

Fig. 10: condensate masses position 

Component Mass (kg) Component Mass (kg) 

1 4.5 4 3.0 

2 1.5 5 5.0 

3 2.0 6 1.0 

Table 2: Masses list 
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5.2 Static analysis 
As a first step, a static analysis (SOL103) has been 

performed, once typical loads have been applied: 

 Load Case 1: 3g acceleration in the vertical 

direction to simulate the gravity; 

 Load Case 2: 5g acceleration in the long. 

direction to simulate a hard braking; 

During this step, rigid connection have been 

considered at the bolt fixing point.  

The calculated displacement for the two cases of 

5.4.2 are shown in Fig. 11 and Fig. 12. 

 

 

Fig. 11: Displacements of  Load Case 1  

5.3 Modal analysis 
The main target of modal analysis and of later 

performed forced response has been the 

determination of the system’s normal and forced 

response  under different boundary condition. 

This study was, in fact, oriented to identify and 

quantify the system modification as a function of the 

boundary bolts clamping force.  

For this purpose, a new node has been created 5mm 

above the supporting plates. This node is used to 

create a star of Multi Constrain Point of RBE3 with 

the nodes on the contact plates (slave nodes). The six 

master nodes are connected with the same RBE3 

element to a single node for the load application. 

Table 3 and following figure 12 and 13 reports main 

results of the modal analysis in “full clamped” 

conditions. 

 
Modal 

number 

Frequency 

(Hz) 

Modal 

number 

Frequency 

(Hz) 

1 205.25 7 387.84 

2 230.03 8 412.63 

3 277.63 9 429.56 

4 302.13 10 461.91 

5 327.40 11 474.92 

6 345.48 12 533.97 

Table 3: Frequencies list 

 

Fig. 12: Mode 1 

 

Fig. 13: Mode 2 

5.4 Forced response 
The main target of the dynamic response calculation 

both at structure lever than at the component 

connection point is the determination of the spectral 

response to an external dynamic load (the vibration 

induced through the connection point to the train 

structure). 

These induced vibration may in-fact be causes of 

component fault if not limited within the design 

limits. 

As a general consideration it can be assumed that the 

vibration levels and spectra mainly depend by the 

external load but also may be influenced by the  

boundary conditions (i.e. the connection bolt 

clamping torque). 

Following these consideration, a forced response 

analysis has been performed under these hypothesis: 

 The frequency range of interest has been fixed 

within 200 Hz and 500 Hz because this interval is 

characteristic of the operative forcing vibrations 

and because the principal normal modes are 

excited within this interval 

 The force, simulating a  constant force of 10 N to 

all frequencies under investigation is introduced 

into the system at the 6 connection point (bolts). 

The force is applied in the central point simulating 
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the effect of the train on the structure and 

transferred through RBE3 elements  to the 

structure itself . 

 

Fig. 144: Applied force for forced response 

These RBE3 elements, also simulate the  bolt element 

that guarantees the connection of the structure to the 

train and has been simulated as a spring element, 

whose stiffness has been changed from  10e9 N/m for 

the case of all bolts correctly closed to 10e3 N/m for 

the case of failed bolt . 

As defined, we have two possible conditions for the 

bolts: right or failed. Considering the six bolts we 

have a certain number of combinations for bolts. Ten 

possible configuration have so been studied as 

reported in next table 4 and better identified in Figure 

15.  
Case number Failed bolts 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 1 – 3  

8 1 – 2  

9 4 – 5  

10 5 – 6  

Table 4: Case number and failed bolts 

 

Fig. 155: Bolts number 

5.4.1 Results 

Different simulation have so been computed and the 

response at component level has been measured as a 

function of the “fault£ scenario. 

Next pictures show some of the forced response; it 

appear evident that resonance frequencies are excited 

presenting the maximum level peaks.   

In the following figures, the forced response for some 

components (see Fig. 10 and Table 2) for case 

number 1 (see Table 4). The results shown from Fig. 

18 to Fig. 23 are the same for all nodes of the 

structures. Of course the resonance frequencies are 

different for different nodes and the peak are shifted 

in frequencies and amplitude but the shape is 

essentially the same. The results of the forced 

response will be used in the next phase for the 

vibration recognition. 

 

 

Fig.16: Forced response for component 1 

 

Fig. 17: Forced response for component 5 

It has been experienced that the change in the 

boundary condition generally change the forced 

response also at component level; this circumstance 
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could create excessive vibration to the component, 

unespected in standard conditions. 

For this reason, a preventive maintenance approach 

should take into account the monitoring of vibration 

at component level to identify response spectra 

change and define the limits for tolerance.  

Because this is not always possible because of the 

accessibility of some area of the TCU system, the 

concept of “virtual accelerometer” would be 

introduced. 

The main concept is the possibility to extrapolate the 

acceleration in one or more “virtual” accelerometer 

measuring the  “real” vibration somewhere else into 

the structure. 

From a theoretical point of view, this circumstance 

would be possible. Anyway, the practical 

implementation require the adoption of advance 

numerical tools for pattern recognition. 

6 Neural Network 
Neural Network are a powerful tool used in many 

engineering fields, used for different applications 

from text recognition to statistical data analysis. The 

really notable property of neural network is that  they  

can learn from a training set defined by the user. This 

learning ability is based on what happen in the brain. 

The idea on which the neural network is based is 

inspired to the human brain and its capacity to learn 

and memorize information in the first phase and then 

use the information when necessary to solve similar 

problems. The advantage given by the learning 

capacity is also the lack point of this approach;  if the 

training set is wrong the neural network will base the 

response on wrong information giving a wrong 

response. In the last few years many models of neural 

network has been developed;  the most famous are 

the multilayer perceptron and the radial basic 

function. Both neural network are feed forward  

model, the information goes in one direction and no 

iterative optimization is present. 

 

6.1 Biological neural network 
In the brain (human and not) are present millions of 

neurons. Every neurons is maiden up of a cellular 

body and an extension called dendrites. The dendrites 

are used by neurons to exchange electrical impulse 

each other’s. Every neurons has a long (from 1cm to 

1m) extension called axon also. At the end of the 

axon are situated the synapses. The synapses have the 

function to exchange information (electrical impulse) 

with different cellules (not neurons). The synapses 

contain a certain quantity of chemical substance for 

electrical conduction, this substance is called 

neurotransmitter. The neurons send an electrical 

impulse along the axon when a difference in 

electrical potential is present between the inside and 

outside of the cellule. Every neurons has an 

elaboration time in the order of milliseconds (not 

really elevated if compared to the modern computers) 

but the combination of millions of neurons make the 

human brain the best performed computer of ever 

since now (according to the Moore law the 

calculation power of computers double every 18 

months, in the future the computers will be more 

potent of human brain). 

 

6.2 Artificial neural network 
The artificial neural network (neural network also in 

the following) has the task to reproduce the human 

brain. To do this a new mathematical entities has 

been introduced, the artificial neurons. This entity 

has multiple input and a single output. Every input is 

weighted. The neurons is activated for a certain 

combination of weight. The neural network is trained 

with a certain set with known input and output. The 

neural network response is compared to the real one. 

The difference is the error of the neural network. The 

weight on the inputs are changed with an iterative 

optimization process to minimize the error. The 

optimization process ends when the error is smaller 

than a certain quantity. 

 

6.3 Artificial neurons 
In Fig. 18 the logical scheme for an artificial neuron 

is shown. The neuron (sum symbol) has a multiple 

input 𝑥1, 𝑥2, … , 𝑥𝑚. Every input channel is weighted 

by the coefficients 𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑚. 

 

 

Fig. 16: Artificial neurons scheme 

If the weight value is positive the channel is called 

active, inhibitory in the opposite case. The absolute 

value of the weight coefficient is a measure of the 

channel power. The response of the neurons (the 

output) is  
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𝑌 = 𝑓(𝑎) = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 )  

This contribution is the bias. To keep in account the 

bias effect on the global response the up wrote 

equation can be modified as  

𝑌 = 𝑓(𝑎) = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=0 )  

Where the 𝑥0 = 1 contribution is due to the bias. 

 

6.4 Activation function 
In Fig. 25 is present another element: the activation 

function (φ). It gives the response of the neuron to a 

known input. In the following pictures some 

remarkable activation function are shown. 

 

Fig. 17: Step activation function example 

In this case the output is 

𝑌 = {
0, 𝑓𝑜𝑟 𝑎 < 0
1, 𝑓𝑜𝑟 𝑎 > 0

  

 

Fig. 18: Ramp activation function example 

That gives 𝑌 = 𝑎 

  

Fig. 197: Piecewise activation function example 

And the output is 

𝑌 = {

0, 𝑓𝑜𝑟 𝑎 < −0.5
𝑎 + 0.5, 𝑓𝑜𝑟 − 0.5 < 𝑎 < 0.5

1, 𝑓𝑜𝑟 𝑎 > 0.5
  

 

Fig. 20: Sigmoid activation function example 

For an output in the form 

𝑌 =
1

1+𝑒−𝑎  

 

 

7 Neural network architecture 
There are, substantially, two different architecture 

types 

 Fully connected networks; 

 Layered networks; 

In the fully connected network every neuron is 

connected with all neurons in the network. For every 

connection is defined a weight to identify the 

influence of connection on the network. To the 

network is associated e square matrix with dimension 

n with n number of neurons. 

 

Fig. 21: Fully connected network 

For layered networks there are more level connected 

each other. Every neuron in level is connected with 

all neurons of near levels but not whit neurons of the 
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same level. The network is maiden up of a first layer 

in which the neurons receive the external input and a 

last layer in which the neurons give the output. 

Between the first and last layer there are one or more 

hidden layers. In these layers are created the 

connections and the mathematical operation to 

calculate the output from the input (see Fig. 29). 

 

7.1 Network’s training 
After the network set up the more important phase to 

guarantee the right application of the network is the 

training phase. It is divided in two sub-phases: the 

training phase and the testing phase. In the training 

phase a known couple of input/output is used to 

modify the weight inside the network. This phase is 

an iterative phase and is stopped when the error 

between the known output and the calculated one is 

less than a specific value. In the testing phase only an 

input set is used. The output set is known to the user 

but unknown to the network. In this phase the 

network is tested for different types of inputs to be 

sure of its capability of reconstruction. 

 

Fig. 22: Layered networks 

7.1.1 The delta rule 

The weight optimization is done, commonly, using 

the delta rule called Widrow – Hoff rule also. In this 

case 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑖) is the input to the network, y 

is the real output and t the calculated one. The error, 

in this case, is the difference between real and 

calculated output 

𝛿 = 𝑡 − 𝑦  
Now, the question is: How, known the error (δ), I can 

change the weight to optimize the results? The 

answer is the delta rule. According to the delta rule 

the weight change (Δ𝑤𝑖) is equal to 

Δ𝑤𝑖 = 𝜂𝛿𝑥𝑖  
with η the learning rate of the neuro and is included 

in the 0 – 1 interval. The delta rule has the capacity 

to modify only the weight for neurons that have given 

a contribute to the error (𝑥𝑖 ≠ 0). 

 

8 Neural network application 
The neural network application has the task, as said 

before, to reconstruct the acceleration on all 

component listed in Table 2 starting from a reduced  

number of sensors (in this case accelerometers). To 

know the acceleration on the components is 

necessary to use six accelerometers mounted on the 

component itself. In the real case is very difficult the 

combined use of six accelerometers and the small 

size of components make the accelerometer 

installation very difficult. The problem can be solved 

if, from a less number of accelerometers installed in 

some structure points and not necessary on the 

components, the accelerations can be calculated 

analytically. This is possible training and using the 

neural network described in chapter 6 and 7. 

 

8.1 Training phase 
In this phase (see 7.1) the weight of the neural 

network are settled to guarantee the convergence of 

the results. To train the network have been created 

two matrix; the first is a matrix Ti having 6x300 

elements. The j-th row (with 1<j<6) of the matrix Ti 

is the acceleration on the j-th component (see Table 

2) in the i-th case  study (see Table 4). The second 

matrix, Xi, is an nx300 elements matrix where n is 

the number of accelerometers mounted on board. To 

simplify the calculation and reduce the cost n must be 

small. In this case have been tested three different 

accelerometer combinations (see Fig. 31). 

The following cases have been taken in account: only 

accelerometer 1; accelerometer 1 plus accelerometer 

2; accelerometer 1, accelerometer 2 and 

accelerometer 3 combination. For every case the 

trend of mean square error of the network is shown in 

Fig. 32. 

 

 

Fig. 23: Accelerometers position on the traction 

converter 
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On the x axes is shown the iteration number (the 

maximum iteration number to find convergence is 

100) and on the y axes the mean square error. The 

case with 3 accelerometers give an error of 10e-2 so 

we can be satisfied of the results of the training phase. 

 
Fig. 24: Mean square error for different 

accelerometers number 

8.2 Testing phase 
In this phase a different input set has been created. In 

particular to simulate a different case we have 

supposed to fail the bolt 1 (see Fig. 17) with a 

different value of connection’s stiffness (2*10e3 

N/m). The FEM model has been used to find the 

acceleration in the points of three accelerometers 

(input set of functions) and in the six components 

(output set). This time the network received as input 

the input set also. The output is reconstructed using 

the weight matrix of 8.1. In the following figures is 

shown a comparison between numerical acceleration 

and neural network acceleration. 

 

 
Fig. 25: comparison of acceleration, numerical and 

neural network for component 1 

 
Fig. 26: comparison of acceleration, numerical and 

neural network for component 3 

9 Conclusion 

The results of acceleration reconstruction are 

really close to the numerical one (see Fig. 33 and 

Fig. 34). This the demonstration that the neural 

network can efficiently reproduce the logical 

path between input and output. The most 

important phase in the neural network utilization 

is the training phase. To be sure of network 

reliability it is important to use an appropriate 

training set as large, in function number, as 

possible. Another important aspect is the 

correlation between input and output. For the 

training set is important to verify that the used 

data are correct. In the opposite case a wrong 

weight matrix is founded and the simulation 

phase will fail. 
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