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Preface 
 

 
In this monograph several aspects of fractional calculus will be presented ranging from its brief history over 

control applications and stability problems for time delay systems to applications in bio-engineering fields 

with illustrative examples.  

 

The advantages of fractional calculus have been described and pointed out in the last few decades by many 

authors. Fractional calculus is based on derivatives and integrals of non integer arbitrary order, fractional 

differential equations and methods of their solution, approximations and implementation techniques. It has 

been shown that the fractional order models of real systems are regularly more adequate than usually used 

integer order models. 

 

The monograph consists of seven chapters and an appendix where related a list of references include in the 

end of chapters.  

 

The monograph begins in Chapter 1 with a brief historical review of the theory of fractional calculus and its 

applications. The theory of non-integer order differentiation and integration is almost as old as classical 

calculus itself, but nevertheless there seems to be an astonishing lack of knowledge of this field in most 

mathematicians. A look at the historical development can in parts explain the absence of this field in today's 

standard mathematics textbooks on calculus and in addition give the reader not familiar with this field a 

good access to the topics addressed in this monograph. In this chapter some well known definitions and 

properties of fractional order differ integrals are also stated. 

 

Chapter 2 is devoted to the problem of discrete-time (digital) implementation of fractional order systems, 

i.e. fractional differ integrators, where two novel methods have been closely investigated: direct optimal and 

indirect. Both methods produce approximations of fractional differ integrators, which are then used to 

create approximations to more complex fractional order systems. It has been demonstrated by means of a 

number of numerical examples that both presented methods.  

 

Some of stability problems for time delay systems have been discussed in the two following chapters 

(Chapters 3, 4). While Lyapunov methods have been developed for stability analysis and control law 

synthesis of integer linear systems and have been extended to stability of fractional systems, only few 

studies deal with non-Lyapunov stability of fractional systems. Here, finite-time stability of fractional order 

time-delay systems is considered in Chapter 3. Sufficient conditions for finite-time stability for (non) linear 

(non)homogeneous as well as perturbed fractional order time-delay systems are obtained and presented.  

 

 The problem of stability (simple stability and robust stability) of linear discrete-time fractional order 

systems is addressed in Chapter 4 where it is shown that some stability criteria for discrete time-delay 

systems could be applied with small changes to discrete fractional order state-space systems. The approach 

is based on the idea of constructing novel Lyapunov-Krasovskii functionals combined with free-weighting 

matrices or algebraic methods.  

 

The next three Chapters (5, 6, 7) are related to applications of fractional calculus in bio-engineering fields. 

Chapter 5 is dedicated to the mathematical modeling of skin structure applying fractional calculus where it 

is proposed the skin structure as a more complex system consisting of several layers which describes series 

of structures via continuous generalizing (distributed order type) the Cole equation. According to this model 

and experimental data of the skin bioimpedance measurements, one may predict more complex equivalent 

electrical circuit and define new time parameters which correspond to each reduced Cole element.  

  

In Chapter 6, a thermodynamically consistent rheological modified Zener model of viscoelastic body, i.e. 

standard fractional linear viscoelastic body is studied and presented. Proposed model comprises both 

fractional derivatives of stress and strain and the restrictions on the coefficients that follow from Clausius 

Duhem inequality. In that way, it should be included in both analytical and experimental projects ab initio, 

particularly in experiments in which newly developed materials are tested.  

 

iii

 



 

Finally, Chapter 7 concludes this monograph showing an useful modeling double DNA helix main chains of 

the free and forced fractional order vibrations applying  fractional calculus. Different models are focusing 

on different aspects of the DNA molecule (biological, physical and chemical processes in which DNA is 

involved). The aim of this study was to model the DNA dynamics (vibrations of DNA chains) as a 

biological system in a specific boundary condition that are possible to occur in a life system during regular 

function of a DNA molecule.  

 

 

I hope that this monograph will be value to Ph.D. students and fractional systems researchers as well as the 

other readers will find something in this monograph exciting. 

 

Also, I want to thank very much Mrs. Ranki Gajic for the support in the preparation of the manuscript for 

English edition.   
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  Abstract: - The Fractional Calculus (FC) is a generalization of classical calculus concerned with operations of 
integration and differentiation of non-integer (fractional) order. The concept of fractional operators has been 
introduced almost simultaneously with the development of the classical ones. The first known reference can be 
found in the correspondence of G. W. Leibniz and Marquis de l’Hospital in 1695 where the question of 
meaning of the semi-derivative has been raised. This question consequently attracted the interest of many well- 
known mathematicians, including Euler, Liouville, Laplace, Riemann, Grünwald, Letnikov and many others. 
Since the 19th century, the theory of fractional calculus developed rapidly, mostly as a foundation for a number 
of applied disciplines, including fractional geometry, fractional differential equations (FDE) and fractional 
dynamics. The applications of  FC are very wide nowadays. It is safe to say that almost no discipline of modern 
engineering and science in general, remains untouched by the tools and techniques of fractional calculus. For 
example, wide and fruitful applications can be found in rheology, viscoelasticity, acoustics, optics, chemical 
and statistical physics, robotics, control theory, electrical and mechanical engineering, bioengineering, etc..In 
fact, one could argue that real world processes are fractional order systems in general. The main reason for the 
success of FC applications is that these new fractional-order models are often more accurate than integer-order 
ones, i.e. there are more degrees of freedom in the fractional order model than in the corresponding classical 
one. One of the intriguing beauties of the subject is that fractional derivatives (and integrals) are not a local (or 
point) quantities. All fractional operators consider the entire history of the process being considered, thus being 
able to model the non-local and distributed effects often encountered in natural and technical phenomena. 
Fractional calculus is therefore an excellent set of tools for describing the memory and hereditary properties of 
various materials and processes.  
 
Key-Words:  fractional calculus, historical background, Riemann-Liouville definition, Grunwald-Letnikov 
definition, Caputo  definition 
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1. 1 Brief History of Fractional Calculus 
Fractional calculus (FC) is an extension of ordinary calculus with more than 300 years of history. FC was 
initiated by Leibniz and L`Hospital as a result of a correspondence which lasted several months in 1695. In that 
year, Leibniz wrote a letter to L'Hospital raising the following question [1]: 

“Can the meaning of derivatives with integer order be generalized to derivatives with non-integer 
orders?" L'Hopital was somewhat curious about the above question and replied by another 
simple one to Leibniz: “What if the order will be 1/2?". Leibniz in a letter dated September 30, 
1695, replied: “It will lead to a paradox, from which one day useful consequences will be 
drawn."  

That date is regarded as the exact birthday of the fractional calculus. The issue raised by Leibniz for a 
fractional derivative (semi-derivative, to be more precise) was an ongoing topic in decades to come [1,2]. 
Following  L’Hopital’s  and  Liebniz’s  first  inquisition, fractional calculus was primarily a study reserved for 
the best mathematical minds in Europe. Euler [2],wrote in 1730:  

“When n is a positive integer and p is a function of x,  p p x , the ratio of  nd p  to ndx  can 

always be expressed algebraically. But what kind of ratio can then be made if n  be a fraction?“ 

Subsequent references to fractional derivatives were made by Lagrange in 1772, Laplace in 1812, Lacroix in 
1819, Fourier in 1822, Riemann in 1847, Green in 1859, Holmgren in 1865, Grunwald in 1867, Letnikov in 
1868, Sonini in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, Weyl in 1919, and others [3-5]. 
During the 19th century, the theory of fractional calculus was developed primarily in this way, trough insight 
and genius of great mathematicians. Namely, in 1819 Lacroix [6], gave the correct answer to the problem raised 

by Leibnitz and L’Hospital for the first time, claiming that 1/ 2 1/ 2/ 2 /d x dx x  . In his 700 pages long book 

on Calculus published in 1819, Lacroix developed the formula for n-th derivative of ,my x with m being a 
positive integer 

   
!

,
!

n
n m m n
x n

d m
D y x x m n

m ndx
  


                    (1) 

Replacing the factorial symbol by Gamma function (3), he developed the formula for the fractional derivative 
of a power function 

  
 

 
1

1xD x x   
 

 

  

                                                                                         (2) 

where   and   are fractional numbers and where the gamma function  z 1 is defined for 0z   as: 

  1

0

x zz e x dx


                                (3) 

In particular, Lacroix calculated 

                       
 
 

1/ 2 1/ 22
2

3/ 2x
x

D x x



 


                                   (4) 

Surprisingly, the previous definition gives a nonzero value for the fractional derivative of a constant function 
 0  , since 

    
 

0 1
1 0

1x xD D x x  


  
 

                         (5) 

Using linearity of fractional derivatives, the method of Lacroix is applicable to any analytic function by term-
vise differentiation of its power series expansion. Unfortunately, this class of functions is too narrow in order 
for the method to be considered general.  
 It is interesting to note that simultaneously with these initial theoretical developments, first practical 
applications of fractional calculus can also be found. In a sense, the first of these was the discovery by Abel in 

                                                 
* See the Appendix A.1. 
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1823,[7-9]. Abel considered the solution of the integral equation related to the tautochrone problem. He found 
that the solution could be accomplished via an integral transform, which could be written as a semi-derivative. 
More precisely, the integral transform considered by Abel was  

    1/ 2

0

x

K x t f t dt  ,   K const .                      (6) 

Abel wrote the right hand side of (6) by means of a fractional derivative of order 1/ 2 ,    

  
1/ 2

1/ 2
d

f x
dx






 
  
 

                   (7) 

Abel’s solution had attracted the attention of Joseph Liouville, who made the first major study of fractional 
calculus,[10-13]. The most critical advances in the subject came around 1832 when he began to study fractional 
calculus in earnest and then managed to apply his results to problems in potential theory. Liouville began his 
theoretical development using the well-known result for derivatives of integer order n 

n ax n ax
xD e a e .                      (8) 

Expression (8) can rather easily be formally generalized to the case of non-integer values of n, thus obtaining 
ax ax

xD e a e                        (9) 

By means of Fourier expansion, a wide family of functions can be composed as a superposition of complex 
exponentials.  

 
0

exp( ), Re 0n n n
n

f x c a x a



                   (10) 

Again, by invoking linearity of the fractional derivative, Liouville proposed the following expression for 
evaluating the derivative of order    

0

( ) na x
x n n

n

D f x c a e 



  .                        (11) 

Formula (11) is known as the Liouville's first formula for a fractional derivative,[10,11]. However, this formula 
cannot be seen as a general definition of fractional derivative for the same reason Lacroix formula could not: 
because of its relatively narrow scope. In order to overcome this, Liouville labored to produce a second 
definition. He started with a definite integral (closely related to the gamma function): 

1

0

, 0, 0.xuI u e du x 


                  (12) 

and derived what is now referred to as the second Liouville’s formula  

   
 

1 , 0xD x x    



   

  


             (13) 

None of previous definitions were found to be suitable for a general definition of a fractional derivative. In the 
consequent years, a number of similar formulas emerged. Greer [14], for example, derived formulas for the 
fractional derivatives of trigonometric functions using (9) in the form: 

 cos sin cos sin
2 2

iax
xD e a i ax i ax       

 
              (14) 

Joseph Fourier [15] obtained the following integral representations for  f x  and its derivatives 

                                                 
 The tautochrone problem consists of the determination of a curve in the (x, y) plane such that the time required  for a    
particle to slide down the curve to its lowest point under the influence of gravity is independent of its initial position (xo, 
yo) on the curve. 
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     1
cos / 2 ,

2
n n
xD f x f d t t x n dt   



 

 

                 (15) 

By formally replacing integer n  by an arbitrary real quantity   he obtained 

     1
cos / 2 .

2xD f x f d t t x dt    


 

 

                         (16) 

Probably the most useful advance in the development of fractional calculus was due to a paper written by G. F. 
Bernhard Riemann [16] during his student days. Unfortunately, the paper was published only posthumously in 
1892. Seeking to generalize a Taylor series in 1853, Riemann derived different definition that involved a 
definite integral and was applicable to power series with non-integer exponents 

         1
,

1
x

c x

c

D f x x t f t dt x


    
                            (17) 

In fact, the obtained expression is the most-widely utilized modern definition of fractional integral. Due to the 
ambiguity in the lower limit of integration c, Riemann added to his definition a “complementary” function 

 x  where the present-day definition of fractional integration is without the troublesome complementary 

function. Since neither Riemann nor Liouville solved the problem of the complementary function, it is of 
historical interest how today's Riemann-Liouville definition was finally deduced. 
 The earliest work that ultimately led to what is now called the Riemann-Liouville definition appears to be 
the paper by N. Ya. Sonin in 1869, [17] where he used Cauchy`s integral formula as a starting point to reach 
differentiation with arbitrary index. A. V. Letnikov [18] extended the idea of Sonin a short time later in 1872, 
[19]. Both tried to define fractional derivatives by utilizing a closed contour. Starting with Cauchy's integral 
formula for integer order derivatives, given by 

      
  1

!
,

2
n

nC

f tn
f z dt

i t z 
                          (18) 

the generalization to the fractional case can be obtained by replacing the factorial with Euler's Gamma function 
 ! 1    . However, the direct extension to non-integer values   results in the problem that the integrand 

in (18) contains a branching point,  where an appropriate contour would then require a branch cut which was 
not included in the work of Sonin and Letnikov. Finally, Laurent [20], used a contour given as an open circuit 
(known as Laurent loop) instead of a closed circuit used by Sonin and Letnikov and thus produced today's 
definition of the Riemann-Liouville fractional integral 

         1
,

1
, Re 0

x

c x

c

D f x x t f t dt 


   
  .                           (19) 

In expression (19) one immediately recognizes Riemann’s formula (17), but without the problematic 
complementary function. In nowadays terminology, expression (19) with lower terminal c = − ∞ is referred as 
Liouville fractional integral; by taking c = 0 the expression reduces to the so called Riemann fractional integral, 
whereas the expression (19) with arbitrary lower terminal c is called Riemann-Liouville fractional integral. 
Expression (19) is the most widely utilized definition of the fractional integration operator in use today. By 
choosing c = 0 in (19) one obtains the Riemann's formula (17) without the problematic complementary function 

 x  and by choosing c   , formula (19) is equivalent to Liouville's first definition (10). These two facts 

explain why equation (19) is called Riemann-Liouville fractional integral. While the notation of fractional 
integration and differentiation only differ in the sign of the parameter   in (19), the change from fractional 
integration to differentiation cannot be achieved directly by inserting negative   at  the right-hand side of (19). 
The problem originates from the integral at the right side of (19) which is divergent for negative integration 
orders. However, by analytic continuation it can be shown that                 
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             1
, , , ,

1
,

xn
n n

c x c x c x c x n
c

d
D f x D f x D f x D f x x t f t dt

dx

  


 
 
    
 

 
  (20) 

 
holds, which is known today as the definition of the Riemann-Liouville fractional derivative. In (20)  n   is 

the smallest integer greater than   with 0 1n     . For either 0c   or c    the integral in (20) is the 
Beta-integral (see Appendix A.2) for a wide class of functions and thus easily evaluated. 
 Nearly simultaneously, Grunwald and Letnikov provided the basis for another definition of fractional 
derivative [21] which is also frequently used today. Disturbed by the restrictions of the Liouville`s approach 
Grunwald (1867) adopted the definition of a derivative as the limit of a difference quotient as its starting point. 
He arrived at definite-integral formulas for ordinary derivatives, showed that Riemann’s definite integral had to 
be interpreted as having a finite lower limit, and also that the Liouville’s definition, in which no distinguishable 
lower limit appeared, correspond to a lower limit  . Formally,  

 
 

 
   

0

0 0

1

lim lim , 0

k

hGL k
x

h h

f x kh
f k

D f x x
h h




 




 

 
    

  


           (21) 

which is today called the Grunwald-Letnikov fractional derivative. In definition (21), 
k

 
 
 

is the generalized 

binomial coefficient, wherein the factorials are replaced by Euler's Gamma function. Letnikov [18] also showed 
that  definition (21) coincides, under certain relatively mild conditions, with the definitions given by Riemann 
and Liouville. Today, the Grunwald-Letnikov definition is mainly used for derivation of various numerical 
methods, which use formula (21) with finite sum to approximate fractional derivatives. Together with the 
advances in fractional calculus at the end of the nineteenth century the work of O. Heaviside [22] has to be 
mentioned. The operational calculus of Heaviside, developed to solve certain problems of electromagnetic 
theory, was an important next step in the application of generalized derivatives. The connection to fractional 

calculus has been established by the fact that Heaviside used arbitrary powers of p, mostly p , to obtain 

solutions of various engineering problems. 
 Weyl [23] and Hardy,[24,25], also examined some rather special, but natural, properties of differintegrals of 
functions belonging to Lebesgue and Lipschitz classes in 1917. Moreover, Weyl showed that the following 
fractional integrals could be written for 0 1   assuming that the integrals in (22) are convergent over an 
infinite interval 

               1 11 1
, ,

x

x

I x x t t dt I x t x t dt     
 


 

 


   
                (22) 

Specially, the Riemann-Liouville definition of a fractional integral given in (19) with lower limit c   , the 
form equivalent to the definition of fractional integral proposed by Liouville, is also often referred to as Weyl 
fractional integral. In the modern terminology one recognizes two distinct variants of all fractional operators, 
left sided and right sided ones. Weyl operators defined in (22) are sometimes also referred to as the left and 
right Liouville fractional integrals, respectively.  
Later, in 1927 Marchaud [27] developed an integral version of the Grunwald-Letnikov definition (21) of 
fractional derivatives, using 

 
  

1 1
0 0

( ) ( )
, 0

(1 ) (1 )

l
tM

x

f x f x f x t
D f x dt dt

t t


 
  
 

 

 

  
  
             (23) 

as fractional derivative of a given function f , today known as Marchaud fractional derivative. The term 

  l
t f x  is a finite difference of order l   and c is a normalizing constant. Since this definition is related to 

the Grunwald-Letnikov definition,it also coincides with the Riemann-Liouville definition under certain 
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conditions. M. Riesz published a number of papers starting from 1938 [28, 29] which are centered around the 
integral 

   
 

1
1

, Re 0, 1,3,5,...
2 cos / 2

R t
I dt

t x





  

 






  
               (24) 

today known as Riesz potential. This integral (and its generalization in the n-dimensional Euclidean space) is 
tightly connected to Weyl fractional integrals (22) and therefore to the Riemann-Liouville fractional integrals 
by  

              1
2cos / 2RI I I    

                                      (25) 

In 1949 Riesz [29] also developed a theory of fractional integration for functions of more than one variable.  
A modification of the Riemann-Liouville definition of fractional integrals, given by 

 

           
2 21 12 2 2 1 2 2 1 2 2

0 0

2 2
, ,

x x
x x

x t t t dt x t t t dt
      
 

      
     (26) 

were introduced by Erdelyi et al. in [30-32], which became useful in various applications. While these ideas are 

tightly connected to fractional differentiation of the functions 2x and x , already done by Liouville 1832, the 
fact that Erdelyi and Kober used the Mellin’s transform for their results is noteworthy. 

Among the most significant modern contributions to fractional calculus are those made by the results of M. 
Caputo in 1967,[33]. One of the main drawbacks of Riemann-Liouville definition of fractional derivative is that 
fractional differential equations with this kind of differential operator require a rather “strange” set of initial 
conditions. In particular, values of certain fractional integrals and derivatives need to be specified at the initial 
time instant in order for the solution of the fractional differential equation to be found. Caputo [33,34] 
reformulated the more “classic” definition of the Riemann-Liouville fractional derivative in order to use 
classical initial conditions, the same one needed by integer order differential equations [34]. Given a function f 
with an  1n   absolutely continuous integer order derivatives, Caputo defined a fractional derivative by the 

following expression 

            1
*

0

1
,

t n
n d

D f x t s f s ds
n ds




                                            (27) 

Derivative (27) is strongly connected to the Riemann-Liouville fractional derivative and is today frequently 
used in applications. It is interesting to note that Rabotnov [35] introduced the same differential operator into 
the Russian viscoelastic literature a year before Caputo’s paper was published. Regardless of this fact, the 
proposed operator is in the present-day literature commonly named after Caputo. 

By the second half of the twentieth century, the field of fractional calculus had grown to such extent that in 
1974 the first conference “The First Conference on Fractional Calculus and its Applications” concerned solely 
with the theory and applications of fractional calculus was held in New Haven. In the same year, the first book 
on fractional calculus by Oldham and Spanier [3] was published after a joint collaboration started in 1968. A 
number of additional books have appeared since then, for example McBride (1979) [36], Nishimoto (1991) 
[37], Miller and Ross (1993), [4], Samko et al. (1993),[38], Kiryakova (1994) [39], Rubin (1996) [40], 
Carpinteri and Mainardi (1997),[41], Davison and C. Essex (1998), [42],Podlubny (1999) [43], R. Hilfer (2000) 
[44], Kilbas et.al (2006),[5], Das (2007)[45], J. Sabatier et. al (2007) [46], and others. In 1998 the first issue of 
the mathematical journal “Fractional calculus & applied analysis” was printed. This journal is solely 
concerned with topics on the theory of fractional calculus and its applications. Finally, in 2004 the first 
conference “Fractional differentiation and its applications” was held in Bordeaux, and it is organized every 
second year since 2004,[47]. 
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1. 2 Basic Definitions of Fractional Order Differintegrals 
There are many different forms of fractional operators in use today. Riemann-Liouville, Grunwald-Letnikov, 
Caputo, Weyl and Erdely-Kober derivatives and integrals are the ones mentioned in the previous historical 
survey. In addition, most of these operators can be defined in two distinct forms, as the left and as right 
fractional operators. The two most frequently used definitions for the general fractional differintegral are: the 
Grunwald-Letnikov (GL) and the Riemann-Liouville (RL) definitions,[3-5],[43]. Also, the Caputo derivative, 
as a variation of the Riemann-Liouville differential operator, is used frequently. A short account of these most 
frequently used operators is given next. Grunwald and Letnikov defined fractional derivative in the following 
way 

 

  

     

0

0

( ) lim ,

1 , 0,

h
GL x

h

j
h

j

f x
D f x

h

f x f x jh h
j






 



 




 
     

 


                                                         (28) 

known as the left Grunwald-Letnikov (GL) derivative. This derivative can be seen as a limit of the fractional 
order backward difference. The right sided derivative is defined accordingly 

 

  

     

0

0

( ) lim ,

1 , 0,

h
GL x

h

j
h

j

f x
D f x

h

f x f x jh h
j






 






 




 
     

 


                                                           (29) 

Definitions (28) and (29) are valid for both α > 0 (fractional derivative) and for α < 0 (fractional integral) and, 
commonly, these two notions are grouped into one single operator called GL differintegral. The GL derivative 
and RL derivative are equivalent if the functions they act upon are sufficiently smooth. The generalized 
binomial coefficients, calculation for R   and 0k , is the following 

 
     

     0
1 ... 1 1!

, 1
! ! ! 1 1

j

j j j j j j
    

 
     

           
                 (30) 

Let us consider / ,n t a h   where a  is a real constant. This constant can be interpreted as the lower terminal 
(an analogue of the lower integration limit, necessary even for the derivative operator due to its non-local 
properties). The GL differentigral can be expressed as a limit  

   ,
0 0

1
( ) lim 1 ,

t a

h
j

GL a t
h j

D f t f t jh
jh





 

  

 

 
   

 
                                                           (31) 

where [x] means the integer part of x, a and t are the bounds of the operation for , ( )GL a tD f t . For the numerical 

calculation of fractional-order derivatives we can use the following relation (32) derived from the GL definition 
(31). The relation to the explicit numerical approximation of the  -th derivative at the points kh, (k=1,2,...) has 
the following form, [43] 

  
 

( )

(
0

( ) ( )
N x

xx L j
j

D f x h b f x jh
  




                                                                        (32) 

where L is the “memory length”, h is the step size of the calculation, 

 ( ) , ,
x L

N t min
h h

             
                                                                                                    (33) 
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 x  is the integer part of x  and  
jb


 is the binomial coefficient given by 

  ( ) ( )
0 1

1
1, 1j jb b b

j
  


 

   
 

                                                                                 (34) 

This approach is based on the fact that (for a wide class of functions and assuming all initial conditions are 
zero) the three most commonly used definitions - GL, RL, and Caputo’s - are equivalent,[48]. 
 For expression of the Riemann-Liouville definition, we will consider the Riemann-Liouville n-fold integral 
for , 0n N n   defined as (this expression is usually referred to as the Cauchy repeated integration formula) 

       
1 3 2

1
1 1 2 1

1
... ... ,

n nt t t tt t
n

n n

a a a a a a

n fold

f t dt dt dt dt t f d
n

  







 
     



                             (35) 

The fractional Riemann-Liouville integral of the order   for the function ( )f t  for ,a R   can be expressed 
as follows 

         1
,

1
,

t

RL a RL a t

a

I f t D f t t f d    


  
                                                  (36) 

For the case of 0 1, 0t   , and ( )f t  being a causal function of t , the fractional integral is presented as 

   
 

 
, 1

1
, 0 1, 0

t

RL a t

a

f
D f t d t

t





 

 


   
                                               (37) 

Moreover, the left Riemann-Liouville fractional integral and the right Riemann-Liouville fractional integral are 
defined [5],[38],[43]respectively as 

            1
,

1
,

t

RL a RL a t

a

I f t D f t t f d    


  
                                                  (38) 

          1
,

1
( ) ,

b

RL b RL t b

t

I f t D f t t f d    


  
                                                  (39) 

where 0, 1n n     . Both Gamma function and Riemann-Liouville fractional integral can be defined for 
an arbitrary complex order α with positive real order, as well as for purely imaginary order α. However, since 
the target application area of the present book are stability issues, process control and signal processing, as well 
as modeling, the operations of only real order are considered. Furthermore, the left Riemann-Liouville  
fractional derivative is defined as  

           1
,

1
,

tn
n

RL a t n
a

d
D f t t f d

n dt

   


  
                                                         (40) 

and the right Riemann-Liouville fractional derivative is defined as  

    
     1

,
1

,
bn n

n
RL t b n

t

d
D f t t f d

n dt

   


 
 
                                                           (41) 

where 1n n   , a, b are the terminal points of the interval  ,a b , which can also be ,  . In the very 

important case of (0,1)   where the above definition of the left Riemann-Liouville  fractional derivative is 
reduced to 
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,
1

( ) ( )( )
(1 )

t
RL a t a

d
D f t f t d

dt
   


 

   .                                                            (42) 

A very important fact is that for integer values of order α the Riemann-Liouville derivative coincides with the 
classical, integer order one. In particular [48] 

                       
1

, 1( 1)

( )
lim ( )

n

RL a t nn

d f t
D f t

dt


 



 
                                                                                     (43) 

and  

,
( )

lim ( )
n

RL a t nn

d f t
D f t

dt


 

                                                                                            (44) 

A very interesting property of the fractional derivative is that the fractional derivative of a constant is not equal 
to zero. The RL fractional derivative of a constant C  takes the form  

 
 
 , 0
1RL a t

t a
D C C







 

 
                                                                                         (45) 

However, definitions of the fractional differentiation of Riemann-Liouville type create a conflict between the 
well-established and polished mathematical theory and proper needs, such as the initial problem of the 
fractional differential equation, and the nonzero problem related to the Riemann-Liouville derivative of a 
constant. A solution to this conflict was proposed by Caputo, see [33,34]. The left Caputo fractional derivative 
is  

          1
,

1
,

t
n n

C a t

a

D f t t f d
n

   


  
                                                          (46) 

and the right Caputo fractional derivative is  

    
     1 ( )

,
1

,
bn

n n
C t b

t

D f t t f d
n
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

 
 
                                                            (47) 

where ( ) ( ) ( ) /n n nf d f d    and 1n n     . It is obvious from the definition (47) that the Caputo 
fractional derivative of a constant is zero. Regarding continuity with respect to the differentiation order,  
Caputo derivative satisfies the following limits  

 
1

( 1)
, 1( 1)

( )
lim ( ) ( )

n
n

C a t nn

d x t
D x t D x a

dt


 




 
                                                                   (48) 

and  

 ,
( )

lim ( )
n

C a t nn

d x t
D x t

dt


 

 .                                                                                          (49) 

Obviously, Riemann-Liouville operator  , ,n
RL aD n   , varies continuously with n . This is not the 

case with the Caputo derivative. Obviously, Caputo derivative is stricter than Riemann-Liouville derivative; 
one reason is that the n-th order derivative is required to exist. On the other hand, the initial conditions of 
fractional differential equations with Caputo derivative have a clear physical meaning and  Caputo derivative is 
extensively used in engineering applications. The left and right Riemann-Liouville and Caputo fractional 
derivatives are interrelated by the following expressions 

     
   

( )1

, ,
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1 ( )

1

k kn
k

RL a t C a t
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f a
D f t D f t t a

k
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







  

    ,                                         (50) 
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( )1

, ,
0

1 ( )

1

k kn
k
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D f t D f t b t

k
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







  

   .                                             (51) 

1. 3 Basic Properties of Fractional Order Differintegrals 
As stated previously, for a wide class of functions, Grunwald-Letnikov definition of the fractional derivative 
operator coincides with the Riemann-Liouville definition. Thus, in the present section only Riemann-Liouville 
and Caputo derivatives will be considered. Also, left-side operators are used primarily in the following 
chapters. Thus, all of the properties presented next will be accounted for this kind of fractional operators only. 
Similar properties can be formulated and proven for the right-sided operators accordingly. The reader is 
referred to the available literature [3-5],[43]. 
 Similar to the classical, integer-order integral, the Riemann-Liouville fractional integral satisfies the semi-
group property,[38] i.e. for any positive orders   and   

 , ,, , ,( ) ( ) ( )RL t aRL RL RL t a RLt a t a t aI I f t I I f t I f t       .                                               (52) 

Interestingly, the same does also hold for integer order derivatives, but not for fractional order ones. Let us 
introduce the following notation 

 ( )
,( ) ( )

n j
n j n

n a tRL
d

I
dt

f t f t



 


   
 

.                                                                           (53) 

A combination of Riemann-Liouville derivatives, for example, results in the following expression  

( )

, , ,
1

( )
( ) (

)
)

(
( )

1

n jn
n j

a t a t a t
j

RL RL RL

f a
D D D t a

j
f t f t    




  



  
   ,                           (54) 

with n being the smallest integer bigger then  . Thus, in general, 

, ,, , ,( ) ( ) ( )RL a t RL RL RL a t RLa t a t a tD D f t D D f t D f t       .                                            (55) 

A similar result can be obtained for the Caputo derivative. Fractional derivatives do not commute! 
 It is a well-known fact that the classical derivative is the left inverse of the classical integral. The similar 
relation holds for the Riemann-Liouville derivative and integral 

, , ( ) ( )a t a tRL RL f tI tD f   .                                                                                              (56) 

The opposite, however, is not true (in both the fractional and integer order case) 
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, , ,
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( ) ( ))

(
(

1)

n n j
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a t a t a t
j
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f a

fI D D t at f
j

t   



 







 

 .                                  (57) 

Utilizing expression (50), similar expressions can be obtained relating the Riemann-Liouville integral and  
derivative of Caputo type. In particular, assuming that the integrand is continuous or, at least, essentially 
bounded function, Caputo derivative is also the left inverse of the fractional integral. 
 It is rather important to notice that the Caputo and the Riemann-Liouville formulations coincide when the 
initial conditions are zero [43]. Besides, the RL derivative is meaningful under weaker smoothness 
requirements. In fact, assuming that all initial conditions are zero, a number of relations between the fractional 
order operators is greatly simplified. In such a case, both fractional integral and fractional derivatives possess 
the semi-group property; the fractional derivative is both left and right inverse to the fractional integral of the 
same order; and the operations of fractional integration and differentiation can exchange places freely. In the 
symbolic notation, for any 0     

, ,, , ,RL a t RL RL RL a t RLa t a t a tD D f D D f D f       ,                                                   (58) 

, , , , ( )RL a t RL a t RL a t RL a tI D f D I f f t     ,                                                                  (59) 
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, ,, , ,C a t C C C a t Ca t a t a tD D f D D f D f       ,                                                             (60) 

, , , , ( )RL a t C a t C a t RL a tI D f D I f f t     ,                                                                   (61) 

Laplace transform is one of the major formal tools of science and engineering, especially when modeling 
dynamical systems. Also, Laplace transform is also usually used for solving fractional integro-differential 
equations involved in various engineering problems. The Laplace transform {.}L of the RL fractional 
derivative is 

                
1

1
0, 0, 0, 0

00

{ ( )} ( ) ( ) ( )
n

st k k
RL t RL t RL t t

k

D f t e D f t dt s F s s D f t   
 

  



   L               (62) 

Laplace transform of the Riemann-Liouville fractional integral (38) of  f t  is 

  0
1

{ } ( )RL I f t F s
s


L ,                                                                                     (63) 

The terms appearing in the sum on the right hand side of the expression (62) involve the initial conditions and 
these conditions must be specified when solving fractional differential equations. Laplace transform of Caputo 
fractional derivative is  

1
1 ( )

0,
00

( ) ( ) (0), 1
n

st k k
C t

k

e D f t dt s F s s f n n   
 

  



                                (64) 

which implies that all the initial conditions required by a fractional differential equation are presented by a set 
of only classical integer-order derivatives. Note also that the assumption of zero initial conditions is perfectly 
sensible when implementing fractional order controllers and filters. However, when attempting to simulate a 
fractional order system, the effect of initial conditions must be taken into consideration. In such a case, also, the 
difference between various definitions of fractional operators cannot be neglected. Besides that, the geometric 
and physical interpretations of fractional integration and fractional differentiation can be found in Podlubny’s 
work,[43].Assuming that all initial conditions are equal to zero the fractional differintegral can be exactly 
represented by its transfer function 

 ( )
1

G s
s

                                                                                                               (65) 

which corresponds to the fractional derivative for negative values of the exponent   and to the fractional 
integral for the positive ones. By substituting s j  into (65) one obtains the frequency characteristic of 
fractional operators. Thus, the important difference between integer-order and fractional-order systems is 
revealed,[49,50]. A well-known fact is that the slope of the amplitude characteristics of the integer order 
systems is always an integer multiple of 20 dB/decade. This is not true for fractional order systems which can, 
in general, have amplitude characteristics of arbitrary slope. Similarly, an integer order system can have 
constant phase only if it is a multiple of  pi/2, while the fractional order systems can have arbitrary constant 
phase. Thus, sometimes,fractional systems are referred to as ideal Bode systems. Amplitude and phase 
characteristics of fractional differintegrals of different order are shown in the following Figures 1,2. 
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Fig. 1: Logarithmic amplitude characteristics of few fractional differintegrator (65) 

 

 
Fig. 2: Phase characteristics of few fractional differintegrators (65) 

 
In the field of control theory, many aspects of linear systems have been investigated, in particular, different 
forms of stability and robustness criteria are developed. An in-depth generalization of various aspects of control 
theory to fractional order systems has been presented in [49-51]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 -2 10
-1

10
0

10
1

10
2

-80 

-60 

-40 

-20 

0 

20 

40 

60 

80 

ω

20
 lo

g|
G

(j
 ω

)| 

  = 1.5

  = 1

  = 0.5

  = 2

  = -2

  = -1.5

  = -1

  = -0.5

  = 0

10 -2 10
-1

10
0

10
1

10
2

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1   = -2

  = -1.5

  = -1

  = -0.5

  = 0

  = 0.5

  = 1.5

  = 1

  = 2

ω

ar
g(

G
(j

 ω
)| 

Chapter 1

14



 

References: 

1. G. H. Pertz and C. J. Gerhardt,editors. Leibnizens gesammelte Werke, Lebinizens mathematische Schriften, 
Erste Abtheilung,Band II, pages 301.302. Dritte Folge Mathematik (Erster Band). A. Asher & Comp., 
Briefwechsel zwischen Leibniz,Hugens van Zulichem und dem Marquis de l'Hospital,1849. 

2. L. Euler. De progressionibus transcendendibus seu quarum termini generales algebraicae dari nequent. 
Comm. Acad. Sci. Petropolitanae, 5:36.57,1738. Translated to english by S. G. Langton, University of San 
Diego, www.sandiego.edu/_langton. 

3. K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. 
4. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Deferential 

Equations, John Wiley & Sons Inc., New York,1993. 
5. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo,Theory and applications of Fractional Differential equations, 

edited by J.V. Mill.Elsevier, Amsterdam,2006. 
6. Lacroix,S.F.,Traite Du Calcul Differential et du Calcul Integral,2nd.Vol.3Paris Courcier,409-410,1819. 
7. R. Gorenflo, S. Vessella,Abel Integral Equations: Analysis and Applications, Lecture  Notes in 

Mathematics (Springer, Berlin Heidelberg),1991. 
8. Abel N. H,Auosung einer mechanischen Aufgabe, J. fur reine und angew. Math.,1:153-157,1826. 
9. Abel N. H, Solution de quelques problemes a l'aide d'integrales d´enies, Oeuvres Completes, 1:16-18,1881. 
10. Liouville, J.Memoire sur quelques questions de geometrie et de mecanique, et sur un noveau genre de 

calcul pour resoudre ces questions. J. l'Ecole Roy.Polytechn., 13, Sect. 21, 1-69,1832a. 
11. Liouville, J.,Memoire sur le calcul des differentielles a indices quelconques. J. l'Ecole Roy. Polytechn., 13, 

Sect. 21, 71-162,1832b. 
12. Liouville J. Memoire sur le theoreme des fonctions complementaires. J. f ur reine und angew. Math., 11:1-

19,1834. 
13. Liouville J. Memoire sur l'integration des equations differentielles a indices fractionnaires. J. l'Ecole Roy. 

Polytechn., 15(55):58-84,1837. 
14. Greer, H. R., On Fractional Differentiation, Quart. J. Math., 3,327–330,1858. 
15. Fourier J.,Théorie analytique de la chaleur, Paris,1822.  
16. B. Riemann, "Versuch einer allgemeinen Auffassung der Integration und Differentiation." Gesammelte 

Mathematische Werke und Wissenschaftlicher Nachlass. Teubner, Leipzig 1876 (Dover, New York, 
1953),pp. 331-344. 

17. Sonin N,Y. On differentiation with arbitrary index,Moscow Matem. Sbornik,6(1):1-38, 1869. 
18. Letnikov A. V. Theory of differentiation with an arbitrary index (Russian), Moscow, Matem. Sbornik, 3:1-

66, 1868. 
19. Letnikov A. V., An explanation of the concepts of the theory of differentiation of arbitrary index 

(Russian), Moscow Matem. Sbornik, 6:413-445,1872. 
20. Laurent H., Sur le calcul des derivees a indicies quelconques. Nouv. Annales de Mathematiques, 3(3):240-

252, 1884. 
21. Grunwald  A. K,Uber "begrenzte" Derivationen und deren Anwendung. Zeit. fur Mathematik und Physik 

12 , 441-480, 1867. 
22. Heaviside O., Electrical papers, The Macmillan Company,8,1892. 
23. Weyl H., Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Ierteljshr  

Naturforsch Gesellsch  Zurich, 62:296-302, 1917. 
24. Hardy G.,J.Littlewood,Some properties of fractional integrals,I.Math.Z.,27(4),565-606,1928. 
25. Hardy G.and J. Littlewood. Some properties of fractional integrals, II. Math. Z.,34:403.439, 1932. 
26. Marchaud A., Sur les derivees et sur les differences des fonctions des  variables reelles. J. Math. Pures 

Appl. (9)6, 337-425, 1927. 
27. Riesz.M., Lintegrales de Riemann-Liouville et solution invariante du probleme de Cauchy pour l'equation 

des ondes. C. R. Congr´es Intern. Math, 2:44-45,1936. 
28. Riesz. M., Lintegrales de Riemann-Liouville et potentiels. Acta Litt. Acad. Sci.Szeged, 9:1-42, 1938. 
29. Riesz. M.,L'int´egrales de Riemann-Liouville et le probl´eme de Cauchy. Acta Math.,81 (1-2): 1-223, 

1949. 
30. Erdelyi. A.,On fractional integration and its application on the theory of Hankel tranforms. Quart. J. 

Math., Oxford ser., 11(44):293.303, 1940. 

Introduction to Fractional Calculus with Brief Historical Background

15



      
 

31. Erdelyi А.,H. Kober. Some remarks on Hankel transforms. Quart. J. Math.,Oxford ser.,11(43):212-221, 
1940.  

32. Erdelyi,A., W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher transcendental functions. Vol. I. 
Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, With 
a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 original. 

33. Caputo M., Linear models of dissipation whose Q is almost frequency independent. Part  II. J Roy Austral 
Soc.;13:529-539,1967. 

34. Caputo, M. Elasticit´a e Dissipazione. Zanichelli, Bologna,1969. 
35. Rabotnov Y.N., Creep problems in structural members. North-Holland Series in Applied Mathematics and 

Mechanics, 7, 1969. Originally published in Russian as: Polzuchest Elementov Konstruktsii, Nauka, 
Moscow, 1966. 

36. McBride, A. C. Fractional Calculus and Integral Transforms of Generalized Functions (Research Notes in 
Mathematics) 31, Pitman, 179 pp. 1979. 

37. Nishimoto K., An Essence of Nishimoto's Fractional Calculus Integrals and Differentiation of Arbitrary 
Order(Calculus of the 21st Century) Descartes Press,Koriyama, Japan, 1991. 

38. Samko, S.G., Kilbas, A.A., Marichev, O.I. Fractional Integrals and Derivatives - Theory and 
Applications. Gordon and Breach Science Publishers, Amsterdam, 1993. 

39. Kiryakova V., Generalized Fractional Calculus and Applications,Longman  Sci. & Techn., Harlow and J. 
Wiley & Sons, N. York, 1994. 

40. Rubin B., Fractional Integrals and Potentials,Addison–Wesley/Longman, Reading,1996. 
41. Mainardi F. Carpinteri, A., editor, Fractals and Fractional Calculus in Continuum Mechanics, V. 378 

CISM Courses and Lectures,Springer-Verlag,Wien and New York, 1997. 
42. M. Davison and C. Essex. Fractional differential equations and initial value problems.Math. Scientist, 

23:108–106, 1998. 
43. Podlubny, I. Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering. 

Academic Press, San Diego, 1999. 
44. Hilfer R.(editor); Applications of Fractional Calculus in Physics, World Scientific Publishing Co. 2000. 
45. Das, S. Functional Fractional Calculus for System Identification and Controls.Springer, 2007. 
46. Sabatier J., O. P. Agrawal, J.A. Tenreiro Machado:Advances in Fractional Calculus: Theoretical 

Developments and Applications in Physics and Engineering,Springer,p.552, 2007. 
47. Machado, J.T., Kiryakova, V., Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. 

Numer. Simulat., 16(3):1140-1153, 2011. 
48. C.P.Li and W.H. Deng,Remarks on fractional derivatives, Applied Mathematics and Computation, 187, 

777–784,2007. 
49. R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional Order Systems – Modeling and Control 

Applications, World Scientific,2010. 
50. C. A. Monje, YQ. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional Order Systems and Controls – 

Fundamentals and Applications, Springer, 2010. 
51. Šekara B.T, Fractional Transformations with Applications to Control Systems and Electrical Circuits. PhD 

Thesis, Faculty of Electrical Engineering, University of Belgrade (in Serbian),2006. 

 

 

Chapter 1

16



 
 
 
 
 

Part II  
 
 
 

“Control and Stability Issues” 
 

 



 



 

Direct and Indirect Method for Discretization of Linear Fractional 
Systems 

 
TOMISLAV B. ŠEKARA,   

Faculty of Electrical Engineering, University of Belgrade,  
Bulevar Kralja Aleksandra 73, 11000 Belgrade, SERBIA 

tomi@etf.rs 
 

MILAN R. RAPAIĆ 

Faculty of Technical Sciences,University of Novi Sad 
Trg Dositeja Obradovića 6, 21000 Novi Sad,  

SERBIA 
rapaja@uns.ac.rs 

 
 
Abstract: - The problem of discrete-time (digital) implementation of fractional order systems, fractional 
differintegrators in particular, is addressed in the present chapter. Two novel methods have been presented and 
investigated in detail: a direct optimal and and indirect one. The direct optimal implementation is obtained by 
minimization of a custom frequency-domain discrepancy measure between the target fractional order system 
and its discrete-time rational approximation. The optimization process has been subjected to a number of 
constraints ensuring that the obtained approximations are stable, have stable inverses, and retain the desired 
steady state behavior. Both the optimality criterion and constraints are discussed in detail. Particle Swarm 
Optimization (PSO) algorithm has been utilized during the optimization procedure. This is a robust, swarm-
based optimizer which is capable of solving hard, non-convex optimization problems with multiple local 
optima at the expense of a significant computational load. The indirect method consists of applying a recently 
proposed discretization method to a suitably chosen analogue, rational approximation of the target fractional 
systems. In comparison with the direct method, the indirect method is somewhat less accurate, but it is also 
significantly less expensive computationally. It has been demonstrated by means of a number of numerical 
examples that both presented methods outperform some of the recently proposed digital approximations of 
fractional systems. 
 
Key-Words: - fractional order systems (FOS), rational approximations, discretization, particle swarm 
optimization (PSO) 
 
 

2.1 Introduction 
Dynamical systems described by fractional-order models, i.e. by (systems of) differential equations involving 
non-integer order differentiation and integrations, are referred to as fractional order systems (FOS), or simply 
fractional systems. Appearance of fractional order models leads naturally to the idea of fractional order 
controllers (FOC) [1-20]. Even if the model is of integer order, it is theoretically clear that introduction of 
fractional order controllers provides additional flexibility in the design process. Although, according to [21], 
pioneering studies in this area date back to late 1950’s, it was not until recently that FOC raised considerable 
interest among engineers. A common example from control engineering is CRONE (“Commande robuste 
d’ordre non entier”, which could be translated as: non-integer robust control), proposed in 1990’s by Alain 
Oustaloup [22, 23]. Another example dating from the same period is Igor Podlubny’s fractional generalization 
of PID controller, PIλDμ [1], where both first-order integral and first- order differential controller actions have 
been replaced by their respective fractional counterparts. Fractional PID controller is briefly discussed in 
Section 3. The reader is also referred to [24,25-27]. Other types of both linear and nonlinear fractional 
controllers have been discussed in literature. For example, sliding mode (variable-structure) controllers have 
been discussed in [28].  

The key operator of both FC and FOC is fractional differintegrator, a generalization of both classical 
differentiation and integration operators. Transfer function of such an operator is 
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 ( )G s s                                                                                                                       (1) 

where s is the Laplace variable and α can take arbitrary real values. For positive α, the differintegrator is a 
generalization of the classical integer order derivative, while for negative α, it is a generalization of the 
repeated, or n-fold, integral. Most linear fractional order systems can be implemented using fractional 
integrators as basic building blocks, just as integer order systems can be implemented using classical, first-
order integrators. Thus, fractional differintegrator is often referred to as the fundamental operator of fractional 
calculus [25]. 

In principle, any fractional order system, including the fractional differintegrator, can be seen as a 
continuous time, linear, infinite dimensional filter [25, 29]. Such a filter cannot be directly implemented; 
therefore, it is of crucial importance to find suitable finite dimensional approximation of any FOC in general 
and fractional differintegrators in particular [21, 29-37]. There are many discretization schemes reported in 
literature which can be classified as either direct or indirect. The distinction is made based on whether an 
auxiliary continuous-time (s domain) approximation is constructed in the process. With direct methods, an 
intermediate continuous time approximation is not necessary, while with indirect methods such analogue 
approximation must be created. 

Most of the direct methods start with a suitable discrete approximation of the first-order derivative or 
integral. Discretization scheme is then obtained by truncating some expansion of an appropriate non-integer 
power of the selected approximation. For example, a method based on power series expansion (PSE) of Euler 
operator is reported in [30], while continued fraction expansion (CFE) is applied to Tustin operator in [30]. 
Further direct schemes are reported in [21, 32-35]. Recently, Barbosa, Tenreiro-Machado and Silva reported 
novel methods obtained by least-squares fitting in time domain [36].  

Indirect methods are constructed in two steps. In the first step, a finite dimensional, continuous time 
approximation of the target fractional order system is found. Oustaloup’s rational approximation (ORA) 
reported in [36] and sub-optimum H2 rational approximation reported in [16] are examples of such 
approximations. Other such approximations can be found in [29, 37] and are also discussed in [38]. Once a 
satisfactory continuous-time approximation has been found, the second step of each indirect method is to find 
its discrete-time equivalent. A number of discretization methods applicable to systems having rational transfer 
functions have been proposed in literature: approximations of Euler and Tustin, response invariant 
transformations (impulse-invariant and step invariant) and others [39]. Flexible first-order integrator, known as 
the tunable, or T-integrator, was proposed by Smith [40]. Similar tunable first-order discretization schemes 
were proposed by Le Bihan [40], Šekara et al [42-44] and others [38, 45-48]. Efficient implementation of 
discretization algorithms was discussed in [49]. Tustin operator, and especially its efficient implementation, is 
considered further in [50]. Some theoretical aspects of the discretization process are addressed in [51, 52].  

This chapter addresses the problem of (direct and indirect) discretization of fractional order integrators and 
fractional order systems in general. Without loss of generality we focus primarily on the half-integration 
operator, although our methods and findings can be applied in a wider context. Since Riemann-Liouville, 
Caputo and Grunwald-Letnikov definitions differ practically only in the type of required initial conditions, the 
respective transfer functions of the fractional order differentiators and integrals are the same. Thus, the 
considerations of the present chapter are applicable to fractional order models expressed in terms of any of the 
before mentioned types of fractional operators.   

A frequency domain error that enables an efficient and flexible quantitative measure of the discrepancy 
between the target system and its approximation will be introduced in the sequel. This measure is used 
throughout the chapter to access the quality of the obtained approximations. It is defined as a weighted sum of 
normalized amplitude and normalized phase error in a predefined frequency range. In the sequel, this error 
measure is denoted as J, where is a design parameter affecting relative impact of the two factors 
(amplitude and phase error). This error measure can, in principle, be used in conjunction with any tunable 
scheme for frequency response approximation, including discretization methods and methods for model order 
reduction. Based on J, a direct optimal discretization scheme is described. It consists of finding a discrete 
transfer function of predefined order and adhering to certain constraints that give the smallest value of J. The 
constraints imposed on the optimizer are that it is stable, has stable inverse and (in the case when 
approximating fractional integrator) has infinite static gain. In addition to direct optimal approximation, an 
indirect method is also proposed. The indirect method is based on discretization polynomials reported in [39, 
42, 45, 53, 54], and discussed further in [55]. Alain Oustaloup’s ORA was used as the auxiliary approximation 
in continuous time [37]. However, any sufficiently good continuous-time rational approximation can be used. 
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Some other analogue realizations of fractional order systems have been reported in [29]. The advantage of the 
indirect method is that it performs formidably although it is optimization-free and therefore computationally 
inexpensive.  

With both of the proposed methods, special care is taken to ensure proper behavior at low frequencies. This 
issue,commonly neglected in literature, is crucial for the correct steady-state behavior of rational 
approximations. The importance of low-frequency behavior will be demonstrated in the sequel by a number of 
numerical examples (see Section 5). The authors have discussed this and other related issues in [56]. 

The outline of the chapter is as follows. The problem is stated in Section 2, where the classical example of 
heat conduction is discussed briefly. Section 2 also gives concise statement of the problem addressed in the 
Chapter. This example gives rise to a fractional order description in terms of semi-derivatives in a natural and 
straightforward way. The problem is further motivated by stating the role of the fractional differintegrator in 
design of fractional control laws, Fractional PID controller in particular. The direct optimal discrete 
implementation procedure is addressed in Section 3, while the indirect procedure is presented in Section 4. 
Several examples illustrating the effectiveness of the proposed procedures are discussed in Section 5. The 
concluding remarks and some guidelines for further research are presented in Section 6. The text also 
incorporates an Appendix B, where a number of first order discretization schemes applicable to continuous-
time systems with rational transfer functions have been outlined. 
 
 
2.2  Motivation and Formulation of the Problem 
Due to the popularity of the fractional calculus in recent years, a vast number of studies emerged showing that 
fractional order models are more adequate tool in describing many physical phenomena than the classical 
models formulated in terms of derivatives and integrals of integer order. A detailed account of such examples is 
beyond the scope of this book, and certainly beyond the scope of the present chapter. The interested reader is 
referred to the available literature, for example [9, 16, 57, 58]. It has been pointed out in the introductory 
section that many fractional order systems can be implemented using differintegrators as building blocks. One 
of our aims in this preliminary section is to demonstrate that differintegrals and related transfer functions 
emerge naturally even in the context of well-established mathematical models of physical phenomena. This is 
especially true for the semi-integrator, which is the target system of the present chapter. In addition, we would 
also like to stress that differintegrals appear as building blocks of a variety of fractional control strategies. One 
of such controllers, namely Fractional PID regulator, is briefly addressed at the end of this section. 

Consider, first, a process described by classical diffusion equation (also reffered to as the heat equation), 
which is ubiquitous in science and engineering since it simultaneously describes a number of transfer 
phenomena, including heat-transfer and a number of other diffusion-like processes. These diffusion-like 
processes include diffusion of mass (mechanical diffusion), diffusion of momentum (viscosity), diffusion of 
electrical potential (in long lines, when inductivity is negligible), and many others. One-dimensional diffusion 
equation is a partial differential equation of the form 

2

2z t

   


 
, 0                                                                                                         (2) 

describing the process of transport (diffusion) of a quantity ρ along the z axis in time t. For simplicity, let us 
address only the diffusion within a semi-infinite medium, where both space and time variable take arbitrary 
positive values. Let us assume also that the process can be controlled by acting on the cross-section 0z  , and 
that the process output is taken (measured) at the cross-section z L . The dynamics of the process is 
influenced by the diffusion time constant  ( , )z t  , which is, in general, a function of both space and time. 
However, in a variety of practically interesting cases this coefficient can be approximated by a constant factor. 

Without loss of generality, assume that (2) describes a heat conduction process schematically shown in Fig. 
1. Let us obtain its transfer function. In this particular case, ( , )z t  , is the temperature of the crossection 

defined by space coordinate z  evaluated at time instant t . Let ( , )z s    denote the Laplace transform of  , 

where the Laplace transform is taken with respect to the time variable t  and the space variable z  is considered 
as a parameter,  

                               
0

( , ) ( , ) stz s z t e dt 
   .                                                                                             (3) 

Direct and Indirect Method for Discretization of Linear Fractional Systems

21



 

By applying the Laplace transform to equation (2), one obtains general solution 

      / /
1 2( , ) ( ) ( )z s z ss z C s e C s e      .                                                        (4) 

Since any heat conduction process is stable, the Laplace transform of the temperature in any cross-section must 
be bounded, i.e.  

                                 lim ( , ) .z s z const                                                                                                (5) 

has to be satisfied, thus C2=0 and equation (4) takes the form 

 /
1( , ) ( ) z ss z C s e   .                        (6) 

 



1 ( ,0)s  2 ( , )s L 

z

L0  
Fig. 1. A sketch of the process of heat conduction by diffusion. 

 
Integration “constant” C1 as well as the conduction function is determined from the known (or given) boundary 
conditions. In view of this, the most frequent cases in practice are: 
 
Case 1. Heat conduction without any convective exchange of heat with the environment and fixed temperature 
at the “left” boundary. In this particular case, the temperature of the cross-section 0z   could be controlled 
directly, and considered as the input of the process, while the dependent temperature of the cross-section z L  
could be considered as the output. The left boundary condition for this case is 1( ,0) ( )s C s  , and the transfer 
function takes the form 

 /2

1

( , )
( )

( ,0)
T sL s

a

s L
G s e e

s



  




, 2 /T L  .                                                                  (7) 

Case 2. Heat conduction without any convective exchange of heat with the environment and fixed thermal flux 
at the “left” boundary. The process is influenced by gradient of quantity ρ at z = 0 (this is the boundary surface 
of the medium of Fig. 1), the input quantity of the process being thermal flux through the boundary surface 
(again without any convective exchange with the environment) 

0

( , )

z

d s z

dz
 



 


                                                                                                      (8) 

and the process (output) quantity is ρ2= ρ(s, L), and the transfer function is  

2( ) T s
b

K
G s e

s




 


, 2 /T L  , /K   .                                                             (9) 

Case 3. Heat conduction without any convective exchange of heat with the environment. The last characteristic 
case is when the convection is no longer neglected. Now, the process is influenced by a linear combination of 
the thermal flux and temperature at the “left” boundary 

 
0

( , )
( , )

z

d s z
u s z

dz

  


   , with output 2 ( , )s L  ,                                        (10) 

and the transfer function is 
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 2

1

( )
1

T s
c u

K
G s e

T s

  



, 1/K  , 

2

1 2
T


 

 ,  2 /T L  .                                (11) 

 
In the examples above, the semiderivative operator has appeared in a number of contexts. It should be 

mentioned that other forms of fractional order transfer functions emerge during investigations of different 
transfer phenomena. In the analysis of axial diffusion, i.e. diffusion from the axis of the cylinder towards its 
lateral surface or vice versa, one meets transfer functions originating from the Laplace transforms of Bessel 
functions, which have the form 

( )
1

K
G s

sT



.                                                                                                        (12) 

From this example, transfer functions given by equations (7), (9), (11), and (12) belong to the fractional 
systems having transfer functions which belong to the class of irrational functions [58]. 

Since these transfer functions describe adequately physical processes, a logical question arises whether it is 
possible to formulate fractional control laws and what would be their contribution to process control. Among 
many modern control strategies utilizing fractional calculus, Podlubny’s Fractional PID [1] regulator is 
emphasized here. Classical PID is arguably the most utilized control strategy in use today. By replacing 
classical integral and differential actions by their respective fractional analogues, the flexibility and 
applicability of the PID regulator can be greatly increased. Transfer function of the fractional PID is of the form 

 i dPI D ( )s k k s k s      , , [0,1]  ,                                                               (13) 
 

O

PD

PIDPI





1

1

P

 
Fig. 2. Parameter plane of the fractional PIλDμ regulator 

 
The reader should notice that the implementation of Fractional PID requires direct implementation of fractional 
integrator and differentiator. Similar is also true for other types of fractional regulators, as it can be seen from 
[22, 23, 25, 26, 30]. Such regulators are typically implemented as high order FIR or IIR filters [29-37], 
Realization of fractional control laws involving an adequate discretization is possible thanks to the fast modern 
computers. It is known that in the regulator design two approaches are possible, direct design in the discrete 
domain and the other approach is design in the continuous domain first and then transition to the discrete 
domain. Obviously, discretization is required by both approaches. However, the discretization procedure is not 
straightforward when fractional systems are in question, a problem which has been causing a considerable 
interest over the past years. 
In the following sections some novel techniques for designing rational discrete approximations of semi-integral 
operator are described in detailed. The presented methods approximate the fractional order (irrational) 
continuous-time transfer function 

 ( )
1

G s
s

                                                                                                                      (14) 

with a discrete-time rational one, 

 0
1

1 0

( )
m

m
n n

n

H
b s b

s a s a
z 










                                                                                         (15) 
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where n m . The quality of the obtained approximations will be measured in frequency domain, i.e. the 
similarity of ( )G j  and ( )sj TH e   will be investigated within a given frequency range min max[ , ]   . sT  
stands for the sampling interval. 
 
 

2. 3 The Direct Optimal Method for Discretization of Fractional Integrators 
Discretization of fractional systems can be accomplished by applying direct methods which make use of the 
special techniques for converting fractional continuous-time transfer function G(s) to a rational discrete-time 
approximation G(z), or by applying indirect methods which use adequate approximations of transfer function 
G(s) of a fractional system by a rational transfer function H(s) to which it is possible to apply standard 
discretization methods in order to obtain final solution H(z), i.e. G(z). 
 
 
2.3.1 The optimality criterion 
In order to apply an efficient direct method of discretization, let us define the optimality criterion applied in 
[56]. Let at() and t() denote amplitude and phase response of the target system. Similarly, let aa() and 
a() denote amplitude and phase response of the approximation to be evaluated. Amplitude responses are 
measured in decibels, while phase responses are measured in degrees or radians. At each frequency point, , 
the approximation error is defined as 

 
2 2 2 2(1 ) [ ( ) ( )] [ ( ) ( )]

( )
2

s t a s t aa a a


            
 .                                              (16) 

Design parameter controls relative impact of the two terms. For equal to 0 only the amplitude error is 
measured, while for equal to 1 only the phase error is of importance. Clearly, for intermediate values of 
both terms are considered, yet with different impact on the error value. Scaling factors as and s are 
introduced primarily for dimensional purposes. In addition, they can help reduce amplitude and phase errors to 
approximately the same range of values, which can enable a more intuitive selection of appropriate value for . 
The overall approximation error can be obtained by integrating (16) over the entire frequency range 

 
0

( ) ( )J d     


                                                                                                   (17) 

where denotes relative importance of each frequency. Introduction of is particularly useful in cases 
where especially good fit is desired at certain frequencies. Approximation error at such frequencies should 
contribute more to the overall approximation error than equal discrepancy at other frequencies. In practice, 
frequency responses are only evaluated in some finite number of points. Denote this set of relevant frequencies 
by { ,1 }i i N   . The overall approximation error (17) should be replaced by computationally far more 
convenient expression 

 
1

( )
N

i i
i

J    


  .                                                                                                            (18) 

Throughout the present section, is chosen to be a set of frequencies distributed homogenously on logarithmic 
scale in a predefined frequency range. All of these frequencies are equally valued. Each weight i is set to the 
same value, equal to the reciprocal of the number of relevant frequencies N. The final form of the discrepancy 
measure is  

 
1

1
( )

N

i
i

J
N  



                                                                                                              (19) 

This can be interpreted as combined amplitude-phase error averaged over all relevant frequencies. Expression 
(19) is to be used as optimality criterion throughout this text. In specific applications, its more general form 
(18) can be more appropriate. All of the methods presented in the chapter can be used unaltered even in such 
cases. 
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2.3.2 Optimal discrete approximations of the fractional integrators 
The method of obtaining discrete approximations of fractional semi-integrator by direct minimization of 
optimality criteria (19) over all discrete systems of a predefined order is presented next. The procedure is 
applicable to fractional differintegrators of arbitrary order. During the optimization process, a single pole of the 
discrete approximation is fixed at one. When approximating fractional differentiators, a single zero should be 
fixed at one. Magnitudes of all other poles and zeros are constrained to be not greater than one. These 
constraints ensure that all of the obtained discrete equivalents are stable, have stable inverses and retain correct 
steady state behavior. The key parameters that should be determined prior to the optimization process are:  

i) order of the approximation (n),  
ii) set of relevant frequencies used to calculate optimality criteria (Ω),  
iii) appropriate scaling factors and relative importance of the amplitude and phase errors, i.e. the 

appropriate values for as, s and , and   
iv) sampling time (T).  

Frequency responses of optimal discrete approximations of orders 3, 5, 7 and 9 are compared to the 
frequency response of the semi-integrator of Fig. 3. Relevant frequencies are chosen to be distributed 
homogenously on logarithmic scale from L rad/s-1 up to the Nyquist frequency, N/Ts. The 
amplitude scale factors are set to 1/ ( ) ( )  dBs t L t Na a a   , at being the frequency response of the semi-

integrator, while the phase scale is set to 1/s   rad. Both amplitude and phase errors are valued equally, 

0.5. The sampling time is chosen to be T 10 msFrequency response was sampled at N 1000 points. 
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Fig. 3. Frequency responses of the optimal direct approximations of the semi-integrator of various order 

(0.5). Values of the optimality criteria J (19) for different values of approximation order are: 
3 4 4 42.57 10  ( 3),  7.5 10  ( 5),  2.91 10  ( 7), 2.68 10  ( 9)J n J n J n J n   
                
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Fig. 4. Frequency responses of the fifth order optimal direct approximations of the semi-integrator for various 

values of β. 
 

Frequency responses of the optimal fifth order approximations (n ) obtained for various values of are 
presented in Fig. 4. Unless additional constraints are introduced, values of parameter should always be 
chosen from open interval (0,1). If only the phase error is considered (), the optimization is insensitive to 
gain, and therefore incorrect. One could decide to fix gain at certain frequency prior to phase error 
minimization, but the problem of proper choice of such a frequency remains open. On the other hand, numerous 
experiments conducted by the authors testify that if only the amplitude error is considered (), the optimizer 
attempts minor corrections of amplitude response that, in turn, greatly degrade quality of phase fit. The 
appropriate value of is dependent on user’s goals, as well as on the previous selection of scale factors. In 
general, both amplitude and phase errors should contribute comparably to the value of optimality criteria. 
However, the phase response is in general harder to approximate and larger values of are sometimes more 
adequate. Throughout this text, is chosen to be 0.5. The relevant frequency range is of utmost importance. 
When optimizing over a broad frequency range, the effort of the optimizer is spread, resulting in good 
approximation on average. To the contrary, when a narrower band of relevant frequencies is considered, the 
optimizer produces approximations that are more accurate on that small region. A comparison between the 
seventh order narrow band ((0.05,20)) and broad band (approximations is made in Fig. 5. 
All other optimization parameters are the same as above. The broad band approximation is, as expected, valid 
over a wider frequency range, especially at low frequencies. However, if only the two central decades are 
relevant, it can be seen that maximal amplitude and phase errors of the narrow band approximation are about 
0.0283 dB and 0.253 degrees, which is roughly 10 times less in comparison to maximal errors of the broad 
band approximation over the same frequency range. Clearly, for fixed approximation order there is a tradeoff 
between approximation accuracy and bandwidth. 
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Fig. 5. Frequency responses of the seventh order broad band and narrow band optimal 

approximations obtained for β=0.5. 
 
Poles, zeros, and gains of optimal discrete approximations of different order, obtained for are presented 
in Table 1 for further reference. Note that poles and zeros are interlaced along the segment of the real axis 
inside the unit circle. This phenomenon, known in literature [30,35], is not enforced in any way, but occurs as a 
natural result of the optimization process. 
 

Table1. Zeros (z), poles(p), and gain (k) of optimal direct approximations to the semi-integrator obtained for 
the frequency range (0.001, 2 /T ), with sampling time T=0.01s and β=0.5. 

 n=5 n=7 n=9 
z1 0.999986305429608 0.999994103939234 0.999996826768815 
z2 0.999530506330752 0.999915583664228 0.999967747286457 
z3 0.985129852403502 0.999091068030843 0.999796345479915 
z4 0.663247873036833 0.989506466787377 0.998645266695162 
z5 -0.047565565066957 0.896856212527238 0.990956987187242 
z6  0.407958744308062 0.940943134980605 
z7  -0.546921874442973 0.605320223754678 
z8   0.027743161825917 
z9   -0.615695445938038 
p1 1.000000000000000 1.000000000000000 1.000000000000000 
p2 0.999916770576491 0.999974469462250 0.999987680125186 
p3 0.997377207355588 0.999727493208832 0.999919393090079 
p4 0.915902973892208 0.996874407191277 0.999477334928292 
p5 0.298764110716001 0.965651963636666 0.996459218888345 
p6  0.718144401760234 0.976917451551429 
p7  -0.131263646081857 0.839993326475073 
p8   0.222315405191216 
p9   -0.288175605056004 
K 0.089295640868600 0.084651005226214 0.084824546079785 
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In Figs. 6 and 7 the proposed schemes are compared to those recently presented by other authors. In particular, 
the comparison is made with respect to the least-squares approximation of the Tustin operator (BTMS) reported 
by Barbosa, Tenreiro, Machado, and Silva [36], as well as with respect to the recursive (VCP-TR) and CFE 
(VCP-TCFE) approximations of the Tustin operator reported by Vinagre, Chen and Petras [31]. These 
approximations are chosen because they perform similar or better than other widely used methods, and shall 
henceforth be denoted by previously introduced abbreviations. Approximations of order 5 are presented in Fig. 
6, while the 7-th order approximations are presented in Fig.7. Notice the different behavior in the low 
frequency range. Due to a pole fixed at 1, the approximations introduced in this text behave (up to a 
multiplying constant) as pure integrators at low frequencies. This behavior is crucial in retaining the static gain 
of more complex systems, since it ensures infinite gain of the approximation at zero frequency. However, this is 
not the only reason for comparatively good performance of the proposed approximations, as will be 
demonstrated later (see Example 2 in Section 5). 
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Fig. 6. Frequency domain comparison of the fifth order direct optimal approximation ( with the fifth 

order approximations reported by other authors. The corresponding values of J criterion are: 
47.5 10J 
  (optimal), 22.75 10J 

   (BTMS), 11.28 10J 
   (VCP-TR), 27.6 10J 

   (VCP-TCFE). 
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Fig. 7. Frequency domain comparison of the seventh order direct optimal approximation ( with the 

seventh order approximations reported by other authors. The corresponding values of Jcriterion are: 
42.91 10J 

   (optimal), 22.1 10J 
   (BTMS), 11.17 10J 

   (VCP-TR), 26 10J 
   (VCP-TCFE), 
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2.3.3 Remarks on the optimization procedure 
Optimality criterion (19) is highly nonlinear, non-convex and multimodal. Standard, local optimization 
procedures such as line-search or trust-region methods will, in general, fail to provide adequate solutions. 
Utilization of a robust, global optimization scheme is therefore necessary. In recent years many global 
optimizers have been proposed, most of which are evolutionary and population based. At the expense of higher 
computational load, such algorithms are capable of finding near optimal solutions to hard optimization 
problems that cannot be tackled by conventional local optimizers.  

Among global methods the Particle Swarm Optimization (PSO) algorithm is known to be very effective 
[59]; it is a general-purpose optimizer which is relatively efficient in both computational and storage 
requirements, it is not difficult to implement and it can be fine-tuned for specific problems. A theoretical and 
empirical analysis of the PSO algorithm, with special emphasis on convergence and parameter selection is 
presented in [60]. All of the solutions and examples presented in this text are obtained by the PSO algorithm 
with time-varying parameters, described in [54]. A MATLAB implementation of this algorithm is freely 
available [61, 62]. In the current work, the PSO algorithm with 32 particles in the swarm and 200 iterations 
during each run was used. Occasionally, re-initialization of the swarm and 200 additional iterations were used 
to fine-tune the obtained solution. 

In the present work the design variables of the optimization procedure were chosen to be poles, zeros and 
gain of the discrete-time rational approximations. Prior to initialization process, it is necessary to specify the 
order of the desired approximation. Let us denote the approximation order by n. Thus, there are 2n+1 design 
variables, n zeros, n poles and gain. When approximating fractional integrators, however, a single pole must 
always be equal to 1 in order to preserve steady state behavior. Thus, the actual number of free parameters is 
2n. As mentioned earlier, the approximations must be stable, with stable inverses; since fractional integrals 
have non-oscillatory impulse responses, all approximation poles and zeros were constrained to be real with 
absolute values less than 1. These constraints have been enforced during the optimization process by means of 
penalty functions. The actual optimality criterion used in the optimization process was obtained from the 
criterion (4) by adding a penalty function of the form 

P mC ,                                                                                                                         (20) 

where m is the number of additional poles and zeros having absolute value greater or equal to one and C is 
some large number (C=1000 was used in the examples presented in this text).  

The general scheme for obtaining a direct optimal approximation using MATLAB software is the following. 
At first, it is necessary to write an m-function implementing the optimality criterion (15) (or preferably its more 
general form (18)). The input arguments to such a function should be the poles and zeros of the discrete 
approximation and the parameters of the optimality criterion itself: the scaling factors and a vector of the 
frequency points of interest. In general, it can also take a vector of the weighting factors. The single output 
argument should be the value of the optimality criteria (15) with penalty function (20) added. The 
implementation is rather straightforward; however, the authors will readily provide such a function upon 
request.  
 
 

2.4 Indirect Method for Discretization of Fractional Integrators 
The indirect discretization method proposed in the present work consists of the application of discretization 
polynomials presented in [38, 42, 45, 53-55] to suitably chosen continuous-time rational approximation of the 
target differintegrator. Due to its flexibility, accuracy, and clear geometrical and physical interpretation, the 
Oustaloup’s rational approximation (ORA) is utilized. However, different continuous-time approximations 
could be used as well. By construction, ORA of some sufficiently high order is capable of approximating 
fractional differintegrators with arbitrary accuracy within an arbitrary frequency band. By utilization of the 
discretization polynomials, the amplitude and phase characteristics of the continuous-time approximations are 
preserved with high accuracy, except at close vicinity of the Nyquist frequency. First few discretization 
polynomials are presented in Table 2; a detailed account of their properties can be found in [42]. 
 The procedures obtained in this way are computationally far less expensive than the optimal procedures of 
the previous section. Despite of this, their performance is not significantly worse. In fact, the proposed 
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procedures can be seen as sub-optimal, and thus suitable as initializes for the optimization procedures of the 
previous Section. 
 
Table 2. Discretization polynomials reported in [42], of 11p z  . 
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It should be mentioned that the calculation of approximation functions fn(z) in [37,41,44] can efficiently be 
specified by applying Pade approximation of the order (n,n) to function (T/ln(z))n at point z=1. By direct 
application of MAPLE software and Pade approximation fn(z). E.g. for n=1 and n=8 
> restart: 
> with(numapprox): 
> f:=n->factor(pade((T/ln(z))^n,z=1,[n,n])): 
 

> f(1); 
T ( )z 1
2 ( )z 1  

> f(8); 


T8 ( )       1 579770 z4 28772 z2 285896 z3 285896 z5 28772 z6 248 z7 z8 248 z

1209600 ( )z 1 8  

 
The main property of these approximation functions of an analogue integrator 1/sn, compared to any other 
approximation, is that the phase deviation along the whole of ω axis is equal to 0 

 arg(1/( j ) ) arg( (exp( j )) 0n
nf T   , n , , j 1  ,                                  (21) 

while deviation of the absolute value of the module 0 at ω=0 is guaranteed by Pade approximation 

 
0

1/( j ) (exp( j )) 0n
r ne f T


 


   , n                                                                     (22) 

at the point of expansion z=1, corresponding to point s=0 based on relation z=exp(sT). 
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For illustration, Fig. 8 shows absolute deviation between the analogue integrator 1/sn and the approximation 
functions for n=2,3,4,5, and 6. 
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Fig. 8. Absolute deviation between the analogue integrator 1/sn and the approximation functions for n=2, 3, 

4, 5, and 6 
 
It can be noted that the absolute error er dramatically decreases as the degree n of the analogue integrator 

increases, which is very important for approximations of fractional functions described by a high order for the 
purpose of adequate discretization. 

A large number of other s-z approximations of the first order, presented in Appendix B, are special cases of 
a T-integrator [40] 

  

1 1[ ( / ) (1 )( / ) ]n n n nX X T P dX dt P dX dt                                                             (23) 
i.e.            

1/ (1 )
1 1

Tz T
s P P

z z
   

 
, [0,2]P                                                                     (24) 

where parameters P and γ are adjustable and parameter T is integration step length. It should be emphasized 
that in [40], published in 1987, it is explicitly stated that specail cases of a T-integrator, depending upon 
parameters P and γ, are reduced to the conventional integrators presented in Table 3. 

 
Table 3. The conventional integrators which are special cases of a T-integrator  

 

 P Name Integrator 

1 0 Euler integrator 

1 1/2 Trapezoidal integrator 

1 1 Rectangular integrator 

1 3/2 Adams-Bashforth Corrector 

 
Consider, for example, a semi-integrator s-0.5. It is necessary to ensure proper low frequency behavior, therefore 
the transfer function should be rewritten as s0.5/s and ORA should be applied to semi-derivative s0.5 only. One 
should decide the frequency range of interest, as well as the desired accuracy. This will, in turn, determine the 
order of the approximation, as well as the actual values of the coefficients. Suppose that the obtained 
continuous-time rational approximation to the semi-integrator is 

2 1 2 3
1 0 1 0

ORA 2 1 2
1 0 1 0

( )
( ) 1

s b s b s b s b s
H s K K

s s a s a a s a s

  

 

   
 

   
                                                            (25) 

Each s-n in (19) should be substituted by the approximation function fn(z) from Table 2. Finally, the discrete 
approximation of the semi-integrator is 
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It is interesting to note that flexibility of this discretization procedure depends on adaptability of the utilized 
continuous-time approximation scheme; the polynomials serve only to accurately translate the continuous-time 
design to the discrete-time domain. It has been demonstrated that application of discretization polynomials 
yields superior performance with respect to the following time-domain measure of discrepancy [42] 
 

  
21 ( 1)

ap
0

( ( ) ( ))
M k T

kT
k

J g t g kT dt
 



   ,                                                                           (27) 

 
where g(t) and gap(t) are, respectively, the exact and approximate step response of the system under 
consideration, T is the sampling time and M is length (in samples) of the time interval under consideration. This 
criterion is used in the sequel of the current work as a time-domain discrepancy measure. Fig. 9 shows 
comparatively frequency responses of the semi-integrator and the proposed indirect discrete approximation of 
order 5. The figure also shows frequency response of the 5-th order continuous-time approximation obtained 
after application of 4-th order ORA. The results presented in this figure should be compared to those presented 
in Fig. 4. 
 The proposed method is computationally inexpensive, since it requires only a direct substitution and is 
therefore optimization-free. Nevertheless, numerous numerical experiments conducted by the authors testify 
that its performance is excellent, even when measured in terms of optimality criterion (15). The proposed 
indirect method can, in fact, be considered as suboptimal solution to the direct optimization problem presented 
earlier, i.e. it can be used as an initial guess for the computationally more involved, yet more accurate direct 
method. 
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Fig. 9. Frequency domain comparison of the fifth order ORA incorporating corrected low frequency behavior 
(ORA for semi-derivative divided by s) and its discretization obtained by discretization polynomials. The 
corresponding values of  J criterion are: 31.03 10J 

  (ORA), 32.13 10J 
  (the proposed indirect). 

 
 
 

Chapter 2

32



 

 
 

2. 5 Examples 
Example 1. As the first example, let us calculate the semi-integral of the unit step-function h(t). The step 
response of the ideal semi-integrator is compared to step responses of its various approximations of the seventh 
order in Figs. 10 and 11. Slow, non-exponential growth of the ideal response is approximated well by both 
direct and indirect method presented in the present text. 
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Fig. 10. Comparison of the initial behavior of the step response of the semi-integrator to responses of its various 
approximations. The quality of the responses can be numerically compared by using time domain criterion (27): 

64.54 10I   (direct optimal), 51.19 10I    (indirect), 59.2 10I   (BTMS), 31.9 10I    (VCP-TCFE) 
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Fig. 11. Comparison of the step response of the semi-integrator to responses of its various approximations. 
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Example 2. Consider a system described by a fractional order transfer function 

 
0.5

1 0.5

1
( )

11

s
G s

ss



 


.                                                                                                    (28) 

The system is characterized by a rapid initial response followed by a slow steady state approach. The steady 
state gain of the system is one. The discrete approximation of the system will be constructed as 

 1

( )
( )

1 ( )

H z
G z

H z



 ,                                                                                                            (29) 

where H(z) is some discrete approximation of the semi-integrator. Frequency responses of the original system 
(28) and its approximations obtained by substitution of various discrete approximations of semi-integrator of 
the fifth order are compared in Fig. 12. The direct optimal method proposed in the current work produces 
optimal approximations to fractional differintegrators, not to arbitrary fractional order systems. Criterion (19) 
is, however, a good measure of discrepancy between any system and its approximation. Values of this criterion 
calculated for different approximations are given in the caption of Fig. 12. Step responses are compared in Figs. 
13 and 14. 
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Fig. 12. Comparison of the frequency responses of the fractional system in Example 2 to responses of its 

various discrete approximations. The corresponding values of optimality criterion (19) are: 46.47 10J 
   

(optimal), 43.15 10J 
   (indirect), 25.65 10J 

   (BTMS), 23.17 10J 
   (VCP-TCFE). 
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Fig. 13. Comparison of the step responses of the fractional system in Example 2 to responses of its various 
discrete approximations of the 5th order. 

Chapter 2

34



 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

am
pl

itu
de

time [s]

 

 

ideal

proposed optimal

proposed indirect
BTMS

VCP-TCFE

 
Fig. 14. Comparison of the initial behavior of the step response of the system in Example 2 to responses of  its 

various discrete approximations. The quality of the responses can be numerically compared by using time-
domain criterion (27): 41.33 10I   (direct optimal), 44.36 10I    (indirect), 12.1 10I   (BTMS), 1.04I   

(VCP-TCFE) 
 
Fig. 13 is particularly important because it clearly demonstrates the consequence of the different low-frequency 
behavior of different approximations. Contrary to other presented methods, both novel discretizations, direct 
optimal and indirect, preserve the steady state behavior of the original system. In fact, any rational 
approximation of the semi-integrator with a bounded gain at zero frequency will fail to preserve steady state 
behavior of the target system. It is interesting to note that it is possible to fix the low-frequency behavior of the 
approximations proposed by other authors. In particular, one would obtain the approximation to a fractional 
integrator s-r by approximating s1-r and then multiplying the resulting approximation by the transfer function of 
the discrete integrator (Tustin’s approximation, for example). However, the obtained approximations would 
still, in general, fail in closely replicating the fractional order dynamics of the target system in the wider range 
of frequencies. This is illustrated in Fig. 15 where the 5th order approximations proposed in the current work 
are compared with the corresponding “corrected” approximations proposed by other authors. 
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Fig. 15. Comparison of the step response of the fractional system of Example 2 with the step responses of its 
various approximations. The figure illustrates performance of the approximations proposed by some  other 

authors that incorporate corrected low-frequency behavior. Compare with Fig. 13. 
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Example 3. Let us calculate semi-integral of the causal cosine function 
 

  ( ) cos( ) ( )c t t h t                                                                                                          (30) 
 

or, in other words, let us calculate the response of the semi-integrator of the cosine function. Approximations of 
the seventh order were used. The same example was addressed in [35]. The results presented in Fig. 16 are well 
expected, since they could be deduced by careful examination of the frequency responses presented in Fig 7. 
 

0 5 10 15 20 25 30 35 40
-1.5

-1

-0.5

0

0.5

1

1.5

 

 
ideal

proposed optimal

proposed indirect
BTMS

VCP-TCFE

 
Fig. 16. Comparison of the responses of the semi-integrator and its various approximations to the causal cosine 
function. The quality of the responses can be numerically compared by using time domain criterion (27): 

59.97 10I   (direct optimal), 49.22 10I    (indirect), 35.7 10I   (BTMS), 23.6 10I    (VCP-TCFE). 
 
Example 4. Consider a fractional oscillator 
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The system will be approximated by a rational discrete transfer function 
 

 T
2

T

( )
( )

1 2 ( ) ( )

H z
G z

H z H z


 
 ,                                                                                        (32) 

with HT being the Tustin discrete integration operator  

 T

1
( )

2 1

T z
H z

z





.                                                                                                     (33) 

As before, H is some discrete approximation of the semi-integrator. This system is extremely difficult to 
approximate. A shorter sampling time T=2ms is therefore selected. Both optimal and indirect approximations 
were constructed over a narrower frequency range (0.05, 20). The comparison of the frequency response of 
the original system (31) and various approximations (32) with different selections of H is presented in Fig. 17. 
It is clearly noticeable from the given figure that, contrary to approximations reported by Barbosa et al [35] and 
Vinagre et al. [30], distinct frequency domain behavior of the oscillator was correctly replicated by the 
approximations presented in this text. 
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Fig. 15. Comparison of the frequency response of the fractional oscillator (31) to responses of  its various 
discrete approximations of type (32). The corresponding values of criterion (19) are: 45.72 10J 

   (optimal), 
31.76 10J 
   (indirect), 15.23 10J 

   (BTMS), 11.27 10J 
   (VCP-TCFE). 

 
Step response of the original system was compared to the step responses of various approximations in Fig. 18. 
Application of the approximation presented in [35] (BTMS) results in a highly unstable system. 
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Fig. 16. Comparison of the step response of the fractional oscillator (31) to step responses of its various discrete 
approximations of type (32). 
 

Due to locations of the poles of system (31), one must be extra careful when performing substitutions of 
various semi-integrator approximations in (32). Small numerical errors may very well flip the poles of the 
resulting approximation to the right-hand side of the complex plane, leading to unstable behavior. 
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2. 6 Conclusions 
Two novel methods for discretization of fractional differintegrators have been presented: direct optimal and 
indirect. Both methods produce approximations of fractional differintegrators, which are then used to create 
approximations to more complex fractional order systems. The methods are highly flexible and can be used for 
construction of both general purpose and application-specific, specialized approximations. Special care has 
been taken to preserving steady state behavior of the approximated systems. In particular, for a fractional 
integrator of order 0all proposed discrete rational approximations have a pole at 1, thus ensuring infinite 
static gain.  

The effectiveness of the direct optimal approximation originates from the flexibility of the optimality 
criterion (19). Proper selection of the approximation order, parameter , the relevant frequency range () and 
weigh factors i can result in approximations having desired properties and tradeoffs. Choice of suitable, robust 
optimizer is not trivial. Utilization of the PSO procedure has resulted in good performance at the cost of 
increased computational load. Flexibility of the indirect discretization method is due to the flexibility of the 
ORA itself, as indeed it offers the possibility of using any desirable rational continuous-time approximation. 
Utilization of discretization polynomials ensures that the desired features of continuous-time approximation are 
properly translated into discrete domain.  

The examples presented in Section 5 clearly demonstrate the effectiveness of the proposed methods. Note in 
particular the values of the frequency-domain (19) and time-domain (27) discrepancy measures of different 
approximations. In the current text the primary fractional order system under consideration was the semi-
integrator. It is clear, however, that the proposed procedures are fully applicable to fractional differintegrators 
of arbitrary order. 
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Abstract:- In this study, some basic results of the stability criteria of fractional order systems with time-delay as 
well as free-delay are presented. Particularly, they are obtained and presented sufficient conditions for finite-
time stability for (non)linear (non)homogeneous as well as perturbed fractional order time-delay systems. 
Several stability criteria for this class of fractional order systems are proposed using a recently suggested 
generalized Gronwall inequality as well as “classical” Bellman-Gronwall inequality. Some conclusions for 
stability are similar to those of classical integer-order differential equations. Lastly, numerical examples are 
given to illustrate the validity of the proposed procedure. 
 
Key-Words:  stability, fractional calculus, time-delay, fractional order system, finite-time stability 
 

3. 1 Introduction 
The question of stability is of main interest in control theory. In addition, the problem of investigation of time- 
delay systems has been exploited over many years. Delay is very often encountered in different technical 
systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, 
etc.,[1]. Delays are inherent in many physical and engineering systems. In particular, pure delays are often used 
to ideally represent the effects of transmission, transportation, and inertial phenomena. This is because these 
systems have only limited time to receive information and react accordingly. Such a system cannot be 
described by purely differential equations, but has to be treated with differential difference equations or the so 
called differential equations with difference variables. Delay differential equations (DDEs) constitute basic 
mathematical models for real phenomena, for instance, in engineering, mechanics, and economics, [2]. The 
basic theory concerning the stability of systems described by equations of this type were developed by 
Pontryagin(1942), Chebotarev(1940) and Myshkis (1949). Later, Krasovskii extended the Lyapunov’s theory to 
time-delay systems in 1956 as well as Razumikhin who proposed a method to avoid functional in Lyapunov 
stability analysis; for a more comprehensive historic overview, see [3]. Also, important works have been 
written by Bellman and Cooke in 1963, [4]. The presence of time-delays in a feedback control system leads to a 
closed-loop characteristic equation, which involves the exponential type transcendental terms. The exponential 
transcendentality brings infinitely many isolated roots, and hence it makes the stability analysis of time-delay 
systems a challenging task. It is well recognized that there is no simple and universally applicable practical 
algebraic criterion, like the Routh–Hurwitz criterion for stability of delay-free systems, for assessing the 
stability of linear time-invariant time delayed (LTI-TD) systems. On the other side, the existence of pure time- 
delay, regardless of its presence in the control or/and state, may cause undesirable system transient response, or 
generally, even an instability. Numerous reports have been published on this matter, with particular emphasis 
on the application of Lyapunov`s second method, or on using the idea of matrix measure,[5-8]. The analysis of 
time-delay systems can be classified such that the stability or stabilization criteria involve the delay element or 
not. In other words, delay independent criteria guarantee global asymptotic stability for any time-delay that 
may change from zero to infinity. As there is no upper limit to time-delay, often delay independent results can 
be regarded as conservative in practice, where unbounded time-delays are not so realistic. In practice, one is not 
only interested in system stability (e.g. in the Lyapunov sense), but also in bounds of system trajectories. A 
system could be stable but still completely useless because it possesses undesirable transient performances. 
Thus, it may be useful to consider the stability of such systems with respect to certain subsets of state-space that 
are defined a priori in a given problem. Besides, it is of particular significance to concern the behavior of 
dynamical systems only over a finite time interval. These boundedness properties of system responses, i.e. the 
solution of system models, are very important from the engineering point of view. Realizing this fact, numerous 
definitions of the so-called technical and practical stability were introduced. Roughly speaking, these 
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definitions are essentially based on the predefined boundaries for the perturbation of initial conditions and 
allowable perturbation of system response. Thus, the analysis of these particular boundedness properties of 
solutions is an important step, which precedes the design of control signals, when finite-time or practical 
stability control is concerned. Motivated by “brief discussion” on practical stability in the monograph of 
LaSalle and Lefschet,[9] and  Weiss and Infante,[10] have introduced various notations of stability over finite- 
time interval for continuous-time systems and constant set trajectory bounds. A more general type of stability 
(“practical stability with settling time”, practical exponential stability, etc.) which includes many previous 
definitions of finite-stability was introduced and considered by Grujić,[11,12]. The concept of finite-time 
stability, called “final stability”, was introduced by Lashirer and Story, [13] and further development of these 
results was due to Lam and Weiss,[14]. Recently, finite-time control/stabilization, and methods for stability 
evaluation of linear systems on finite-time horizont are proposed by Amato et al., [15,16], respectively. Also, 
the analysis of linear time-delay systems in the context of finite and practical stability was introduced and 
considered in [17-19] as well as finite-time stability and stabilization [20]. 
 Recently,  there have been some advances in control theory of fractional (non-integer order) dynamical 
systems for stability questions such as robust stability, bounded input–bounded output stability, internal 
stability, finite-time stability, practical stability, root-locus, robust controllability, robust observability, etc. For 
example, regarding linear fractional differential systems of finite dimensions in state-space form, both internal 
and external stabilities are investigated by Matignon,[21]. Some properties and (robust) stability results for 
linear, continuous, (uncertain) fractional order state-space systems are presented and discussed,[21,22]. The 
frequency investigation method and utilization of the Nyquist frequency characteristics based on argument 
principle were described in paper [23]. However, we cannot directly use the algebraic tools as, for example, 
Routh-Hurwitz criteria for the fractional-order system, because we do not have a characteristic polynomial but 
pseudo-polynomial with rational power. It is possible in some special cases only,[24]. In paper [25], an 
effective numerical algorithm is proposed, based on Rouche’s theorem for determining the location of poles, 
and zeros on the first Riemann sheet is presented. Buslowicz [26] considered the stability problem of LTI 
continuous-time systems of fractional commensurate order, where the new frequency domain methods based on 
the Mikhailov stability criterion for stability analysis are presented.  

An analytical approach was suggested by Chen and Moore,[27], who considered the analytical stability 
bound of a class of fractional-delay using Lambert function W. Further, the analysis and stabilization of 
fractional (exponential) delay systems of retarded/neutral type are considered [28,29], as well as the BIBO 
stability [30]. Moreover, the analysis of robust BIBO-stability of LTI fractional order delay systems of retarded 
and neutral types, in the presence of real parametric uncertainties, are presented in [31].  

Further, Hwang and Cheng, [32] proposed a numerical algorithm which uses methods that are based on the 
Cauchy integral theorem for testing the BIBO stability of a wide class of fractional-order delay systems with 
irrational and/or transcendental characteristic equations. Moreover, in paper [33], they presented Linear Matrix 
Inequality (LMI) stability conditions for fractional-order systems, where one may use the advantage of the LMI 
methods in control theory due to their connection with the Lyapunov method. Recently, in paper [34], it is 
studied the stability of fractional-order nonlinear time-delay systems for Caputo’s derivative and they extended 
the Lyapunov- Krasovskii theorem for the fractional nonlinear systems. Also, the Razumikhin theorem for the 
fractional nonlinear time-delay systems for Riemann-Liouville and Caputo derivatives was extended in [35] 
because the Razumikhin stability theory is more widely used to prove the stability of time- delay systems, since 
the construction of Lyapunov-Krasovskii functional is more difficult than that of the Lyapunov-Razumikhin 
function. Also, in [36] the authors proposed and proved the Mittag-Leffler stability theorem in the presence of 
both the Riemann-Liouville or the Caputo fractional derivatives and delay. The obtained theorems contain 
particular cases of the fractional calculus versions as well as the time-delay ones. 
 While Lyapunov methods have been developed for stability analysis and control law synthesis of integer 
linear systems and have been extended to stability of fractional systems, only few studies deal with non-
Lyapunov stability of fractional systems. Recently, for the first time, finite-time stability analysis of fractional 
time delay systems is presented and reported on papers [37-39]. Further, the papers [40- 42] extends some basic 
results from the area of finite-time and practical stability to nonlinear, perturbed, fractional order time-delay 
systems, where a robust stability test procedure is proposed in the presence of real parametric uncertainties. 

Here, a Bellman-Gronwall`s approach is proposed, using “classical” Bellman-Gronwall inequality (see 
Appendix C.1) as well as a recently obtained generalized Gronwall inequality, reported in [43]. The problem of 
sufficient conditions that enable system trajectories to stay within the a priori given sets for the particular class 
of (non)linear (non)autonomous fractional order time-delay systems has been examined.  
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3. 2  Preliminaries On Integer Time-Delay Systems 
A linear, multivariable time-delay system can be represented by differential equation: 

 0 1
( )

( ) ( )
dx t

A x t A x t
dt

                                                                                                    (1) 

and with associated function of initial state: 

 ( ) ( ), 0,xx t t t                                                                                             (2) 

Equation (1) is referred to as homogenous state equation. Also, a more general linear, multivariable time-delay 
system can be represented by the following differential equation: 

 0 1 0 1
( )

( ) ( ) ( ) ( ),
dx t

A x t A x t B u t B u t
dt

                                                                       (3) 

and with associated function of initial state and control: 

( ) ( ), 0,

( ) ( ),
x

u

x t t t

u t t

 


   


                                                                                               (4) 

Equation (3) is referred to as nonhomogenous or the unforced state equation, ( )x t is state vector, ( )u t  control 

vector, 0 1 0, ,A A B  and 1B are constant system matrices of appropriate dimensions, and   is pure time delay, 

 =const. ( >0). Moreover, here, it is considered a class of non-linear system with time delay described by the 
state-space equation: 

          0 1 0 1
1 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

n m

i j
i j

d t
A t A t B t B t f t g t

dt
  

 

         x
x x u u x x            (5) 

with the initial functions (4) of the system. Vector functions , , 1, , 1,i jf g i n j m   present nonlinear parameter 

perturbations of the system in respect to ( )tx  and ( )t x  respectively. Also, the next assumption is 
introduced that: 




( , 1, 0,

( , 1, , 0, )

i i

j j

f (t)) c (t) i n t

g (t - )) c (t - ) j m t 

   

   

x x

x x
                                                                (6) 

where  ,i jc c R  are known real positive numbers. Moreover, a linear multivariable time-varying delay 

system can be represented by differential equation 

 
0 1 0

( )
( ) ( ( )) ( ),

dx t
A x t A x t - t B u t

dt
                                                                                    (7) 

and with associated function of initial state  

 ( ) ( ), 0.x Mx t t t                                                                                            (8) 

where  t is an unknown time–varying parameter which satisfies  

 
   0 , , , ,M o ot t J J t t T J R                                                                           (9) 

Moreover, here, it is considered a class of perturbed non-linear system with time delay described by the state 
space equation 

     0 0 1 1 0 0
( )

( ) ( ( )) ( ) ( ), ( ( )) ,
dx t

A A x t A A x t t B u t f x t x t t
dt

                               (10) 

with the given initial functions of the system and vector function 0f .Vector function 0f  presents nonlinear 

parameter perturbations of the system in respect to ( )x t  and ( ( ))x t t , respectively, and matrices 0 1,A A   
present perturbations of the system, too. Also, it is assumed that the next assumption is true. 

0 0 1( ( ), ( ( ))) ( ) ( ( )) , 0, ,f x t x t - t c x t c x t - t t     
                                                

 (11) 
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where 0 1,c c R  are known real positive numbers. Dynamical behavior of the system (1),(3) or (5) with initial 

functions (2),or (4) is defined over time interval  J t t To o , ,  where quantity T may be either a positive 
real number or symbol + , so finite-time stability and practical stability can be treated simultaneously. It is 
obvious that J R . Time invariant sets, used as bounds of system trajectories, are assumed to be open, 
connected and bounded. Let index ""   stand for the set of all allowable states of the system and index ""   for 

the set of all initial states of the system, such that  the set   SS . In general, one can write: 

              2
: ( ) , ,

Q
S t      x x ,                                                                                 (12) 

where Q will be assumed to be symmetric, positive definite, real matrix. 
u

S  denotes a set of all allowable 

control actions. Let  .x  be any vector norm (e.g., . 1,2,  ) and (.)  the matrix norm induced by this vector. 

Matrix measure has been widely used in the literature when dealing with stability of time-delay systems. The 
matrix measure   for any matrix n nA C   is defined as follows: 

   
0

1
lim

I A
A








 
                                                                                    (13)  

The matrix measure defined in (8) can be subdefined in three different ways, depending on the norm utilized in 
its definitions,[44]. 

             1
1

max Re
n

kk ik
k

i
i k

A a a



 
 

  
  
 

 ,                                                                           (14)  

                      2
1

max
2 i

i
A A A    ,   if   A  is real matrix, then      2 maxRe ( )A A        (15)  

and                                
1

max Re
n

ii ki
i

k
i k

A a a



 
 

  
  
 

                                      (16)  

 

Expression (4) can be written in its general form as:  

 
 

( ) ( ), 0, ( ) ,0

( ) ( ), 0, ( ) ,0

o x x

o u u

t C

t C

       

       

      

      

x

u
,                                                        (17) 

where ot  is the initial time of observation of the system (1) and  ,0C -τ  is a Banach space of continuous 

functions over a time interval of  length τ , mapping the interval  t,t   into nR  with the norm defined in the 
following manner:  

                   
0

max ( )
C

 
  

  
 ,                                                                                                    (18) 

It is assumed that the usual smoothness condition is present, so there is no difficulty with questions of 
existence, uniqueness, and continuity of solutions with respect to initial data. 
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3.2.1 Some previous results related to integer time-delay systems 
The existing methods developed so far for stability check are mainly for integer-order systems.  
 
Definition 1. The system given by (3) with   0,t - t  u , satisfying the initial condition (4) is finite stable 

w.r.t   0( ), , , , , 0 ,ut J A       if  and only if: 

  , ,0x S t                                                                                                               (19) 

and 
   ,

u
t S t J  u                                                                                                            (20) 

imply:                                      
    0( ; , ) , 0,t t S t T  0x x                                                                                                (21)        

Illustration of the preceding definition is pictured in Fig. 1.  
                     

 
                                            Fig.1  Finite-time stability concept illustration 

 
Definition 2. The system given by (3) satisfying the initial condition (4) is finite stable w.r.t 

  0, , , , , , 0 ,u J A        if  and only if: 

  , ,0x S t                                                                                                  (22) 

   
0
, ,0u S t                                                                                                  (23)               

and 
    ,

u
t S t J  u                                                                                                 (24) 

imply:     0( ; , , ( )) ,t t t S t J  0x x u                                                                                      (25)    
 
Theorem 1. The system given by (3), with the initial function (4) is finite-time stable w.r.t 

  0, , , , , , 0 ,u J A        if the following condition is satisfied,[43]: 

  2 0( )1 1
2 0( ) /A tA e                                                                                     (26) 

where: 

                  2 0 2 01
1 2 0 1 1 21 1A A ta A a e c e c                                                           (27) 

    2 0 1 1 1, 1c b b c b                                                                                      (28) 

                        1 1 1 1 1 0 0 1/ , / , , / , /u a A b B a b B a                                                       (29)  

Results that will be presented in the sequel enable one to check finite-time stability of the nonautonomous 
system to be considered (1),(3) or (5) and (2),(4) without finding the fundamental matrix or corresponding 
matrix measure.   
 
Definition 3. The system given by (3) satisfying the initial condition (4) is finite stable w.r.t 

 0, , , , , , ,u ot J        if  and only if: 

   0, ,x uC C
                                                                                               (30) 
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 ( ) ,ut t J  u                                                                                                        (31) 

 imply:                                      
    ( ) ,t t J  x                                                                                                      (32) 

Theorem 2. The nonautonomous system given by (3) satisfying the initial condition (5) is finite-time stable 
w.r.t.  0, , , , , , ,u ot J      , if the following condition is satisfied,[44]:   

                        max 0( ) * *
max 0 1 0 01 ( ) / , .

A t tA t t e t t t J                                                     (33)   

where  

                  * *
1 1 0 0 1 0 1 0 0 1/ , / , ,u ub b b                ,                                             (34) 

 

 

3. 3 Preliminaries on Stability of Fractional Order Systems Including Time-Delays 
In the field of fractional-order control systems, there are many challenging and unsolved problems related to 
stability theory such as robust stability, bounded input – bounded output stability, internal stability, root-locus, 
robust controllability, robust observability, etc. In engineering, the fractional order   is often less than 1, so we 
restrict  0,1   as usual. Even if 1  , we can translate the fractional systems into systems with the same 

fractional order which lies in  0,1  provided some suitable conditions are satisfied. Also, a fractional-order 

system can be described by a fractional differential equation of the form 

 
     

     

1 0

1 0

1 0

1 0

...

...

n n

m m

n n

m m

a D y t a D y t a D y t

b D u t b D u t b D u t

  

  









   

   
                                                   (35) 

where 0,tD D   denotes the Grunwald-Letnikov, the Riemann-Liouville or Caputo’s fractional derivative [47] 

The corresponding transfer function of incommensurate real orders has the following form: 

 
 
 

1 0

1 0

1 0

1 0

...
( )

...

k
m m

n n k

m m

n n

P sb s b s b s
G s

a s a s a s Q s

  

   









  
 

  
                                                          (36) 

where  , 0,1,2,..., , ( 0,1,2,..., )k ka k n b k m   are constants,  , 0,1,2,..., , ( 0,1,2,..., )k kk n k m     are 

arbitrary real or rational numbers and without  loss of  generality they can be arranged as 1 0....n n      

and 1 0....m m     . The fractional-order linear time-invariant (LTI) system can also be represented by 
the following state-space model,[22] 

 0, ( ) ( ) ( )

( ) ( )

q
tD x t Ax t Bu t

y t Cx t

 


                                                                                                (37) 

where ,n rx R u R  and py R  are the state, input and output vectors of the system and 

, ,n n n r p nA R B R C R     , and  1 2, ,...,
T

nq q q q  are fractional orders. If 1 2 ... nq q q     , the system 

(37)  is called a commensurate-order system, otherwise it is an  incommensurate-order system. 
To demonstrate the advantage of fractional calculus in characterizing the system behavior, the stability 
properties, here, let us consider the following illustrative example, [52].  

Compare the following two systems with the initial condition (0)x  for 0 1  : 

 1 1
0,( ) , ( ) , 0 1.C t

d
x t t D x t t

dt
                                                                       (38) 
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The analytical solutions of the previous systems are (0)t x   and 
 

1( )
(0)

t
x

  
 

 


 
, respectively. One can 

conclude, the integer-order system is unstable for any  0,1  . However, the second given fractional dynamic 

system is stable as 0 1    , which implies that fractional-order system can have additional attractive 
feature over the integer-order  system. In 1996, Matignon [21] studied the following fractional differential 
system involving the Caputo derivative 

                          0, 0, (0) , 0,1C t
d x

D Ax t x x
dt




                                                                        (39) 

where   1 2, ,...,
T

nx x x x  with initial value  0 10 20 0, ,..., ,
T n n

nx x x x A R   .The stability of  equilibrium of 

the system (39) was first defined and established by Matignon as follows. 
 
Definition 4. The autonomous fractional order system (39) is said to be 

(a) stable if for any 0x , there exists 0   such that                                                               

                          x    for   0t                                                                                                        (40)   

    is asymptotically stable if    0tlim x t                                                                     (41) 

Also, Matignon [21] proposed the definition of the BIBO stability for the fractional differential system.  
 
Definition 5.  An  input/output linear fractional system (42) 

 0, (0)
d x

Ax Bu x x
dt
y Cx



   



                                                                                               (42) 

,n px R y R  is externally stable or bounded-input bounded-output (BIBO) if  

   , , ,m pu L R R y h u L R R         which is equivalent to:  1 , p mh L R R  . 

Also, in [49] the authors give two definitions of the stability for differential systems with the Caputo derivative 
and Riemann-Liouville derivative, respectively. Besides, the asymptotical stability of higher-dimensional linear 
fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were 
studied, where the asymptotical stability theorems were also derived. 

Definition 6. The zero solution of the following differential system with the α-th order Caputo derivative in 
which 0 < α < 1  

0,C tD X AX                                                                                                                      (43) 

is said to be: 
(i) Stable, if  0, 0,      when  0X  , the solution   X t  to (43)  with the initial condition 

          0X t X     satisfies  ( )X t   for any  0t  .                                                          (44) 

(ii) Asymptotically stable, if the zero solution to (43) is stable, and it is locally attractive, i.e., there exists a 0  

such that   0 0X   implies that 

lim ( ) 0
t

X t


                                                                                                                 (45) 

Definition 7.  The zero solution of the following differential system with the α-th order Riemann- Liouville 
derivative in which 0 < α < 1 

 0,RL tD X AX                                                                                                                   (46) 

is said to be: 
 (i) Stable, if  0, 0,      when  0X  , the solution   X t  to (46)  with the initial condition  

 1
0, 00RL t t

D X t X 


    satisfies   

( )X t   for any  0t  .                                                                                                   (47) 

Finite-Time Stability of Fractional Order Time-Delay Systems

49



 

 (ii) Asymptotically stable, if the zero solution to (46) is stable, and it is locally attractive, i.e., there exists a 0  

such that   0 0X   implies that  

lim ( ) 0
t

X t


                                                                                                                    (48) 

Next, one may study the stability of fractional differential systems in two spatial dimensions, and then study the 
fractional differential systems with higher dimensions. Now, it is studied the fractional differential system with 
the Caputo derivative, 

  * 0, , 0,1 , n n
tD X AX A R                                                                                        (49) 

where fractional derivative * 0, 0, 0,(..) (..) (..)t C t RL tD D or D   . They studied the fractional differential system 

with the Caputo derivative, as follows:  

  0, , 0,1 ,C n n
tD X AX A R                                                                                     (50) 

Theorem 3. If the real parts of all the eigenvalues of A are negative, then the zero solution to the system  (50) 
is asymptotically stable.  
Also, for fractional differential system with the Riemann-Liouville  derivative 

 0, , 0,1 ,RL n n
tD X AX A R                                                                                      (51) 

they stated the following theorem. 

Theorem 4. If the real parts of all the eigenvalues of  A are negative, then the zero solution to the system  (51) 
is asymptotically stable. 
A fractional-order linear time invariant system can be represented in the following pseudostate space form: 

 
( )

( ) ( )

( ) ( )

d x t
Ax t Bu t

dt
y t Cx t



  



                                                                                                   (52) 

where the notation /d dt   indicates the Caputo fractional derivative of fractional commensurate order  , 

,n mx R u R   and py R  are pseudo-state, input, and output vectors of the system, respectively, and 

, ,n n n m p nA R B R C R     . It is worth mentioning that the state-space form Eq. (52) is a pseudo-

representation because the knowledge of vector x  at time 0t t  and input vector  u t  for 0t t  are not entirely 

sufficient to know the behavior of the system (52) for 0t t . A fractional-order model is in fact infinite 
dimensional, therefore its true state vector should be also infinite dimensional.  
 
Theorem 5[21]. The following autonomous system, 

     0 0
( )

( ), , 0 1
d x t

Ax t x t x
dt



                                                                              (53) 

nx R , and A as an n n matrix, is asymptotically stable if and only if    / 2arg    is satisfied for all 

eigenvalues   of matrix A. In this case, each component of the states decays toward 0, such as  t  . Also, this 

system is stable if and only if    / 2arg    is satisfied for all eigenvalues    of matrix A with those critical 

eigenvalues satisfying   / 2arg    that have geometric multiplicity of one. 

Demonstration of this theorem is based on the computation of state vector of the system 

  , 0, 0.x t Nt t    response to non-zero initial conditions. However, this result remains valid whatever 

the definition used, given that for a linear system without delay an autonomous system with non-zero initial 
conditions can be transformed into a non-autonomous system with null initial condition. Also, the stable and 
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unstable regions for 10  are shown in Fig. 2 and they denote the stable and unstable regions for 10   

by  
C  and 

C , respectively.  

 
                 Fig. 2 Stability region of  fractional order linear time invariant  system with order 0 1   
 
For a minimal realization of (52), Matignon has also demonstrated the following theorem,[48]. 
Theorem 6.  In [48], consider a system given by the following linear pseudostate space form with inner 
dimension n: 

      0
( )

( ) ( ), (0)

( ) ( )

d x t
Ax t Bu t x x

dt
y t Cx t



   



                                                                              (54) 

where 0 1  . Also, assume that the triplet (A,B,C) is minimal. The system (54) is bounded-input bounded-
output (BIBO) stable if and only if  arg / 2   is satisfied for all eigenvalues   of matrix A. When the 

system (88) is externally stable, each component of its impulse response behaves like 1t    at infinity. 
Exponential stability thus cannot be used to characterize asymptotic stability of fractional systems. A new 
definition is introduced. 

Definition 8. t   stability     

Trajectory x(t) = 0 of the system     / ,d x t dt f t x t    (unforced system) is t   asymptotically stable if the 

uniform asymptotic stability condition is met and if there is a positive real   such that: 

    0 , ox t c Q x t     such that   0 ,t t x t Qt                                                  (55) 

t   stability will thus be used to refer to the asymptotic stability of fractional systems. As the components of 

the state  x t  slowly decay towards 0 following t  , fractional systems are sometimes called long memory 

systems.  
 
 
3.3.1 A review on stability of fractional order time delay system  
Despite intensive researches, the stability of fractional order including time-delay systems remains an open 
problem. As for linear time invariant integer order systems, it is now well-known that stability of a linear 
fractional order system depends on the location of the system poles in the complex plane. Applying Matignon's 
stability theorem [21] one can check the system stability through the location in the complex plane of the 
dynamic matrix eigenvalues of the state space like system representation. Also, in paper [33], the authors 
presented Linear Matrix Inequality (LMI) stability conditions for fractional order systems, where one can use 
the advantage of the LMI methods in control theory due to their connection with the Lyapunov method. But, in 
the case of fractional order time-delay system the characteristic function of a fractional-delay system involves 
fractional-order powers and exponential elements. As we know, due to the presence of the exponential function 

se  , this equation has an infinite number of roots, which makes the analytical stability analysis of a time-delay 
system extremely difficult. In the field of infinite-dimensional fractional-delay systems most studies are 

Finite-Time Stability of Fractional Order Time-Delay Systems

51



 

concerned with the stability of a class of distributed systems, whose transfer functions involve s  and/or 
se ,[53]. Many examples of fractional differential systems with delay can be found in the literature. Simple 

examples such as ( ) exp( ) / , 0G s a s s a    arise in the theory of transmission lines [54], or one can find in 
[55] fractional delay  systems with transfer function linked to the heat equation, which leads to transfer 
functions ( )G s such as  

 cosh( )
( ) , 0 1

sinh( )

x s
G s x

s s
     or  

2

2
( )

(1 )

a s

a s

e
G s

b e







                                               (56) 

In the literature few theorems are available for stability testing of fractional-delay systems.For example, Hotzel 
[54] presented the stability conditions for fractional-delay systems with the characteristic equation 

    0sas b cs d e      . Chen and Moore [27] analyzed the stability of a class of fractional-delay systems, 

whose characteristic function can be represented as the product of factors of the form    0csas b e d    where 

the parameters , , ,a b c d , and r are all real numbers. They considered the following delayed fractional equation 

 
( )

( )
q

pq

d y t
K y t

dt
                                                                                                        (57) 

where q and Kp are real numbers and  0 < q < 1, time-delay τ is a positive constant and  all the initial values are 
zeros. The stability condition is that for all possible q, r and Kp 

  1/
0

q
p

q
W K

r




   
 

                                                                                                         (58) 

where in the inequality,W(.) denotes the Lambert function such that ( )( ) W xW x e x . However, such a bound 
remains analytic and is difficult to use in practice. In paper [56], the application of the Lambert W function to 
the stability analysis of time-delay systems is re-examined through actually constructing the root distributions 
of the derived transcendental characteristic equation’s (TCE) of some chosen orders. It is found that the 
rightmost root of the original TCE is not necessarily a principal branch of the Lambert W function solution, and 
that a derived TCE obtained by taking the n-th power of the original TCE introduces superfluous roots to the 
system. Further, Matignon's theorem has been used in [57] to investigate fractional differential systems with 
multiple delays stability.They discovered that if all roots of the characteristic equation have negative parts, then 
the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the 
equilibrium exists that is almost the same as that of classical differential equations. Namely, the following n-
dimensional linear fractional differential system with multiple time delays: 

 

1

1

2

2

1
11 1 11 12 2 12 1 1

2
21 1 21 22 2 22 2 2

1 1 1 2 2 2

( )
( ) ( ) ... ( ),

( )
( ) ( ) ... ( ),

..............

( )
( ) ( ) ... ( ),

n

n

q

n n nq

q

n n nq

q
n

n n n n nn n nnq

d x t
a x t a x t a x t

d t

d x t
a x t a x t a x t

d t

d x t
a x t a x t a x t

d t

  

  

  

      

      

      

                                       (59) 

where iq  is real and lies in (0,1), the initial values   ( )i ix t t  are given for− , maxmax 0i j ij t      and 

1,2,...,i n , 
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  

11 11 12

221 2 22

1 2

11 12 1

21 22 2

1 2

...

...

...

n

n

n n n nn

sq s s
n

ss q s
n

s s q s
n n nn

s a e a e a e

a e s a e a e
s

a e a e s a e

 

 

  

 

 

  

   
 

      
     

   
                                                     (60) 

where  s  denotes a characteristic matrix of the system (59) and   det s  a characteristic polynomial of 

(60). The distribution of   det s ’s eigenvalues totally determines the stability of the system (59).  

 

Theorem 7. If all the roots of the characteristic equation    0det s   have negative real parts, then the zero 

solution of the system (59) is Lyapunov globally asymptotically stable. If n = 1, then (60) is reduced to the 
system studied in [57]. 

For forced fractional-delay systems, it is usually required that BIBO (bounded-input bounded-output) stability 
holds, or equivalently, the characteristic function has roots with negative real parts only, while for unforced 
autonomous fractional delay systems, the stability usually means asymptotical stability in the sense of 
Lyapunov, namely, the characteristic function has roots with negative real parts only. Bonnet and Partington 
[28,29] analyzed the BIBO stability of fractional exponential delay systems which  are of retarded or neutral 
type. Stability conditions can be expressed in terms of the location of the poles of the system. Also, they have 
handled the robust stabilization of fractional exponential delay systems of retarded type. However, all these 
contributions do not provide universally acceptable practical effective algebraic criteria or algorithms for 
testing the stability of a given general fractional delay system. Although the stability of the given general 
characteristic equation can be checked with the Nyquist criterion or the Mikhailov criterion, it becomes 
sufficiently difficult when a computer is used since one should find an angle of turn of the frequency response 
plot for an infinite variation of the frequency  . A visual conclusion on stability with respect to the constructed 
part of the plot is not practically reliable, since, along with an infinite spiral, the delay generates loops whose 
number is infinite. As evidenced from the literature, the lack of universally acceptable algebraic algorithms for 
testing the stability of the characteristic equation has hindered the advance of control system design for 
fractional delay systems. This is particularly true in the case of designing fixed-structure fractional order 

controller, e.g., PI D  .  
On the other side, Hwang and Cheng [58] proposed a numerical algorithm that uses methods based on the 

Cauchy integral theorem and suggested the modified complex integral, where the stability of a given fractional-
delay system can be achieved by evaluating the proposed integral and comparing its value with zero. In paper 
[25], an effective numerical algorithm for determining the location of poles and zeros on the first Riemann 
sheet is presented. The proposed method is based on Rouche’s theorem and can be applied to all multi-valued 
transfer functions defined on a Riemann surface with the finite number of Riemann sheets, where the origin is a 
branch point. Recently, in paper [34] the authors have studied the stability of fractional order nonlinear time-
delay systems for Caputo’s derivative and they extended the Lyapunov- Krasovskii theorem for the fractional 
nonlinear systems. Also, the Razumikhin theorem for the fractional nonlinear time-delay systems for Riemann-
Liouville and Caputo derivatives was extended in [35] because the Razumikhin stability theory is more widely 
used to prove the stability of time-delay systems, since the construction of Lyapunov-Krasovskii functional is 
more difficult than that of the Lyapunov-Razumikhin function. Further, in [36] the authors proposed and 
proved the Mittag-Leffler stability theorem in the presence of both the Riemann-Liouville or the Caputo 
fractional derivatives and delay. The obtained theorems contain particular cases of the fractional calculus 
versions as well as the time-delay ones. 
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3. 4 Finite-Time Stability of Fractional Order Time-Delay Systems  
All classical stability concepts, e.g., Lyapunov stability, asymptotic stability, bounded-input-bounded-output 
(BIBO) stability, deal with systems operating over an infinite interval of time. Finite-time stability is a concept 
that was first introduced in the 1950s and it deals with systems whose operation is limited to a fixed finite 
interval of time and requires prescribed bounds on system variables. Here, it is important to point out that finite 
time stability and Lyapunov asymptotic stability are independent concepts, i.e  a system can be finite-time 
stable but not Lyapunov asymptotic  stable, and vice versa. 
Moreover, the boundedness properties of the system responses are very important from the engineering point of 
view. That is to say, enable system trajectories to stay within a priori given sets for the fractional order time-
delay systems in state-space form, i.e. system stability from the non-Lyapunov point of view is considered.  

From this fact and our best knowledge, we firstly introduced and defined finite-time stability for fractional 
order time-delay systems, [37-42]. The paper extends some basic results from the area of finite time and 
practical stability to (non)linear, continuous, fractional order time-delay systems given in the state-space form. 
Sufficient conditions of this kind of stability, for particular classes of fractional time-delay systems are 
derived.We also need the following definitions to analyze the case of fractional order systems with time-delay 
from non-Lyapunov point of view. First, we introduce [37] the fractional order homogenous system with time-
delay in state-space   

* , 0 1
( )

( ) ( ) ( ), 0 1,to t
d t

D x t A t A t
dt




       
x

x x                                                    (61) 

with the associated function of initial state:  

  ( ) ( ) ,0 , 0.xt t C t       x                                                                               (62) 

Also, for the case of multiple time delays the state of  fractional order systems can be presented as:  

  * , 1 2 3
1

( ) ( ) ( ), 0 ... ...
n

to t o i i i n
i

D t A t A t      


           x x x ,              (63) 

and with the associated function of initial state: 

 0),()(  ttt xx .                                                                                          (64) 

Here, * , (.)to tD  denotes either the Caputo fractional derivative , (.)C to tD or the Riemann-Liouville fractional 

derivative , (.)RL to tD . Also, Lorenzo and Hartley [59] considered variable prehistories of   x t  in 0t  , and its 

effects were taken into account in the fractional derivative in terms of the initialization function. Moreover, 
using the short memory principle [47] and taking into account the initial function (62) one can obtain correct 
initial function, where it is assumed that there is no difficulty with questions of continuity of solutions with 
respect to initial data (function). 
 
Definition 9.[37] The system given by (61), satisfying the initial condition (62) is finite stable w.r.t 
 , , , , ,ot J       if and only if: 

 ,x C
                                                                                                                      (65)     

implies:                         ( ) , ,t t J  x                                                                                                  (66)  

Definition 10.[37] The system given by (63),satisfying the initial condition (64) is finite stable w.r.t 
 , , , , ,ot J       if and only if: 

  ,x C
     , ,0t J J R      ,                                                                       (67)  

implies:                    ( ) , ,t t J  x                                             (68)  
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Theorem 8.(A)[37] The autonomous system given by (61) satisfying the initial condition (62) is finite-time 
stable w.r.t. , , , , , ,ot J     , if the following condition is satisfied:      

 
 
 

 
max 0( )

1max 01 / , .
1

A t tA t t
e t J




 



 

 
     

   
                                                           (69)   

where (.)max  is  the largest singular value of matrix (.), namely: 

      max max 0 max 1
A A A    ,                                                                                         (70) 

and  .  is the Euler's gamma function.  

B) The autonomous system given by (63) satisfying the initial condition (64) is finite-time stable 
w.r.t. , , , , , ,ot J     , if the following condition is satisfied:                  

  
 

 
max 0( )

1max 01 / , .
1

A t tA t t
e t J




 


 
 

 
     

   
                                                            (71) 

where  A
max (.) Ai i

i

     of matrices ,iA i = 0,1,2,...,n   where σmax(.)is the largest singular value of matrix 

niAi ,...,2,1,0,  .        
The above stability results for linear time-delay fractional differential systems are derived by applying Bellman 
- Gronwall’s inequality. In that way, one can check system stability over finite-time interval. 

Proof: In accordance with the property of the fractional order 0 1  , one can obtain the solution in the form 
of the equivalent Volterra integral equation: 

        
0

1
0 0 1

1
( ) ( ) ( )

t

t

x t x t t s A x s A x s ds 


    
                                                    (72) 

Applying the norm (.)  on the equation (72) and using the appropriate property of the norm, it follows:  

        
0

1
0 0 1

1
( ) ( ) ( )

t

t

x t x t t s A x s A x s ds 


    
                                           (73) 

Also, applying the norm (.)  on the equation (61), one can obtain:  

  0 1 0 1
( )

( ) ( ) ( ) ( )
d x t

A x t A x t A x t A x t
dt



        ,                                           (74) 

where A  denotes the induced norm of a matrix A, as well as, 

    sup ( )
t t t

x t x t







  
  ,                                                                                              (75) 

Applying this inequality, the equation (74) can be presented in the following manner: 

   0 1 max 0 max 1 max

0

( ) ( ) ( ) sup ( ) sup ( ) ,
t t t t t t

A x t A x t A x t A x t x t

t t
 

   


 

 

     
    

 
(76) 

 0 1 max 0( ) ( ) sup ( ) ,x C
t t t

A x t A x t x t t t


   




  

 
     

 
                                         (77)     

After combining (77) with (73), one yields: 

Finite-Time Stability of Fractional Order Time-Delay Systems

55



 

      
0

1
0 max

1
( ) sup ( )

t
A

x C
t t tt

x t x t t s x t ds



 

 

 

  

 
                                      (78) 

or,                        

              
     

0

1max 0 max1 sup ( )
1

tA A

x C
t t tt

t t
x t t s x t ds






 


  

 

  

 
    

    
 ,                         (79) 

One can introduce nondecreasing function  t  such as: 

    
 

max 01
1

A

x C

t t
t


 



   
   

,                                                                                    (80) 

and one can apply the known Bellman-Gronwall lemma, [60] where it is easy to show that:  

       
 

 
 

1max max 0

0 1sup ( )

tA A

t

t tt s ds

t t t
x t x t t e t e


 

 


 






  

  
  


,                                      (81)  

According to the equation (80) and (65), one yields:  

    

 
 

max 0

1max 0( )
1

1

A t t
A t t

x t e










  

     
,                                                                          (82) 

Lastly, using the basic condition of the main theorem (part A), the equation (81), it follows: 

                      ( ) , .x t t J                                                                                                                 (83) 

which had to be proved. 
 
Proof B). The proof immediately follows from part A of the main theorem by applying the same procedure, 
taking into account (67) and (71). 
 
Remark 1. If 1  , one can obtain the same conditions related to integer order time-delay systems  

                0 1
( )

( ) ( ),
d t

A t A t
dt

  
x

x x                                                                           (84) 

as follows ([61]): 

 
 

1
max 01 ( )

max 0 11 / , .
1

A t tA t t
e t J


 
 

     
  

, (2) 1                                               (85)  

Example 1. Using Time-Delay PD  compensator on the linear system of equations with respect to the small 
perturbation ( ) ( ) ( )de t y t y t   one can obtain:  

 ( )( ) ( ) ( ) ( ) / ,P De t e t K e t K de t dt                                                                  (86) 

where:  1 / 2, 2, 3, 4.p DK K     Also, all initial values are zeros  and introducing:                                                  

 1/2 1/2
1 2( ) ( ), ( ) ( ) /x t e t x t d e t dt  ,                                                                              (87)  

where  ( ) ,
T

1 2t x xx one can write (86) in the state-space form: 

 1 11/2

2 2

( ) ( )0 1 0 0
( )

( ) ( )2 0 3 4t
x t x t

D t
x t x t




      
              

x ,                                                          (88) 

with the associated function of initial state: 
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( ) ( ) 0, 0,xt t t     x                                                                                      (89) 

Now, one can check the finite-time stability w.r.t   0 0, 0,2 , 0.1, 50, 0.1 ,t J         where 

 ( ) 0, 0.1,0x t t     . From initial data and the equation (88), and condition of Theorem 8 it follows  

                max 0 max 1 max( ) 0.1, 2, 5, 7A
x C

t A A                                                   (90) 

 

0.570.5
0.8867

1 50 / 0.1 500 0.325 .
0.886

eT
e

e
T

e T s
 
      

  
                                                  (91) 

eT  being the “estimated time” of finite-time stability.  

 Further, it is shown in [38] that fractional order time-delay state-space model of PD  control of  Newcastle 
robot can be presented by (61) in a homogenous state-space form. It is suggested using the Caputo version of 

the fractional derivative, where introducing   4( ) , , ,
T

1 2 3t x x x xx  one can obtain: 

 

1 1

2 21/2

3 3

4 4

( ) ( )0 1 0 0 0 0 0 0

( ) ( )0 0 1 0 0 0 0 0
( )

( ) ( )0 0 0 1 0 0 0 0

( ) ( )17.8 0 12.8 0 0.04 0.04 0 0

t

x t x t

x t x t
D t

x t x t

x t x t






      
              
       
                

x             (92) 

 Also, one has to check the finite-time stability w.r.t   0, 0,1 , 0.06, 100, 0.1 ,ot J        where  

   ( ) 0.05,0,0,0 , 0.1, 0
T

x t t     . From initial data and the equation (92) , one can easily obtain: 

                               ( ) 0.06,x C
t    max 0 max 1 max( ) 21.95, ( ) 0, 21.95,A A                                     

                        
 2 2

2 1 (2)!
1 1 / 2 0.886

22 1 1 2 1!

   
     

 
,                                                        (93) 

From the Theorem 8(A), it immediately follows  

 

1/221.951/2
0.86621.95

1 100 / 0.06, 0.05
0.866

eT
eT

e Te s
 
     

  
,                                              (94) 

eT  being the “estimated time” of finite-time stability. 

Also, in paper [62], a stability test procedure is proposed for nonhomogeneous fractional order systems  
with pure time-delay   

        * , 0 1 0
( )

( ) ( ) ( ) ( ), 0 1,to t
d t

D x t A t A t B t
dt




        
x

x x u                                            (95) 

with the associated function of initial state:  

  ( ) ( ) ,0 , 0.xt t C t       x                                                                                     (96) 

Definition 11. The system given by (95) satisfying the initial condition (96) is finite stable w.r.t 
 , , , , , , ,u ot J        if and only if: 

      x C                                                                                                                         (97) 

    ( ) , , 0u ut t J    u                                                                                          (98) 

implying: 
 ( ) ,t t J  x                                                                                                             (99) 
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Theorem 9.  The nonautonomous system given by (95) satisfying the initial condition (96) is finite-time stable 
w.r.t.  0, , , , , , ,u ot J      , if  the following condition is satisfied: 

                
 
 

 
 

max 0( )

1max 0 0( )
1 / , .

1 1

A t tA t t t t
e t J

 


  
 


 

        
     

                                      (100)   

where 0 0 0/ ,ub B b     and (.)  Euler's gamma function. 

 
Proof : The proof follows from the previous Theorem 8. Applying the same procedure and using (98), one can 
obtain  

               
         

0

1max 0 max
0 0

1
1 sup ( ) ( )

1 1

tA A

x uC
t t tt

t t
x t t s x t ds b t t






 
 

  

 

  

 
      

      
  (101) 

Taking into account  (97) and (99) and applying the Bellman-Gronwall lemma  with the basic condition  of 
Theorem 9  it follows 
 .Jt,)t(x                                                                                                      (102) 

 
Remark 2.  If  1  , see (95), one can obtain the same conditions related to integer order time-delay systems 
(3) as follows [19]: 

   
1

max 0( )1 1
max 0 01 ( )

1 / , , (2) 1
1 1

A t tA t t t t
e t J




  
          

 
 

                                          (103)  

Moreover, in the same paper [62], finite-time stability criteria are proposed for a class of fractional non-linear 
nonautonomous system with time-delay in state and in control as follows: 

   0 1 0 1 1 1
( )

( ) ( ) ( ) ( ) ( ) ( ) ,
d t

A t A t B t B t f t g t
dt



           
x

x x u u x x                   (104) 

with the associated function of initial state and control: 

 ( ) ( ), ( ) ( ), 0x ut t t t t      x u                                                                     (105) 

and vector functions 1 1,f g  satisfying (6). 

Definition 12. The system given by (104) satisfying the initial condition (105) is finite stable w.r.t 
 0, , , , , , ,u ot J        if and only if: 

  0, ,x uC C
                                                                                         (106) 

  ( ) ,ut t J  u                                                                                        (107) 

imply:                      ( ) ,t t J  x                                                                                                       (108) 

 
Theorem 10. The nonlinear nonautonomous system given by (104) satisfying the initial condition (105) is 
finite-time stable w.r.t.  0, , , , , , ,u ot J       if  the following condition is satisfied:                

                                                  (109) 

 

 
   

 
 
 

 
 

max 01 0

1 0 0 1 0 01max 01 0( )
1 / ,

1 1 1 1

c t t

u uc t t t tt t
e t J

   
     

 
   

   
     

                
 

where  0 0 1 1 01 0 1/ , / , /u u u ub b b             . 
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Proof. Taking into account the fractional order 10  , one can present the solution in the form of the 
equivalent Volterra integral equation:                                      

                      
0

0 11
0

0 1 0 1

( ) ( )1
( )

( ) ( ) ( ) ( )

t

t

A t A t
x t x t t s ds

B t B t f t f t
 

 
    

            


x x

u u x x
,        (110) 

Applying the norm (.)  on the equations (110) and (104), using the appropriate property of the norm, and (6), 
one yields: 

                     
0

1
0 max 01 0 1

1
( ) sup ( ) ( ) ( )

t

c x C
t t tt

x t x t t s x t b u t b u t ds



  

 

 

  

               
 ,  (111) 

or,  

              
   

     

           
0

1max 01 0 max 01

0 0 1 0 0 1

1 sup ( )
1

1 1 1
( ) ( ) ( )

1 1 1

t
c c

x C
t t tt

u u

t t
x t t s x t ds

b t t b t t b






  

 


 

    
  



 

  

      
   
 

     
     


,                           (112) 

Further, one can conclude that   t  is nondecreasing function  given as: 

    
 

max 01 01
1

c
x C

t t
t


 



   
   

,                                                                             (113) 

where using  the Bellman-Gronwall lemma it is easy to show that     

                                      
 

 
 

1max 01 max 01 0

0 1sup ( )

t
c c

t

t tt s ds

t t t

x t x t t e t e

 
 


 






  

  
  


,                             (114)  

and 

          
   

 
 

   

       

max 01 0

1max 01 0
0 0

1 0 0 1

( ) 1
1 ( )

1 1

1 1
( ) ( )

1 1

c t t

c
u

u

t t
x t e b t t

b t t b






 


 

 

   
 


  

          

   
   

 ,                 (115) 

Finally, if one uses the relation (109) it follows: 

 ( ) , .x t t J                                                                                                  (116) 

which had to be proved. 
 Recently, we have studied and reported in paper [39] a stability test procedure for linear nonhomogeneous  
fractional order systems  with pure time-delay. New stability criteria for this class of fractional order systems 
were derived by applying Bellman-Gronwall`s approach using for the starting point a recently obtained 
generalized Gronwall inequality reported in [43].In that way, one can check system stability over finite-time, 
which is illustrated  using  a suitable illustrative example.  
 
Theorem 11. ([43] Generalized Gronwall inequality) . Suppose ( ), ( )x t a t  are nonnegative and local integrable 

on 0 ,t T some T    ,and ( )g t  is a nonnegative, nondecreasing continuous function defined on 

0 , ( )t T g t M const    , 0   with 
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   1

0

( ) ( ) ( ) ( )

t

x t a t g t t s x s ds
                                                                                  (117) 

on this interval.Then                                                    

 
  

    1

10

( )
( ) ( ) ( ) , 0

nt
n

n

g t
x t a t t s a s ds t T

n






       
  
 
                                        (118) 

Corollary 2.1 of Theorem 9, [43]    Under the hypothesis of  Theorem 11, let ( )a t  be a nondecreasing function 

on  0,T . Then it holds: 

     ( ) ( )x t a t E g t t                                                                                             (119) 

Theorem 12. The linear nonautonomous system given by (95) satisfying the initial condition 
( ) ( ), 0xt t t   x   is finite-time stable w.r.t.  0, , , , ,u J      if  the following condition is satisfied: 

 
       max 01 0

max 01 01 / , 0,
1 1

ut t
E t t J T

 



 

  
 

 
           

,                           (120) 

where 0 0 / ,u ub    and (.)max  being the largest singular value of the matrix (.), where: 

   max 01 max 0 max 1A A      and  .E denotes Mittag-Leffler function (see Appendix C2).    

 
Proof.  The proof immediately follows from the proof of the Theorem 9 applying the same procedure. 

Remark 3. If  1  , see (95), one can obtain the same conditions  related to integer order time-delay systems 
(3) as follows [19]: 

     
1

max 0( )1 1
max 0 01 1

( )
1 / , , (2) 1, ( )

1 1

A t tA
zt t t t

e t J E z e






  




           
 
 

                    (121)  

Theorem 13. The linear autonomous system given by (95) satisfying the initial condition 
( ) ( ), 0xt t t   x   is finite-time stable w.r.t.  0, , , ,J     if  the following condition is satisfied: 

 
   max 01

max 01 01 / ,
1

t
E t t J







  


 
    
   

,                                                     (122) 

Proof.  The proof immediately follows from the proof of the Theorem 12. 
 
Remark 4. If 1  , one can obtain the same conditions related to integer order time-delay systems  

 0 1
( )

( ) ( ),
d t

A t A t
dt

  
x

x x                                                                         (123) 

as follows (see [19]): 

 

1
max 011

max 01 1 01 / , 0, .
1

t
t

e t J T




 
 
         
  

,                             (124)  

Example 2.  We consider the following  nonhomogeneous fractional order systems  with pure time-delay   
 

1 11/2

2 2

( ) ( )0 1 0 0 0
( ) ( )

( ) ( )2 0 3 4 1t ff
x t x t

D t u t
x t x t




        
                   

x ,                                   (125) 

or  
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 1/2
0 1 0( ) ( ) ( ) (t)tD t A t A t B   x x x u ,                                                                  (126) 

with the associated function of initial state:  

              ( ) ( ) 0, 0,xt t t    x                                                                            (127) 

Here, the task is to check the finite-time stability w.r.t   0 0, 0,2 , 0.1, 100, 0.1, 1 ,ut J           where  

( ) 0, 0.1,0x t t       . From initial data and  properties  of  max (..) one can calculate:  

    2 2
max 0 max 1 max 0,1( ) 0.1, 2, 3 4 5, 7x C

t A A                                              (128) 

Applying the condition of the Theorem 12  (120) one can get: 

    
0.5 0.5

0.5
0.5

7 10
1 7 100 / 0.1 0.1 .

0.886 0.886
e e

e e
T T

E T T s
  
      
  

                                                 (129) 

eT being the “estimated time” of finite-time stability. 

Further, paper [41] presents natural extension of our paper [37] where new stability criteria are obtained. We 
considered a class of fractional non-linear perturbed autonomous system with time-delay described by the state- 
space equation: 

       0 0 1 1 0
( )

( ) ( ) ( ) ,
d t

A A t A A t f t
dt



        
x

x x x                                              (130) 

with the initial functions (62) of the system and vector functions 0f  satisfying (6).  

Theorem 14.  The nonlinear perturbed autonomous system given by (130) satisfying the initial condition (62) 
and (6) is finite-time stable w.r.t.  , , , , ,   ot J , if  the following condition is satisfied:  

   
 

 
 

0

0 1( )
1 / ,

1

p t t

p t t
e t J




 




 
 
    
   

,                                                                (131) 

where (.)  is Euler's gamma function, and 
0 10 1 1, ,Aoco Ao A A A Ac             

1 1 1, , .p Aoco A Ao Ao A A               

Remark 5.  If we have no perturbed system 0 1 00, 0, ( (t)) 0    A A f x  one can obtain the same conditions 
which are related to Theorem 8. 

Recently,[63] we discussed the case of the particular class of nonlinear perturbed nonautonomous fractional 
order , 0 1   time-varying delay system which is presented in the state space form (132) and we examined 
the problem of sufficient conditions that enable system trajectories to stay within the a priori given sets. 

      0 0 1 1 0 0
( )

( ) ( ( )) ( ) ( ), ( ( )) ,
d x t

A A x t A A x t t B u t f x t x t t
dt



                             (132) 

with the initial function (62) of the system and vector function 0f  satisfied (6). Here,  t is an unknown time–

varying parameter which satisfies  

 
   0 , , , ,M o ot t J J t t T J R                                                                       (133) 

Theorem 15. The nonlinear nonautonomous system given by (132) satisfying initial condition 
( ) ( ), 0x Mx t t t      is finite time stable w.r.t.  0, , , , ,u J     , if the following condition is 

satisfied 
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       0
01 / , 0,

1 1
ut

E t t t J T


 


   
 





 
           

                                   (134) 

where   is defined by (135),  0 /uo ub   ,(see (109)),  . being the largest singular value of matrix, and 

)(zE  the Mittag-Leffler function.   

   
0 1 1 1 11
, , ,Aoco Ao Ao Aoc A A Aoco Aocc c                  

            
(135) 

Remark 6. If we have   Mt const    and    0 0( ), ( ( )) ( ) ,f x t x t t f x t 

 

we obtain same conditions  

reported in [42]. 
 
 
3. 5 Conclusion 
While Lyapunov methods have been developed for stability analysis and control law synthesis of integer linear 
systems and have been extended to stability of fractional systems, only few studies deal with non-Lyapunov 
stability of fractional systems. First of all, some basic results are presented on the stability of fractional order 
systems including time-delays. Further, in this chapter, we have studied and presented the finite time stability of 
(non)perturbed (non)linear fractional order time-delay systems. We have employed the “classical” and the 
generalization of Belmann-Gronwall lemma to obtain finite-time stability criteria for the proposed class of time-
delay systems. Finally, numerical examples are given to illustrate the validity of the proposed procedure. 
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Abstract: - In this paper the problem of stability of linear discrete-time fractional order systems is addressed. It 
was shown that some stability criteria for discrete time-delay systems could be applied with small changes to 
discrete fractional order state-space systems. Accordingly, simple conditions for the stability and robust 
stability of a particular class of linear discrete time-delay systems are derived. These results are modified and 
used for checking the stability of discrete-time fractional order systems. The systems under consideration 
involve time delays in the state and parameter uncertainties. The parameter uncertainties are assumed to be 
time-varying and norm bounded. New Lyapunov–Krasovskii functional is constructed to derive some delay-
dependent stability criteria. The proposed methods give both sufficient and necessary and sufficient stability 
conditions. Numerical examples have been worked out to show the applicability of  the derived results.  
 
Key-Words: - Discrete-time fractional order systems, discrete time-delay systems, stability, robust stability, 
Lyapunov functional, delay-independent stability, delay-dependent stability. 
 
 
4. 1 Introduction 
In recent years, the studies of time-delay systems have received considerable attention since time delay is 
frequently a source of instability and commonly exists in various engineering, biological and economical 
systems due to the finite speed of information processing. 

The various techniques of stability analysis of time-delay systems have been utilized by many researchers. 
However, less attention has been drawn to the corresponding results obtained for discrete time-delay systems 
[1-14]. This is mainly due to the fact that such systems can be transformed into augmented high dimensional 
systems (equivalent systems) without delay [15-18]. This augmentation of the systems is, however, 
inappropriate for the systems with unknown delays or systems with time-varying delays. Moreover, for the 
systems with known,large delays, this augmentation leads to large-dimensional systems. Therefore, in these 
cases the stability analysis of discrete time-delay systems cannot be reduced to stability of discrete systems 
without delay.  
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The existing stability criteria of time-delay systems can be classified into two categories: delay- 
independent [11-14, 19-28] and delay-dependent criteria, [29-39]. It has been shown that the delay-dependent 
stability criteria which take into account the size of delay, are generally less conservative compared to the  
delay-independent ones, which do not include any information on the size of delay. The delay-dependent 
stability criteria usually provide an upper bound of the delay, maxh , such that system is stable for any delay 
less than this upper bound. For a system whose stability does not depend on the time-delay value, the analysis 
performed by delay-dependent conditions can be very conservative. Also, delay-independent conditions 
cannot be obtained as a limit case of delay-dependent ones just by imposing a maximum delay maxh  , 
leading to a gap between these two types of delay-stability conditions. 

The majority of stability conditions, for both continual and discrete time-delay systems, are sufficient 
conditions independent of time delay. Only a small number of works provide necessary and sufficient 
conditions [34-41]. These conditions do not possess conservatism but often require more complex numerical 
computations. In our study, we present some necessary and sufficient stability conditions. 

The stability analysis and robust stabilization of systems with parameter uncertainties are the problems of 
recurring interest over the past years, [11, 23-24, 42-52]. Especially, in accordance with the advances of  the 
robust control theory, a number of robust stability and stabilization methods have been proposed for the 
uncertain time-delay systems [53-59].  

On the other hand, the theory of fractional calculus has a long and prominent history. In fact, one may trace 
it back to the very origins of differential calculus itself. However, its complexity prevented it from being put to 
practical application until only very recently. Over the last decade, the results of work on the theory of chaos 
revealed connections of this field with fractional derivatives and integrals, renewing interest in them, in their 
turn. The fundamental facts of the theory of fractional calculus, and its properties, are now widely known (see, 
e.g., [60,61]). Nowadays the concept of non-integer derivative or integral is used increasingly to model the 
behavior of real systems in various fields of science and engineering. The fractional calculus is a generalization 
of (integer order) differential calculus, allowing defining derivatives (and integrals) of  a real or complex order 
[62]. Several definitions of fractional derivatives, including the Riemann-Liouville, Caputo, Riesz, Riesz-
Caputo,Weyl, Grunwald-Letnikov, Hadamard, and Chen derivatives, are available (see Chapter 1) as well as  in 
the literature [62-63]. Analogously, one can define a discrete fractional derivative in different ways. In 1989, 
Miller and Ross [64] introduced the discrete analogue of the Riemann-Liouville fractional derivative and 
proved some properties of the fractional difference operator [63]. Regarding other fractional discrete 
definitions, we refer the reader to [65-66] and  the references therein.  

Also, one of the fundamental problems of  control is the stability analysis a the dynamic system.The stability 
problem for linear, continuous-time, fractional order state-space systems has been considered for some time and 
some properties and stability results for these systems are presented and discussed by, for example, [67-68]. 

For discrete-time fractional order systems, however, the discussion of this problem is much less common. 
Very few results have been published dealing with the stability of such systems, this is even more so for the 
state-space description of these systems. Some basic results of defining fractional order state-space systems 
have been presented by [69].Remarks on the poles and zeros of fractional order systems were given in the work 
of [70]. Linear discrete-time fractional-order systems modeled by a state space representation were introduced 
in [71-72]. These contributions are devoted to controllability and observability analysis, the design of a Kalman 
filter and observers, plus adaptive feedback control for discrete fractional order systems.In addition, the concept 
of practical stability of positive fractional discrete-time systems was introduced and the conditions for practical 
stability were given by [73].  

The objective of this work is to present the results of a further investigation of the analysis of discrete-time 
fractional order systems. It was shown that some obtained results for the integer order discrete time delay 
systems can be applied to the discrete fractional order state-space system. Using Lyapunov techniques, new 
results concerning asymptotic stability of discrete-time fractional order systems are developed based on results 
of asymptotic stability of discrete time-delay systems.  
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4. 2 Problem Formulation 
 
 
4.2.1 The discrete-time fractional order system as discrete-time linear integer order time delay 

system: stability issue 
For the discrete-time fractional order systems the discussion of stability is much less common. There are very 
few results dealing with the stability of such systems. It is even more so for the state-space description of these 
systems. Some basic results of defining the fractional order state-space systems are presented in e.g.[69-73]. 
Also other system properties of fractional order systems like controllability and observability have been 
addressed only in recent years (see e.g. [72]).  

As we know, Grunwald and Letnikov developed an approach to fractional differentiation i.e the left 
Grunwald-Letnilov (GL) derivative as a limit of a fractional order backward difference. Here, (GL) definition 
of the fractional order difference [60,61] is used and presented. If we consider n =( t – a)/h where a  is a real 
constant that expresses a limit value one can write 

 
  

   ,
0 0

0

1
( ) lim lim 1 , 0
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h
h j

GL a t
h h

j

f t
D f t f t jh h

jh h
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

 
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 
  

  

  
     

 
  (1) 

where [x] means the integer part of x, a and t are the bounds of operation for , ( )GL a tD f t . For generalized 

binomial coefficients calculation for R   as previously defined is a fractional degree and 0k we can use 
the relation between Euler’s Gamma function and factorial, defined as 

      
   

1 0

1 ... 1 1
, 0

! 1 1

for j

j
for jj

j j j
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                 

    (2) 

Also, the following definition of the fractional discrete derivative will be used 

  
0

1 , 0 1
k

j
k k j

j

x x
j

 




 
     

 
   (3) 

where R   is the order of the fractional difference and k N , is the number of a samples for which the 
approximation of the n-derivative is calculated. Here, we consider  that a linear continuous-time fractional 
order state-space system is given by the following set of equations: 

 ( ) ( )GL
a t cD x t A x t                                                                                                              (4) 

where n n
cA R  , m  is a number of outputs, p   is a number of inputs, n   is a number of state equations. 

One can obtain a discrete-time fractional order state-space system by substituting the previous definition of GL 
derivative into (4): 

  
 

 
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0
0

1
lim 1 ( )

t h
j

c
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j

x t jh A x t
jh
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 

 
   

 
   (5) 

Using the Eq. (3) with some relatively small value of h we can obtain the following structure of the discrete-
time fractional order state-space model. In the general case, the values of the discrete system matrices are not 
the same as in continuous case and have to be found by the discretization process or by identification. Consider 
the autonomous discrete-time fractional order linear system, described by the state-space equations as follows: 

 1k kx Ax
                                                                                                                        (6) 

and from (3) one obtains: 
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For practical realization the number of samples taken into consideration has to be reduced to the predefined 
number N , where N  is a number of samples taken into account, called memory length. 

  1 1 1
1

1
N

j
k k k j

j

x x x
j

 
   



 
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 
   (8) 

In this case the Eq. (6) is rewritten as 
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where are 0 nA A I  , 1 1( ) nA I  , 2 2( ) nA I  , …,  ( )j j nA I  , ..., ( )N N nA I   or in the form  

 0
1

( 1) ( ) ( ) ,
N

j
j

x k A x k A x k j k Z


       (10) 

Remark 1. The model described by (10) can be classified as a linear, autonomous, discrete-time system (linear 
autonomous discrete-time integer order system) with multiple time-delays: 1 21, 2, , Nh h h N   . Therefore, 
the discrete time-delay system (10) represents a practical implementation of the discrete-time fractional order 
linear system (6). Based on of this fact, we can apply various the existing stability criteria for a class of linear 
discrete systems with multiple time-delay to check stability of  the discrete-time fractional order systems. In 
this sense, let us consider the general form of a linear, discrete multiple time-delay system described by: 

 0 1
1

( 1) ( ) ( ) ( ) ( ), 0
N

j j N
j

x k A k x t A k x k h h h


          (11) 

with an associated function of  the initial state: 

      , , 1, ... , 0N Nx h h           (12) 

where   nx k  ,   mu k  ,   n n
jA k  , 0,1, ,j N  ,   n mB k   and h   is unknown time delay 

in general case.The following two cases are considered: 
a) the matrices  jA k , 0,1, ,j N   are stationary matrices: 

   , 0,1, ,j jA k A j N                                                                                                     (13) 

b) the matrices  jA k , 0,1, ,j N   are uncertain matrices 

     , 0,1, ,j j jA k A A k j N       (14) 

where jA , 0,1, ,j N   are known real constant matrices,  jA k , 0,1, ,j N   are the time-varying 

parameter uncertainties, and are assumed to be of the form: 

      
00 NN A AA k A k M F k N N            (15) 

where M , 
jAN , 0,1, ,j N   are constant matrices, and   i jF k   is the uncertain matrix satisfying: 

    TF k F k I                                                                                                                  (16) 

Remark 2. The uncertain discrete-time fractional order system can be described by the following state-space 
equations: 

 1 ( )k kx A k x
                                                                                                                 (17) 

The Eq. (17) can be rewritten as 
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where:   
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    0 1 1( ) , ( ) , , ( )n n N N nA k A I A k A I A I            (19) 

     AA k M F k N                                                                                                             (20) 

Clearly, the matrices jA , 1,2, ,j N   of the uncertain discrete-time fractional order system (17) are 

independent from the discrete time k . 
 
 
4. 3 The Problem Solution 
Based on Remark 1, we first consider the problem of asymptotic stability for linear discrete time systems with 
multiple time-delay. Simple delay-independent and delay-dependent criteria of stability and robust stability of 
time-delay systems are proposed (Theorem 2-8). Then, using these results, we present the stability criteria for 
discrete-time fractional order systems (Corollary 1-7).  
 
 
4.3.1 Stability of linear discrete time delay systems 
Consider system (11)-(13) with stationary matrices  jA k , 0,1, ,j N   and  B k .  

Let ( ) ( 1) ( )
TT T T

k Nx x k x k x k h    , k Z   be state vector,  , n  – space of continuous functions 

mapping the discrete interval   into n  and  sup
D

 



θ

θ ,   : n θ   - the norm of an element 

  in  . Furthermore,  : ,
D

     γ γ γ    . For the initial state, the next condition is assumed: 

 
D

ψ                                                                                                                          (21) 

Evidently,    :k kx x x k        and    ,x k x k ψ . 

Definition 1. The equilibrium state 0x   of system (11)-(13) is globally asymptotically stable if any initial 

 ψ   which satisfies: 

  ψ                                                                                                                            (22) 

Then,it holds: 
  lim ,

k
x k ψ 0


                                                                                                                 (23) 

Theorem 1. [13] If there exist positive numbers   and   and a continuous functional :V   such that: 
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kx   satisfying (11)-(13),then the solution 0x  of equation (11)-(13) is globally asymptotically stable, 
[36]. 
Proof. From (25) it follows: 
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and from (21), (22) and (26) it holds: 
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Moreover, from (28) it follows:   2

0

lim
k

k
j

x j
 

   and, hence,   2
0x k   for k   i.e. (23) holds for 

 ψ    .  Q.E.D. 

Definition 2. Discrete system with time delay (11)-(13) is globally asymptotically stable if and only if its 
solution 0x   is globally  asymptotically stable. 
 

Lemma 1. For any two matrices F  and G  of dimensions  n m  and for any square matrix 0TP P   of 

dimension n , the following statement is true: 

        11 1
T T TF G P F G F P F G PG          (29) 

where   is some positive constant. 
Lemma 2. Tchebyshev’s inequality holds for any real vector iv   
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Lemma 3. Given matrices TQ Q , H, E and 0TR R   of appropriate dimensions, 

 0T T TQ HFE E F H      (31) 

for all F satisfying TF F R , if and only if there exists some 0   such that 

 1 0T TQ HH E RE                                                                                                      (32) 

 
4.3.1.1 Delay-independent stability 
Theorem 2. [74] System (11)-(13) is asymptotically stable if: 
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which is equivalent to: 
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So if the system is not stable, then: 
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This is in contradiction, so the system under consideration is stable.  Q.E.D. 
 
Corollary 1. Discrete-time fractional order system (6) is asymptotically stable if: 
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Theorem 3. [75] The linear discrete time-delay system (11)-(13) with 0 2
0A   is asymptotically stable if there 

exists real symmetric matrix 0P   such that  
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Proof. Let the Lyapunov functional be: 
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where: 
  kx x k   ,  , 1, ... , 0N Nθ h h      (43) 

The forward difference along the solutions of system (11)-(13) is: 
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Applying Lemma 1 to (44), one can obtain: 

 
             

           

1
0 0

1 1

1 1

1 1

            

N N
T T T T

k j j j j
j j

N N
T T T

j j j j
j j

V x x k A PA x k x k h A P A x k h

x k Px k x k S x k x k h S x k h

  

 

 

      

    

 

 
 (45) 

Based on Lemma 2 it follows: 

 

       

     

   

0 0
1

1

1

1

1

1

N
T T

k j
j

N
T T

j j j j
j

N
T

j j j
j

V x x k A PA S P x k

N x k h A PA x k h

x k h S x k h













 
     

 

   

  







 (46) 
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       

     

0 0
1

1

1

1

1

N
T T

k j
j

N
T T

j j j j
j

V x x k A PA S P x k

x k h N A PA S x k h











 
     

 

      




 (47) 

If one adopts: 
  11 T

j j jS N A PA     (48) 

then: 

          1
0 0

1

Δ 1 1
N

T T T
k j j

j

V x x k A PA N A PA P x k  




     


  (49) 

Let us define the following function: 

           1
0 0

1

, 1 1
N

T T T
j j

j

f x k x k A PA N A PA x k   




    


  (50) 

Since all matrices T
j jA PA , 0,1, ,j N   are symmetric and positive semidefinite then, based on Rayleigh and 

Amir-Moez inequalities [76-77]: 

 
              

       

1
max 0 0 max

1

max

, 1 1
N

T T T
j j

j

T

f x k x k A PA N A PA x k

x k P g x k

    

 





     



 (51) 

Scalar function: 

          2 1 2
max 0 max

1

g 1 1
N

j
j

A N A    



      (52) 

possesses its minimum at: 

    
1 1

2 22 11
m max max 0 0 22

1 1

N N

j j
j j

N A A N A A    

 

   
     

   
   (53) 

from where: 
      m , ,f x k f x k    (54) 

Having in mind that: 

                    max m max
T T

k n nV x x k P g I P x k x k P g I P x k         (55) 

one can put min  into (49) instead of  , which t yields: 

          1
0 0

1

1 1
N

T T T
k m m j j

j

V x x k A PA P N A PA x k  




      


  (56) 

If the condition (41) is satisfied then: 

      2 2

min min2 2
( ) ( ) 0, 0kV x Q x k x k Q           (57) 

Likewise, for 0kx   it holds: 

 

           

     

     

     

1

1 1

2 21
max max2

1

21
max max

1

2

1
max max

1

0 max 1

( ) 1 ( )

1 ( )

( )

1 0

jhN
T T T

k m j j
j l

N
T

m j j j D
j

N
T

m j j j D
j

D

N
T

m j j j
j

V x x k Px k N x k l A PA x k l

P x k N h A PA x k

P N h A PA x k

x k

P N h A PA



  

  



   



 













      


  

 
   
 



  









 (58) 

thus, based on Theorem 1, system (11)-(13) is asymptotically stable.  Q.E.D. 
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Corollary 2. Discrete-time fractional order systems (6) is asymptotically stable if there exists real symmetric 
matrix 0P   such that 

 

      2

1

1

2
12

2
1

(1 )
1 ( ) 0

( )

N
T m

m n n j
jm

N

m j n
j

N
A I P A I P P

N A I

    


   








     

 
  
 




 (59) 

Theorem 4. [75] The linear discrete time-delay system (11)-(13) is asymptotically stable if there exist real 
symmetric matrix 0P   and scalar 0   such that 

 

0 1(1 ) (1 ) (1 ) (1 )

* 0 0

* * (*)

* * *

0

T T T
NN P N A N A N A

NP

P

P

P P P   





    
 
 
  
 
 
  





    


 (60) 

Proof. From(41), for  

  0 0
ˆ ˆ1 , 1 / , 1, 2, ,j jA A A A N j N         (61) 

it follows 

  1
0 0

1

ˆ ˆ ˆ ˆ 0, 0
N

T T
j j

j

P A PA A P P PA P



     (62) 

By using Schur complements it is easy to see that the condition (62) is equivalent to 

 0
1

ˆ ˆ ˆ
0, 0

*

N
T T

j j
j

P A PA A P
P

P



 
    

  

   (63) 

Similarly, condition (63) is equivalent to 

 

0 1
2

ˆ ˆ ˆ ˆ

* 0 0

* *

N
T T T

j j
j

P A PA A P A P

P

P



 
 

 
  
 
 
  


       (64) 

Finally, the condition (62) is equivalent to 

 

0 1
ˆ ˆ ˆ

* 0 0
0* * 0

* * *

T T T
NP A P A P A P

P

P

P

 
 
 
  
 
 
 
 





    


  (65) 

By using (61) and pre and post multiply (65) with blockdiag{I, 1 / (1 )I  , / (1 )I N  , … , / (1 )I N  } 
we obtain 

 

0 1

* 0 0

* * 0

* * *

1

1

0
(1 )

(1 )

T T T
NP A A A

P

P

P

P P P

N

N








 
 
 
 
 
  

 
 
 
 
  







    



 (66) 

With / ( (1 ))P N   replaced by P we obtain (60). 
Example 1. Let us consider a discrete delay system described by 
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        0 1 1 2 21x k A x k A x k h A x k h       (67) 

 0

0.2 0.3

0.1
A


 

  
 

, 1

0.3 0

0.2 0.1
A 

 
  

 
, 2

0.01 0.05

0.03 0.02
A

 
  
 

 (68) 

where  is an adjustable parameter and the system scalar parameter   takes the following values: -0.15 and 0.5. 

To determine the largest parameter   for various values of  by Theorem 4, the feasibility of equation (66) 

with   as a variable can be cast into a generalized eigenvalue problem 

 
0

min
P




, 1 /                           (69) 

 0

2

1

(1 ) * * *

(1 ) * *

0 0 *

(1 ) 0 0

0 * * *

0 0 * *

(1 ) 0 0 *

0 0 0 0

N P

N PA NP

P

N PA P

N PA







 










  
  
   
   
  

   

              (70) 

The delay-independent asymptotic stability conditions are characterized by means of the range of parameter   
and are summarized in Table 1.  

Table 1. Stability Conditions 
 Parameter   

Conditions - 0.15 + 0.50 

Theorem 3 1.370   1   1.022   1   

Theorem 3 1.468   2.066m    1.023   0.886m    

Theorem 4 1.469   2.144op    1.050   0.767op    

 
Corollary 3. Discrete-time fractional order systems (6) is asymptotically stable if there exist a real symmetric 
matrix 0P   and a scalar 0   such that 

 

1(1 ) (1 )( (1 ) ( ) (1 ) ( )

* 0 0

* * (*)

* * *

)

0

n N

TN P N A I N N

NP

P

P

P P P        





     
 
 
  
 
 
  





    


  (71) 

 
Theorem 5. [23] The discrete time-delay system (11)-(13) is asymptotically stable if there exist matrices 

0P  , and 0iQ  , 1,2, ,i N   such that the following LMI holds: 

 

0
1

1 1

0 0

* 0
0

* *

* * *

N
T

i
i

T

T
N N

P Q A P

Q A P

Q A P

P



 
  
 
 
  
 
  
  

 


    




  (72) 

Proof. Let the Lyapunov functional be: 

          
1

1 i

N k
T T

i
i j k h

V k x k P x k x j Q x j


  

     (73) 

The forward difference along the solutions of system (11) –(12), (14)-(15) is: 
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 

           

 
 

 
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N k N k
T T T

i i
i j k h i j k h
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i
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N
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x k h
A P A Q A P A
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 



      
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   
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  

  
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 
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 
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

 
 

 

1

NT
N N N

x k

x k h

x k h
P A Q

 
  
     
  
       



 (74) 

Condition (25) and relation (74) are equivalent to the existence of the variables 0P   and 0iQ  , 1,2, ,i N   
satisfying: 
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  (75) 

Further: 
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                         








   








   


 (76) 

By using Schur complements it is easy to see that the condition (76) is equivalent to (72).  Q.E.D. 
Corollary 4. Discrete-time fractional order systems (6) is asymptotically stable if there exist matrices 0P  , 
and 0iQ  , 1,2, ,i N    such that the following LMI holds 
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

 
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 
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  

 


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


 (77) 

Next, starting from (72) we shall develop sufficient conditions for robust stability of the uncertain discrete 
time-delay system (11)-(12), (14)-(15). 
Theorem 6. [23] The uncertain discrete time-delay system (11)-(12),(14)-(15) is asymptotically stable if there 
exist matrices 0P  , 0iQ  , 1,2, ,i N   and a scalar 0   such that the following LMI holds: 
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 (78) 

Proof. Replacing jA , 0,1, ,j N   in (72) with ( ) ( )
jj j j AA A k A MF k N    , respectively, for uncertain 

system (11)-(12),(14)-(15) we find that (72) is equivalent to the following condition: 
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By using Lemma 3, we have 
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 (80) 

By using the Schur complement, from (80) there follows (78). Q.E.D. 
Corollary 5. The uncertain discrete-time fractional order systems (17),(19)-(20) is asymptotically stable if 
there exist matrices 0P  , 0iQ  , 1,2, ,i N   and a scalar 0   such that the following LMI holds 
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The next theorem gives sufficient condition for asymptotic stability which is equivalent with condition (78) 
presented in Theorem 6. This condition is suitable one for direct application of LMI in order to derive 
stabilization conditions of the uncertain system, given by (11)-(12),(14)-(15). 
 
Theorem 7. [23] The uncertain discrete time-delay system (11)-(12),(14)-(15)  is asymptotically stable if there 
exist matrices 0L  , 0iW  , 1, 2, ,i N   and a scalar 0   such that the following LMI holds: 
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  (82) 

Proof. By using the Schur complement, from (80) for 1   it follows 
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  (83) 

By pre and post multiplying (83) by  1 1, , ,diag P P I   and applying the change of variables such that 

1 0L P   and 1 1 0i iW P Q P   , 1, 2, ,i N   we obtain the LMI condition (82).  Q.E.D. 
 
Corollary 6. The uncertain discrete-time fractional order system (17),(19)-(20) is asymptotically stable if there 
exist matrices  0L  , 0iW  , 1, 2, ,i N   and a scalar 0   such that the following LMI holds: 
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  (84) 
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4.3.1.2 Delay-dependent stability 
Consider the system (11)-)(13). Characteristic polynomial of system (11)-(13) is given by: 

       1

0 0

det , ,  ˆ N jN

N N
h hhj

j j n j
j j

f M a a R M I A      

 

        (85) 

Denote by 

   | 0ˆ f       (86) 

the set of all characteristic roots of system (11)-(13). A root m  of  having maximal module is: 

 : maxm m       (87) 

let us call maximal root (eigenvalue). If scalar variable  in the characteristic polynomial is replaced by 
matrix n nX   the two following monic matrix polynomials are obtained 

   1

0

N jN

N
h hh

j
j

M X X A X




     (88) 

   1

0

N jN

N
h hh

j
j

F X X X A



     (89) 

A matrix n nS   is a right solvent of  M X  if 

 ( ) 0M S     (90) 
If  

 ( ) 0F R      (91) 

then n nR   is a left solvent of  M X [78]. We will further use S to denote the right solvent and R to denote 

left solvent of  M X .Let F   denotes conjugate transponse of matrix n nF  . 

Remark 3. For discrete-time fractional order linear system (6) we have: 1 21, 2, , Nh h h N    and by using 
(88) and  (89) we can define the following matrix polynomials: 

          1 1 1
1 1

0

N
N N j N N N

j n N N n
j

M X X A X X A I X X X I         




            (92) 

          1 1 1
1 1

0

N
N N j N N N

j n N N n
j

F X X X A X X A I X X I         




            (93) 

 In the present paper, majority of the presented results starts from the left solvents of  M X . In contrast, in 

the existing literature the right solvents of  M X were mainly studied. The mentioned discrepancy can be 

overcome by the following lemma. 
Lemma 4. The conjugate transpose value of the left solvent of  M X  is also, at the same time, the right 

solvent of the following matrix polynomial 

   1

0

N jN

N
h hh T

T j
j

M X X A X




      (94) 

Proof. Let R be the left solvent of  M X . Then it holds 

      
*

1 1* * *

0 0

= 0
N N j N jN

N Nh h h h hhT
T j j

j j

M R R A R R R A F R
  

 

 
      

 
    (95) 

so *R  is the right solvent of  TM X . Q.E.D 

Remark 4. Based on Lemma 4, all characteristics of the left solvents of  M X  can be obtained by the analysis 

of the conjugate transpose value of the right solvents of  TM X .  

The following proposed factorization of the matrix  M   will help us to better understand the relationship 

between eigenvalues of the left and right solvents and roots of the system.  
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Lemma 5. The matrix  M   can be factorized in the following way 

    
11

1

0 0 0

N jN
N jN

h hh N
h h ih i i i

n j
i j i

M I S S S A   
 
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  

 
     

 
     (96) 

Proof.   
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  


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  
  
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 
    

 



  
  (97) 

If S is a right solvent of ( )M X , from (97), there  follows (96). Q.E.D 

Remark 5. From (85) and (96),there follows     0f S f R  , e.g. the characteristic polynomial  f   is 

annihilating polynomial for the right and left solvents of ( )M X . Therefore,  S    and  R    holds. 

Eigenvalues and eigenvectors of the matrix have a crucial influence on the existence, enumeration and 
characterization of the solvents of the matrix equation (90) [78]. 
Definition 3. Let  M   be a matrix polynomial in terms of . If i   is such that  det ( ) 0iM   , then we 

say that i is a latent root or an eigenvalue of  M  . If a nonzero n
iv   is such that 

   0i iM v     (98) 

then we say that vi is a (right) latent vector or a (right) eigenvector of  M  , corresponding to the eigenvalue 

i  [78].  
Eigenvalues of matrix  M   correspond to the characteristic roots of the system, i.e. eigenvalues of its block 

companion matrix Aa [78]. Their number is ( 1)Nn h  . Since    * *
TF M   holds, it is not difficult to show 

that matrices  M   and  TM   have the same spectrum. 

In papers [78] some sufficient conditions for the existence, enumeration and characterization of the right 
solvents of  M X were derived. They show that the number of solvents can be zero, finite or infinite. For the 

needs of system stability (11) only the so called maximal solvents are usable, whose spectrums contain 
maximal eigenvalue m . A special case of the maximal solvent is the so called dominant solvent which, unlike 
maximal solvents, can be computed in a simple way [78]. 
Definition 4. Every solvent mS  of  M X , whose spectrum  mS  contains maximal eigenvalue m  of  is a 

maximal solvent. 
Definition 5. Matrix A dominates matrix B if all the eigenvalues of A are greater, in modulus, than those of B. 
In particular, if the solvent 1S  of  M X  dominates the solvents 2 , , lS S  we say it is a dominant solvent. [78].  

The dominant solvent 1S  of  M X , under certain conditions, can be determined by the Traub and 

Bernoulli iteration. The necessary and sufficient conditions for asymptotic stability of linear discrete time-delay 
systems (11) are to follow.  
Theorem 8. [35] Suppose that there exists at least one maximal left solvent of  M X and let mR  denotes one 

of them. Then, linear discrete time-delay system (11)-(13) is asymptotically stable if and only if there exists  
symmetric matrix 0P P    such that 

 * 0m mR PR P     (99) 

Proof. Sufficient condition.  
Define the following vector discrete functions 

    , , 1, ... , 0k N Nx x k h h         (100) 
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        
1 1

ihN

k j
j l

z x x k T l x k l
 

       (101) 

where,   n n
jT k  , 1,2, ,j N   are, in general, some time-varying discrete matrix functions. The 

conclusion of the theorem follows immediately after defining Lyapunov functional for the system (11)-(13) as 

      * *, 0k k kV x z x P z x P P      (102) 

It is obvious that   0kz x   if and only if 0kx  , so it follows that   0kV x   for 0kx  . The forward 

difference of (102), along the solutions of system (11)-(13) is  

              * * *
k k k k k kV x z x Pz k z x P z x z x P z x           (103) 

A difference of  kz x can be determined in the following manner 

        
1 1

jhN

k j
j l

z x x k T l x k l
 

        (104) 

with 

        0
1

N

n j j
j

x k A I x k A x k h


       (105) 

and 

                
1

1 1

1 +
j jh h

j j j j j j
l l

T l x k l T x k T h x k h T l x k l


 

           (106) 

Therefore: 

 

          

   

0
1 1

1

1 1

1

j

N N

k n j j j j j
j j

hN

j
j l

z x A I T x k A T h x k h

T l x k l

 



 

 
       

 

  

 


  (107) 

Define a new matrix R by  

  0
1

1
N

j
j

R A T


     (108) 

If 

    j j j j jT h A T h       (109) 

then  kz x has a form 

          
1 1

jhN

k n j
j l

z x R I x k T l x k l
 

        (110) 

If one adopts 
       , 1,2, ... ,j n j jT l R I T l l h      (111) 

then  kz x  becomes  

              
1 1

ihN

k n j n k
j j

z x R I x k T l x k l R I z x
 

 
        

 
     (112) 

Therefore, (103) becomes 

       * *
k k kV x z x R PR P z x      (113) 

It is obvious that if the following inequality is satisfied * 0R PR P   then   0, 0k kV x x   . In the 

Lyapunov matrix inequality (99), of all possible solvents R of  M X , only one of the maximal solvents is of 

importance, since it is the only one that contains maximal eigenvalue m   (Remark 5), which has dominant 
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influence on the stability of the system. Therefore, (99) represent stability sufficient condition for system given 
by (11)-(13). The maximal left solvent R can be determined as follows. From (109) and (111) follows: 

        11 , 1 ,  1jh

j j j j jT l RT l T h R T j N       (114) 

          ,j j j j j n j j j j jA T h T h R I T h R RT h A        (115) 

By combining the  two last equations, one can obtain the following system of matrix equations 

  1 , 1jh

j jR T A j N      (116) 

By using (108) and (116), we have: 

    1
0 0

1 1

0 1 1 0N j jN N N

N N
h h hh h h

j j
j j

R R A T R R A R R T

 

 
        

 
       (117) 

Therefore: 

 1

0

0N jN

N
h hh

m m j
j

R R A



     (118) 

Necessary condition. If the system (11)-(13) is asymptotically stable then all roots i   are located within 

unit circle. Since  mR   , there follows   1mR  , so the positive definite solution of Lyapunov matrix 

equation (99) exists. Q.E.D. 
Example 2. Let us consider linear discrete system with delayed state (11)-(13) with 

 0 1 2 1 2

0.01 0 0.2 0 0.5 0
, ,   , 2, 10

0.2 0.2 0.1 0.5 0.1 0.2
A A A h h

     
         
     

         (119) 

From  (118) follows 
 11 10 8

0 1 2 0R R A R A A                           (120) 

In this case the maximal solvent coincides with the dominant solvent  

 1

0.9621 0.0347

0 0.9768mR R
 

   
 

                      (121) 

The same solution can be obtained by using Traub or Bernoulli algorithm. So  1 0.9768 1R   and based on 

Theorem 8 the system is asymptotically stable.  
Corollary 7. Suppose that there exists at least one maximal solvent of  (93)   and let mR  denote one of  them. 
Then, discrete-time fractional order systems (6) is asymptotically stable if and only if there exists symmetric 
matrix 0P P    such that 

 * 0m mR PR P     (122) 

 
 
4. 4 Conclusion 
This paper proposes a simple stability and robust stability analysis for the linear discrete-time fractional order 
systems. It was shown that some results obtained for the stability of the discrete time-delay systems can be 
applied to the discrete fractional order state-space system. Two classes of stability criteria are derived: delay-
independent and delay-dependent. The delay-dependent criteria are given in the form of the necessary and 
sufficient conditions. The approach is based on the idea of constructing novel Lyapunov–Krasovskii 
functionals combined with free-weighting matrices or algebraic methods. 
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Abstract: - Bioelectro-mechanical properties of the skin can be very valid data for analyzing fractal 
characteristics of skin structure. In this paper, bioelectrical impedance method and fractional calculus have been 
utilized for characterization of the human skin. Our fractional model presents the generalized continuous Cole 
model which can predict structural – functional parameters as a lot of Cole complex relaxation times. It is 
shown using the proposed model and experimental results that these parameters depend on the fractional 
indexes as a degree of the fractional derivatives in the interval (0,1). These relaxation time constants correspond 
to structural – functional characteristics of the skin. The integral approximation of continuous fractional Cole 
model was done from ten points corresponding to orderly connected known reduced Cole elements. It was 
observed that five reduced Cole elements had significant values of corresponding relaxation times. Lastly, the 
advantages of the proposed model are discussed.    
 
Key-Words: - skin layer, fractional calculus, frequency analysis, viscoelastic, electric impedance. 
 
 

5.1  Introduction 
Bioelectro-physical properties of human skin tissue, like most other soft tissues, exhibit electroviscoelastic 
behavior. To obtain complete information about the electroviscoelastic behavior of the human skin, it is also 
necessary to have experimental data over a wide range of time scales. 
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If electricity is applied from an external source outside the living organism, we can measure bio-impedance. 
To analyze skin impedance effectively, it is very desirable to introduce the skin impedance model. Also, the 
complex modulus concept is a powerful and widely used tool for characterizing the electroviscoelastic behavior 
of materials in the frequency domain. In this case, according to the proposed concept, bioimpendance moduli 
can be regarded as complex quantities.  

In the BIS technique impedance (or, without the geometric factors, such as surface of electrode and distance 
between them, complex specific resistance of material) or admittance (as a capacitor, or , without the geometric 
factors, complex permittivity), measurements are done at each frequency, and then are plotted forming a 
circular arc [1], [2]. Using electrical engineering modeling mathematics, the points on a circular arc can be 
transformed into an equivalent electrical model, where the values correspond to specific compositional 
elements. Also, mathematically, the fractional integro-differential operators (fractional calculus) represent a 
generalization of integration and derivation to non-integer order (fractional) operators.  
On the other hand, a memory function equation, scaling relationships and structural–fractal behavior of 
biomaterials and, here, the mathematical model based on fractional calculus, were used for the physical 
interpretation of the Cole-Cole and Cole-Davidson exponents [3] with permittivity. As it is well-known, three 
expressions for the complex permittivity allow one to describe a wide range of experimental data: Cole–Cole 
function, Cole–Davidson function and Havriliak–Negami function ([1], [3], [4],[5]). Impedance material 
properties (complex electrical resistance) also describe, in many cases, the relations of the same type. Both of 
these behaviors (i.e. admittance, impedance), in the approximation of linear isotropic and homogeneous 
Maxwell's medium, are functionally connected. 

According to literature data, at low frequencies [1], the skin is usually observed as a simple structure, and  
equivalent electrical model of the skin doesn’t include tissue lamination. In this paper, we propose the skin 
structure as a more complex system consisting of several layers (see Appendix D). We obtain the mathematical 
model of skin structure applying fractional calculus, which describes series of structures via new generalizing 
the Cole  equation. According to this model and experimental data of the skin bioimpedance measurements, one 
may predict more complex equivalent electrical circuit. In approximation, the new continuous single-pole Cole 
model, shown here, better describes electrical behavior of human skin as continuum skin layers. The new 
parameter is introduced at the same time, characterizing the width of the interval in which there are a lot of 
continuous electrical Cole elements.  

There is a wide range of models in literature [6],[7], due to numerous factors involved in tissue behavior 
under various conditions. Generally, three expressions for the impedance allow one to describe a wide range of 
experimental data: Cole function, Cole–Davidson function and Havriliak –Negami function [3],[4],[5],[6]. To 
obtain complete information about the electrical behaviour of human skin, it is also necessary to have 
experimental data over a wide range of time scales. In one of the effective experimental methods, the bio–
impedance spectroscopy (BIS), which we used, measurements are done at each frequency. Each is plotted 
forming a circular arc and then is transformed into an equivalent electrical model where the values correspond 
to specific compositional elements, [8]. Usefulness of BIS is in that it determines the characteristic time 
constants of  the  bio-electrical processes in the tissues. Recently, fractional differential equations (FDEs) have 
been the focus of many studies due to their appearance in various fields, such as physics, chemistry, biophysics, 
engineering control theory, bioengineering, etc. in [6],[7],[9][10],[11]. Mathematically, the fractional integro-
differential operators (fractional calculus) represent a generalization of integration and derivation to non-
integer order (fractional) operators. Here, we suggest the mathematical model of skin structure applying 
fractional calculus, which describes series of structures via continuous generalizing (distributed order type) the 
Cole equation,[12]. The basic hypothesis is that bioelectrical skin properties have been described as the serial 
connection impedance and continually many reduced Cole elements that correspond to infinitely many 
functional-structural skin characteristics. According to this model and experimental data of the skin 
bioimpedance measurements, one may predict more complex equivalent electrical circuit and define new time 
parameters which correspond to each reduced Cole element.  
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5.2 Distributed Order Type Fractional Derivative Model of Impedance 
 

 
5.2.1  Some basic results related to dielectric properties of materials 
In [13], it is shown that the capacitive component of the polarization admittance-conductivity–dielectric 
information is a proper electrical component to monitor the material as an insulator or semiconductor. The 
electrical impedance method was used as a quantitative technique for evaluating changes in the skin. Dielectric 
information, in general, can be presented in a number of equivalent ways and it is important to use the most 
appropriate form of presentation to suit particular requirements. The following principal dielectric functions can 
be defined:  

(a) the complex permittivity ε*(ω) and susceptibility χ*(ω), 

            2* * / ' " ,0 1j j                                                                  (1) 

where ε0 is the permittivity of free space, and ε∞ is a suitable high-frequency permittivity contributing to the 
real and imaginary components of the polarization. So, Debye (D), Cole–Cole (C-C), Cole-Davidson (C-D) and 
Havriliak–Negami (G-H) dispersion functions are presented as follows: 
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Here, 0  is constant, 1ω  =  /  τp  is the loss peak frequency, τ  denotes characteristic damped time, 0  ,  1   .   

The experimental data show that α and ν are strictly dependent on temperature, structure, composition and other 
controlled physical parameters [13]. However, until recently the reasons underlying such dependencies have 
not been clear ,[14]. The α and ν were discussed as the parameters of the distribution of the relaxation times, or 
mentioned as broadening parameters without further discussion. For 1α =  in the Cole-Cole function one can 
obtain the Debye function (Eq.(2)). The Cole-Cole equation described by means of permittivity [15] is 
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* 1
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where εs is the static permittivity of material. One of them, the Cole impedance-complex resitivity model, was 
introduced in its final form by [16], introducing constant phase element (CPE). In [6], as shown by CPE, in the 
equivalent fractional circuit diagrams, (Fig.1): 

 
Fig. 1.  Equivalent circuit single-pole Cole model for calculating the electrical impedance of the skin 
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 The papers [1],[4] present the circuit which was used to model the biomaterials, and after some adaptation it 
will be applied for this study 

                                
 

0

1

R R
Z R

j





 


  
  

                                                                                         (4) 

where R0 denotes a low-frequency resistor and R∞ is a high-frequency resistor, α is fractional CPE exponent-
index,   is characteristic relaxation time. In the paper [6] the expression for τα is given as follows, (Cα is a 

fractional order capacitance). 

                    0R R C
                                                                                                          (5) 

All mentioned models are used to describe the behavior of biological tissue. Material constant Cα in the case of 
living tissue is determined indirectly, through the time  . 

 
 
5.2.2  Basic facts related to bio-impedance of human skin 
Epithelia are cells organized as layers, the skin is an example. Cells in epithelia form gap junctions. 
Particularly, in tight membranes these junctions are special tight junctions. The transmembrane admittance is 
dependent on both the type of cell junctions and extent to which the epithelium is shunted by channels or 
specialized organs (e.g. sweat ducts in the skin). 
 The impedance of the skin is dominated by the stratum corneum at low frequencies. It has generally been 
stated that skin impedance is determined mainly by the stratum corneum at frequencies below 10 kHz and by 
the viable skin at higher frequencies [17]. This will of course be dependent on factors like skin hydration, 
electrode size and geometry, etc. but may nevertheless serve as a rough guideline. A finite element simulation 
on a concentric two-electrode system used by [1] showed that the stratum corneum accounted for about 50% of 
the measured skin impedance at 10 kHz, but only about 10% at 100 kHz, [18].  
 Stratum corneum can have the thickness from about 0.01 mm to 1 mm or more under the foot. The stratum 
corneum is a solid state substance, not necessarily containing liquid water, but with moisture content dependent 
on the surrounding air humidity. It is not soluble in water, but the surface will be charged and a double layer 
will be formed in the water side of the interphase. Stratum corneum can absorb large amounts of water (e.g. 
doubling its weight). Stratum corneum may be considered as a solid state electrolyte, perhaps with few ions 
free to move and contribute to DC conductance. The stratum corneum contains such organic substances as 
proteins and lipids, which may be highly charged but bound, and therefore contributing only to AC admittance. 
An open question is whether the conductance in stratum corneum, in addition to the ionic component, also has 
an electronic component (e.g. as a semiconductor).While the impedance of the stratum corneum is much higher 
at low frequencies than the impedance of the living skin, the differences in dispersion mechanisms make the 
electrical properties converge as the frequency is increased. This is the main reason why increased frequency, 
in general, leads to measurements at deeper layers in the skin.Living tissue is considered as a dispersive 
medium because both permittivity and conductivity are functions of frequency. In paper [19] three major 
dispersions, α-, β-, and γ-dispersion, were identified and named. Later, in work [20] a forth dispersion was 
identified and named δ- dispersion. The α-dispersion takes place at low frequencies, 10 Hz – 10 kHz. Although 
all elements contributing to this frequency dependence have not been clearly identified yet, in [21] three main 
causes were established. First, the effect of the endoplasmic reticulum contributes to this frequency 
dependence. Second, the channel proteins present in the plasma membrane also cause the frequency-dependent 
conductance. Finally, the relaxation of counter-ions on the charged cellular surface is another mechanism that 
produces this frequency dependence. Authors,  [22] established the range of β-dispersion from approximately 
10 kHz to 100 kHz. It is caused by the low conductivity and capacitivity properties of the cell membrane and 
other internal membrane structures and their interactions with the extra and intra-cellular electrolytes. This 
paper will consider the human skin impedance dispersion in the area of frequency mostly covered by α-, β- 
dispersion. 
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5. 3 Distributed Order Type Fractional Derivative Model Of Impedance  
 
 

5.3.1  Fractional calculus preliminaries   
5.3.1.1 Basic definitions  

Let   0 1,f L t t  and α > 0, ([11],[23]), so that, in the left Riemann-Liouville integral of  f(t) of fractional 

order α  which is:  

                      
0

0

11
: ' ' '

t
RL
t t

t

I f t t t f t dt



 

                                                                        (6) 

where (.)  is the well-known Euler's gamma function. For the initial moments 0t  = -  usually refers to integral 

as a left Weyl fractional integral of the order 0,1α   . Also, left Riemann-Liouville and Caputo derivative of 

( )f t of the order α ,  can be presented  as follows, 0,1  :   

          
0 0

0

1 1
: ' ' ' 

1

t
RL RL
t t t t

t

d d
D f t I f t t t f t dt

dt dt
 


  

                                       (7) 

          
00

1: 'C
t t tt D f t I f t                                                                                                 (8) 

In the case 0t  = - , expression (7) i.e (8) represents a left Weyl fractional derivative (in turn, Riemann-

Liouville-Weyl and Caputo-Weyl derivative). Apart from linearity and derivative of the constant being zero, a 
left Caputo-Weyl fractional derivative has the following characteristics [7], [11],[23], that are used in this paper 

   ( ) exp ,  0,  f t C p t p p j        

                           CW
tD f t p f t


                                                                                                    (9) 

In addition, one may  obtain ([11] ,[23])   

                             0 ( ) : ( )CW
tD f t f t                                                                                                              (10) 

The initial conditions problems of fractional differential equations, which were compared to the given 
fractional derivatives, were also considered and presented in [24].  In line with the recent work, if the the input 
or output system are known as the paper case, it is possible to calculate physically acceptable initialization 
function. The Caputo derivative was used as the initial moment 0 0t  , but was not usable for distant initial 
moments t0=-∞, as Caputo-Weyl’s, which was used to describe harmonic processes in this work. 
 
5.3.1.2  Distributed Caputo  derivatives and integrals 
The left-sided fractional Caputo derivative of absolute continuous function  t  of the order  0,1  , 0T  , 

is defined by the following relation: 

        
0

0

0 0
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: ' , ,  0
1

t
C
t t

t

D t t d t t T t
    


       

                                   (11) 

Let    , 0,1C t t  be the continuous non-negative function different from zero on a set of positive measure. 

The distributed Caputo fractional derivative [25] is then defined by the relation:   

      
0

0

: '
t

C C
t t

t

D t k t d                                                                                       (12) 

where 

     
1

0

0

: ,  
1

s
k s C d s t


 




   

                                                                               (13) 

Since  t  is absolute continuous function, it holds: 

Modeling of Human Skin using Distributed Order Fractional Derivative Model-Frequency Domain

95



 

               
0 0 0

0 '
t t t

t t t

d d
k t d k s t s ds k t k s t s ds

dt dt
                            (14) 

respectively,  

          
0

0

0
t

C C
t t

t

d
D t k t d k t

dt
                                                                     (15) 

Consider only the case when the derivative of integral of the preceding equation right-side makes sense and it is 
the basis for further considerations. Also, it is necessary to define the Laplace transform 0 0t   that is used in 
this work: 

            
0

,  Re 0p s
Lk p k s e ds p


                                                                                    (16) 

It is logical to consider the inverse operation of distributed Caputo derivative. Let   0
C C

tD u t f ,  0 0u  . 

Applying formally the Laplace transform, Lu u will be     /L L Lu f p p k p  . Asymptotic behavior of 

 Lk p was considered in [26] and, based on this paper, via the Laplace transform    21/ Lp k p , the kernel 

of the function  t is obtained: 

   
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j p t
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e
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j p p k p





 


  

 

   
                                                                   (17) 

The preceding formula is used to define the distributed integral via the convolution operation as follows:  

      0

0

:
t

C C
tI f t t s f s ds                                                                                      (18) 

Previously described derivatives and integrals are well-known in literature as well as those based on Riemann-
Liouville fractional operators. Furthermore, there follow new formulations of the corresponding operators and 
statements that are useful in considerations below. 
 
5.3.1.3 Distributed Caputo-Weyl derivatives and integrals 
We will consider here the distributed and, similar to them, fractional derivatives on a set of functions 

    2 ,t L     or on their suitable subset if 0   that the Caputo-Weyl fractional derivative 

(  0 ,  0,1t    ) will be applied to. 

      : , ' ,
t

CW
tD t f t d t T     



                                                        (19) 

where 

                   
 
 

  
, : 1

0  

t
t

f t

t


  



 
 

   




                                                                                       (20) 

Certainly, there could have remained the condition that the function belongs to those absolute continuous 
functions that the Caputo Weyl fractional derivative makes sense for (where it can be defined). Additionally, 
the Caputo-Weyl fractional derivative can be represented as follows: 

       : , ' ,CW
tD t f s t s ds t T  






                                                           (21) 

with the condition  
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
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
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                                                                                              (22) 

i.e. if  m s  is defined here as: 

                                   
1

0

: ,m s f s C d                                                                                               (23) 

It follows that the corresponding Caputo-Weyl distributed derivative can be represented in the following form:  

      : 'CW C
tD t m t d    






                                                                               (24) 

Also, the Fourier transform  of m(s) is 

    2 j s
Fm m s e ds 


    



                                                                                      (25) 

Let   CW C
tD w t g  . Applying the Fourier transform Fw w  it follows that      /F F Fw g j m     . 

Then the kernel of the function  t  has the form:  
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such that the distributed Caputo-Weyl integral can be represented in the form as follows: 

     w t t s g s ds




                                                                                       (27) 

Analogous to distributed fractional derivatives, it is possible to define the corresponding integrals too. The 
Riemann-Liuoville distributed integral: 

       
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I f t t t f t dt



 

                                                                          (28) 

Let     , 0,1C t t  be the continuous non-negative function, different from zero, on a set of positive measure. 

The infinitely distributed Caputo fractional derivative of negative degree is then defined by the relation: 

             
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where 
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Let    , 0,1C t t  be the continuous non-negative function, different from zero, on a set of positive measure.  

Then  
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In the case that 0t   holds, for    expf t j t    
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   RL CW
t tI f t D f t 

                                                                                                  (33) 

Also, in that case Eqs (29) and (31) describe the same operator.  
 
 
 

5.3.2 Cole and distrubeted order Cole element 
In case of relaxation in the electric circuit consisting of parallel connected resistor R and CPE, the suitable 
fractional differential equation is      

                    0 0/ 0, 0 ,   C
t RC D V t V t R V V R C 

                                                        (34) 

where voltage on CPE element was marked with V(t), and V(0) presents given initial condition. The solution is 
given as  
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where Eα(t) denotes Mittag-Leffler’s function. If we connected the complex alternating - oscillating voltage to 
the same electric circuit in the shape of V0 exp(j(ωt+φ)), the Weyl derivative can be used, (V0 is the voltage 
amplitude, ω is the source frequency, and φ is the phase angle between the voltage and the current). Then, if the 
dependence of the electric current of amplitude i0 on time is introduced as    0i t i exp j t , it  yields  
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where Z is a complex impedance of the system. Introducing the sign “| |” for the parallel connection of complex 
resistance, we can write  
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
                                           (37) 

Then, the (4) which describes the electric Cole circuit influenced by the aforementioned alternating voltage 
actually models the system consisting of orderly connection of resistance R∞ and reduced Cole element (R0 - 
R∞)||Cα(jω)α 
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The basic assumptions for which this generalization is done are that there are neither inductive resistances, nor 
active elements, connected serially or in parallel. In that case, the skin is, in the electric sense, taken as serially 
continually many connected linear,  reduced Cole elements Rα ||Cα(jω)α and one R∞ (Fig.2).  Resistance R  can 

be presented as Rα=p(α)(R0 - R∞)) and characterized each individual reduced Cole element, where p(α) is a 
function of  . The equivalent total impedance ZC;c of this new electric circuit is given by the equation 
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or, this expression (39) is the continuous Cole generalization equations (distributed order model) , where 
' '' , 0 1j          are the corresponding  complex time constants. In the characteristic case 1  , 

the relaxation constant 1 1 1' ''j      is in correlation with complex dielectric constant. For more details 
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about the concept of a complex characteristic time, see [27]. In our work, the cases 1   correspond to the 
analogous fractional processes in the skin.   

 
Fig. 2. Electrical continuum, distributed order model of the skin, based on the Cole equation, p(α) is  a fraction 

of (R0 - R∞).  
 
The above expression (39) can have its geometrical representation, i.e. the following integral is considered:  
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where p(α) and τα are complex functions. Geometrically, in the    1 2( ) ( )y Re y O y Im y     plane the 

previous expression represents the continuous development-integral in coordinate system  ' 'y y  i 
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respectively, for  exp argj        and the central angle  / 2 arg        one obtains circular arcs 

with the centers at points T(1/2, / 2tg ) and radii   

21

2

tg
r


                                                                                                             (42) 

The sides of the mentioned central angle that determine the circular arc make semi-straight lines from the 
vertex T through the coordinate origin and point (1,0). An example of a circular arc for 0.7  is presented in 
Fig.3.  

 

Fig.3. The graph of the function      1
1y j


  


    for 0.7  i 10+20 j   . 

 
To prove this statement, it is necessary to consider the locus of points described by the expression for the fixed 
value of index α: 
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Here, it is also introduced a new complex structure constants 
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Mathematically,  Eqs. (39) and (45) correspond to the application of continually many derivatives, which have 
not been distributed (the application of concept of the distributed derivatives on oscillating movement can be 

found in [28]. For  0R R  , there will be  
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which corresponds to Caputo-Weyl distributed derivatives (Eqs. (29) and (31) ) 
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Our case, due to 0R R   , describes one generalization of  Weyl distributed derivatives (integrals). On the 

other hand, if  
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then, (45) changes to 
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and represents discrete series of Cole elements. For numerical calculations, we can obtain the Cole equation 
(45) in a discrete form (the integral approximation by the integral sum of five members) as follows 
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The structure parameters 0 2K(i)  K( .  i)  and  p(i)   are  calculated from the corresponding system of the ten 

nonlinear equations, where we used 100 0 0 1ω KHz ω . HzR   R ,R   R    . Numerical calculations are done using 
suitable the least squares method in MATLAB environment.   
 
 
5.3.3 Materials and methods  
The proposed experimental method uses a two-electrode technique with a constant amplitude sinusoidal 
voltage. The skin of the upper arm impedance mesaurement was carried out in healthy young men. The 
electrodes were made of  stainless steel, 2.0  cm  and the distance betwen the electrodes was 5.0  cm . The 
electrode paste used was a cream (EC 33 skin conductance). The measuring system Solartron 1255 Frequency 
Response Analyser in combination with Solatron 1286 Pstat/Gstat was used for measuring the components of 
impedance and characteristic frequency of the skin in the frequency range of 0.1 Hz to 100.0 KHz.   
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Fig. 4. Solartron 1255 Frequency Response Analyser in combination with Solartron 1286 Pstat/Gstat 

 
Fig. 5. Two - electrode system in impedance measurement by constant amplitude sinusoidal voltage method.   
 

Measurements were taken at 61 different frequencies for twenty young men, frequencies between 0.1 Hz and 
100.0 KHz and the applied voltage was of the amplitude 0.1 V. Experimental data were processed using the 
Zview software. Calculated impedance error in the population for given frequencies is 2%. For this analysis, we 
had ten random impendances and the total required time for the frequncy sweep measurement was about 10 
minutes.  
 
  
5.3.4  Results and discussion  
Consider an assembly of Cole systems like the one described in [1]. This electrical equivalent corresponds to 
the object under investigation, when doing impedance measurements on human skin. Measured data may 
represent contributions from electrode polarization, stratum corneum, sweat ducts and deeper tissue, and 
furthermore several dispersions of some of these components. Only one Cole system is shown for the electrode 
polarization, although two dispersions have been found in some studies [29]. The stratum corneum is 
dominated by a single broad dispersion [8] and the sweat ducts may exhibit dispersion due to countering 
relaxation [4]. In work [8], two orderly connected CPEs with indices of about 0.71 and relaxation times of 
0.001s were observed. It was assumed that the relaxation times were positive real numbers. Also, in [30] they 
are suggested and proposed layer models (series layer model, parallel layer model, brick layer model,…) as 
well as effective medium models. Here, in relation to our experimental in vivo conditions, the structure and 
complexity of the considered system - human skin, we decided to have its electrical behavior described by the 
(continuum) series layer model. In addition, we will consider the  Zview software, the chi-square goodness-of-
fit test normally distributed random changes in various standard deviations for each measured impedance 
frequency and determine the acceptability of this model,  which can be one of the techniques for establishing its 
relevance [31], [32]. Against, in the above stated approximation of integrals it was carried out where the 
interpolation coefficients are determined K(i) and p(i). In the beginning of the discussion we shall present the 
basic experimental results on the population of twenty volunteers at 22 0C and 50% relative humidity. The 
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module of impedance decreases with increasing frequencies. The interval of values of modules of impedance is 
from 1 KΩ  to 1 M Ω. The minimum of angle theta is at frequency of around 500 Hz (see Fig. 6.)  

 
Fig. 6. Bioimpedance of human skin Z Z  , Zview software,(c); Amplitude characteristic (a) and  phase 

characteristic (b) of impedance of human skin, voltage V0=0.1V, diameter of eletrodes is 2 cm 
 
In our work, with Zview software (61 different frequencies) we predicted one Cole element with parameters 
α=0.766(0.003) (0.5%), τ=9.2(0.3)10-8s(3%), (R0-R∞)=1.24(0.02) MΩ(2%) and R∞=0.82(0.04)kΩ(4%).  
Approximation error with impedance for each frequency is greater than 6%.     

 

 
Fig. 7.    Re ImZ Z plot for model being presented in this  work,voltage amplitude V0=0.1V, diameter of 

eletrodes is 2 cm, distance between electrodes is 5 cm.  

Results of numerical solving of the (18) are: R∞=0.72kΩ, (R0 - R∞)=1.27MΩ and  they are represented in Fig. 7. 
and Table 1.  
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Table 1   Calculated values τ(α), p(α) 

α τ(α)(s) p(α)(s) 
0.2 -0.0052 - 0.0077  j 0.0674 + 0.0592  j 
0.4 0.4660 + 3.6670  j -3.5138 - 2.3752  j 
0.6 -0.0047 - 0.0002  j -0.0012 + 0.0001  j
0.8 -0.0165 - 0.0185  j -1.0832 - 0.4607  j 
1.0 1.2572 + 2.3425  j 2.0076 + 6.0802  j 
   

 
In the MATLAB environment, the proposed program based on the least squares method quickly calculated 

the required 486 iterations to a solution. Approximation of integral of  sum is obtained with five members and it 
is 4% better (the sum of squares is 7.72·109) than in Zview software (the sum of squares is 8.05·109).  
 
 
5.4 Conclusion 
 In our paper, it is suggested the mathematical model of skin structure applying fractional calculus, which 
describes series of structures via continuous generalizing (distributed order type) the Cole equation. In that 
way, our fractional model can predict structural – functional parameters as a lot of Cole complex relaxation 
times. The main conclusion of our work is that continuous fractional single-pole Cole model, even the integral 
approximation of  continuous fractional Cole model  describes much better the electrical behavior of the human 
skin than using single-pole Cole model. This creates the basis for more precise analysis of the bioimpedance 
behavior of the skin based on continuous approximation. Also, it is shown using the proposed model and 
experimental results that these parameters depend on the fractional indexes as a degree of the fractional 
derivatives in the interval (0,1). Last, it is shown the integral approximation of the distributed order Cole 
model, in the sense of  the proposed least squares method, is better than the Zview software by about 4 %. 
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Abstract: - In this chapter, it is our intention to convince the reader that a modified Zener model of viscoelastic 
body, i.e. standard fractional linear viscoelastic body, comprising both fractional derivatives of stress and strain 
and the restrictions on the coefficients that follow from Clausius Duhem inequality, seems to be a very tractable 
object in engineering applications. The principal advantages of the model are twofold. First, it takes an energy 
dissipation ab initio, and secondly, it can be used for rheological description of both new high performance 
materials, such as elastomers/polymers, as well as different biological tissues. In the following, the differences 
in approach to the existing models are highlighted. Then, after introducing the model, several rheological 
experiments that connect the model to real materials are listed. Four constants of the model will provide 
descriptions for a sufficiently wide range of engineering/bioengineering applications. We start with a 
viscoelastic compliant contact impact model that is followed by forced oscillations problem with fractional type 
of dissipation pattern. A simplified earthquake dynamics of a column-like structure is also examined. The 
model is also tractable within problems where geometric nonlinearity exists, as shown when the airplane 
landing problem is considered with dynamics represented by a single integral equation involving Mittag-
Leffler-type function, whose solution is ensured by the fixed point theorem. Finally, the model can be coupled 
with nonsmooth mechanical problems. The impact problem is re-examined with dry friction as a multifunction, 
causing physical nonlinearity, and leading to a multivalued fractional differential equation that is solved by the 
slack variable algorithm in dealing with discontinuous motion phases. This time, the existence result ensuring 
the contractible solution set of the corresponding integro-differential inclusion will be used. 
 
Key-Words: - Fractional Calculus, Standard Fractional Linear Viscoelastic Body, Clausius-Duhem Inequality, 
Forced Oscillations, Seismic Load, Impact, Geometric Nonlinearity, Dry Friction, Energy Dissipation, 
Discontinuous System Behaviors, Slack Variable, Multivalued Fractional Differential Equations, Integro-
Differential Inclusions 
 
 

6.1 Introduction 
The new tendency in engineering favors the design of systems incorporating new high performance materials. 
Because of today's concern for liability, the use of such systems requires thorough knowledge of their physical 
properties. Thus, it is widely accepted that engineering innovations must be exhaustively tested and analytically 
proven to a degree unknown in the past. In doing so, a special attention is paid to energy loss within a particular 
system representing a major part in its modeling. Namely, the low cost of numerical versus expensive 
experimental simulations can be used to study a wide variety of loadings, materials and geometries before 
proceeding to its construction. Engineering models are usually generated by fundamental physical and 
geometrical principles. Initially, the number of unknown variables is not the same as the number of equations 
expressing the principles, so the model should be complemented with an appropriate set of constitutive 
equations. Among the variety of all possible choices the question that is posed at that stage is which rheological 
description of the system component contain enough information on the physical properties of the system to 
allow accurate predictions of its behavior. We here discuss the constitutive model known as the modified Zener 
model of viscoelastic body, [2] that comprises fractional derivatives of stress and strain, emphasizing the 
restrictions which the second law of thermodynamics places on the coefficients of the model. It seems that the 

A Thermodynamically Consistent Rheological Model for Engineering Applications

107



 

model that takes energy dissipation ab initio is very tractable in applications dealing with impact or oscillatory 
motions within mechanical systems. 

The simplest models of mechanical systems are formed of rigid bodies in the ideal environment. Rigidity 
causes simplicity which is a desirable property but at the same time significantly narrows the class of problems 
that can be dealt with. The same is valid for an assumption of ideal constraints. For example, a physical 
pendulum will oscillate forever unless the dry friction is included. Note that if one uses viscous friction in the 
model, the motion ceases in infinite time. A problem of a rigid sphere in translatory motion impinging two rigid 
spheres at rest and in contact, even can not be well posed within the rigid body mechanics, [59]. So, we need 
models to understand nature. Thus, in order to improve the rigid body model, we introduce a deformable layer 
around a rigid core [58]. For simplicity, we deal only with isothermal and uniaxial deformation. A simple shear 
deformation pattern will appear later. 

It is known that the Hooke law, describing strain (relative elongation)    and stress ,  force per unit area 
of the body in the undeformed state, also called Piola-Kirchhoff stress, reads 

 
E                 (1) 

 
where the constant 0E   is called the modulus of elasticity. Despite the fact that it is used in most of theories, 
it has never been experimentally proved. Namely, it is worth noting that the experiments of three hundred years 
have demonstrated amply for every solid substance examined with sufficient care that the strain resulting from 
small applied stress is not a linear function thereof, see [10], p.155. This leads us to viscoelastic layers. 

A usual form of the rheological model corresponding to Kelvin-Voigt viscoelastic body reads 
 

 1
1 1 1 ,E E                  (2)  

 

where     1
/d dt    denotes the first derivative with respect to time t , and 1E  and 1  are constants called 

the modulus of elasticity and strain relaxation time, respectively. This model has a chance to be suitable for 
specific applications. For example, two constants of the model are examined for several different types of 
vehicles, so it can be used in crash analysis and accident reconstructions, see [34]. However, if we analyze a 
real deformation stimulus pattern shown in Fig.1 
 

 
 

Fig. 1 The real stimulus pattern. 
 

i.e. a ramp-and-hold strain, then stress relaxation as an inherent property of real materials, see [66] or [64]. 
Namely, after the loading phase with initial strain rate .const    ends, and strain reaches a constant level 0   

at instant ,kt  leading to stress level ,k  we note that there is no jump in stress-time diagram. It can be easily 

seen that the Kelvin-Voit model does not fit for the real deformation stimulus shown in Fig. 1. 
The one that fits to Fig. 1 is so called standard linear viscoelastic body, i.e. the Zener model that has 

constitutive relation (stress-strain relation) in the form 
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    1 1
1 1 1 1 ,E E                                        (3) 

 

where the stress rate  1  and a constant called stress relaxation time 1  are introduced. Note, however, that 

there exists a fundamental restriction on the coefficients in (3) that follows from the second law of 
thermodynamics, 
 

1 1 1 10, 0, ,E                     (4) 

 
as proposed in [9] and [2]. Although the Kelvin-Voigt model 1 0   does not satisfy the restrictions (4) it 

could be used for certain materials and certain types of deformations, see [54]. Also, note that there will be no 
damping if 1 1    in (3), see [24]. 

Starting from the virginal state  0 0,    0 0,   and applying the Laplace transform with     

 

                        
        0 0

{ } , { } ,st sts t e t dt s t e t dt      (5) 

 
from (3) one gets 
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The inverse transform of (6) yields the following stress-strain relation 
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             (8) 

 
can be used to recover the behavior shown in Fig.1. Note that in (7) the history of deformation is taken into 
account. 

To describe specific class of viscoelastic materials equations of the type (3) have been generalized by 
replacing the first derivative that appear in (3) with the fractional derivatives. In the 80s of the former century, 
in doing so, Bagley and Torvik proved experimentally that this generalization of (3) correctly describes the 
behavior of over 150 viscoelastic materials. Recently, it has been shown that it fits for several biological tissues 
too, see [49] and [19] for example, so it represents a strong candidate for a reliable rheological model, we are 
going to consider next. It should be noted that the price we pay for better rheological descriptions is the use of a 
slightly different mathematical tool. 
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6.2 The modified Zener model  
Let us introduce    the derivative,  0 1, of a function  u t  in the standard Riemann-Liouville form 

 

   

 
 
 






 
 

 
  0

1
,

1

t u dd d
u t u

dt dt t
 

 
where   is the Euler gamma function, then the fractional derivative type generalization of (3), usually called a 
modified Zener body, was taken in the form 

 
  

           ( ),E E                (9) 

 
where  0 1, and  ,   and E  are constants. The dimension of the relaxation constants  , and   is 

time to the power of . The constant E  is usually given in MPa. The constitutive equation (9) describes 
uniaxial, isothermal deformation of the viscoelastic body of negligible mass, together with fundamental 
restrictions on the coefficients of the model that follow from the Clausius-Duhem inequality, see [9] and [2], 

 

       0, 0, .E             (10) 

 
Note that in (9) the nonlocal derivatives are used. Also, note that in the special case  1, relations (9) and 

(10) reduce to (3) and (4) respectively. In that case, a conventional tool of mathematical analysis can be used. 
Applying the Laplace transform once again with (5), from (9), also starting from virginal state, one gets 
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where the standard expression for the Laplace transform of  u  was used, that is, 
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with  { }u t  = u  =  ,u s  and where the integral in brackets vanish since  0

lim
t

u t  is bounded, see [9]. 

Following the standard preparatory procedure, as shown by Mainardi and Gorenflo in [41], the inversion of 
(11) yields 
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t E t s

s
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where   and   denote 1/  and      / 1 ,E  respectively. 

With this preparation done, we are ready to examine at least five types of rheological experiments. The 
classical stress-relaxation and creep experiments, with   0 .const  and   0 .const  respectively, for 
the generalized Zener model, were analyzed in [2] and applied for the O-Ring Sealing (Fluor-Elastomer), see 
[7], yielding the following values of the four constants in the model (11).  

 

       0.490, 7.150, 0.945, 135.01.E  

 
For comparison, four constants describing human root dentin, obtained also from the experiments of the same 
type reported in [37], reads 
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       0.136, 350.7, 0.525, 0.762,E  

see [49] for details. Note that inertial limitations of physical testing devices prevent instantaneous strain 
applications and very fast ramp times are intractable due to the issues such as overshoot, vibration, and poorly 
approximated strain histories, see [64]. Thus, the classical stress-relaxation experiments with the stress behavior 
of a tissue measured in response to an instantaneous (Heaviside or step) strain application can not be considered 
as a real deformation stimulus, see [66]. Examples of the experiments with a constant strain rate type, i.e. 
  ,t  and   .,const  and the stretching in steps type, with    / ,t  where   .,const  and    denoting 

the maximal integer less then / ,t  can be found in various reports, and will not be considered here. The fifth 
type, the ramp-and-hold strain, then the stress relaxation experiment, with an input  
 

 
 


  

  
 
     0

, for 0 ,

., for .

k

k k

t t t

t

t const t t

         (14) 

 
with   .const  as the initial strain rate, is the most recognized type and will be used here, see Fig. 1. 

Rewriting (14) in the following form  
 

              ,k kt t h t t t h t t          (15) 

 
where  h t  stands for the Heaviside step function, and applying the Laplace transform to (15), one obtains  

 

      2
1 .ksts e

s
            (16) 

 
Introducing (16) into (13), and referring again to [41] one gets 
 

 

 

   

 

  

    



       



    

 
          

,
0

0 0

, , for 0

, , , for ,
k

t

k

t tt

k k

E t e d t t

t

E t e d e d t t

    (17) 

 
where   ;e t  denotes the Mittag-Leffler type function, defined as  

 

   
   ; ,e t M LE t           (18) 

 
with  M LE t  being the Mittag-Leffler function,   0 , 

 

 
 

 
















   


 
  

0

1

,  for sm all values of ,
1

, for large values of .
1

n

n

j

j

t
t

n

M LE t

t
t

j

        (19) 

 
For the values of parameters satisfying (10) the expression (19) exhibits behavior shown in Fig. 1. It could be 
shown for several sets of recent experimental data presented in literature. Namely, several points were chosen 
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from the stress relaxation curves and then (17) was forced to pass through those points. In doing so, we used 
particle swarm optimization algorithm, see [38] and [55], with the least squares method as an optimality 
criterion. The suggested procedure yields four parameters of the constitutive model   , , ,E  and  . For 

rough comparison the stress relaxation curves obtained only by four constants agree well with the classical 
Prony approximation involving significantly more constants. 

We make two remarks here. First, note that the strain rate   is an input parameter of the model. Secondly, 
following the lines of [22] and [23] we can apply the same analysis for the case of simple shear deformation 
pattern. In such a case   and   in (9) stand for the shear stress and strain, respectively, while the modulus of 
elasticity should be replaced by the shear modulus. For the latter, we give an example here. Namely, for the 
results presented in [57], for polymer used in seismic base isolation systems, for different values of 
 2,1,0.4,0.2  s 1 , in time domain, the suggested procedure yields the following average values 

 

       0.619, 0.163, 0.110, 8.003,G        (20) 

 
as shown in [67]. The agreement between the experimental results and the model are shown in Fig. 2. In the 
following figures   is given in MPa, while time t is measured in seconds. 
 

 
Fig. 2: The agreement between the experimental results of [57] and the modified Zener model with (9). 

 F 
Note that in the used stress relaxation experiments of [57] only values for  ,kt t  corresponding to 

relaxation phase are reported. This is due to relatively high strain rates. However, the suggested procedure is 
suitable in describing both loading  0 kt t  and relaxation phase  kt t . We illustrate this by invoking 
experimental results of [12] who examined uniaxial stress relaxation of calf ulnar growth plate by ramp-and-
hold strain, then stress relaxation tests with a displacement rate of 0.115  610  s 1  . The results presented in 
Fig. 8 of the mentioned paper are used to determine the four parameters of the modified Zener model. In doing 
so, one obtains 

 

       0.815, 0.622, 34.114, 481.569.E       (21) 

 
In Fig. 3 we present the agreement between the experimental results presented in Fig. 8 of [12], and the 
fractional model (9) with (21). 
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Fig. 3: Predicted (solid line) and measured (dashed line with marks) stress relaxation of Fig. 8 of [12] and (9) 
with (21). 

 
It should be noted that on the basis of the several recently published results of the ramp-and-hold strain, then 

stress relaxation experiments for the middle ear structures: tympanic membrane, tensor tympany tendon, 
stapedial tendon and anterior malleolar ligament, see [15] to [18], the four parameters of modified Zener model 
(9) and the corresponding relations (10) are reported in [19] where good agreements between the measured 
values and the predicted values, as in Fig. 3, are shown. The application of the model in the analysis of the 
hamstring muscle group are given in [31]. 

The values of four constants in the modified Zener model, presented in this section as well as in [19], can be 
used within different engineering/bioengineering applications including impact and cyclic loading. The strategy 
for it will be clear soon. Before it, we give some results dealing with constitutive equation (9) that will be 
useful in the forthcoming analysis. First, rewriting (11) as  

 

 

  



   
  



 
   

  

1 1
1 ,

1
s

          (22) 

 
and following the lines of Gorenflo and Mainardi, as in [29] p. 267, after inversion one gets the following 
relation between stress and strain  
 

      
 

   

      
   

   
       

   
 ,0

1 1
1 , ,

t
t t e t d      (23) 

 

where    , ;e t  stands for the generalized Mittag-Leffler function, that is     , ;e t   
    1
, /E t t  

with    ,E t   
   0 /n

n t n . Note that (23) generalizes (7) in a natural way, as expected. Secondly, for 

numerical analysis a slightly different form of fractional derivative will be useful. Introducing the time step ,h   

( ,mt m h 1,2,...),m   the fractional derivative  
mz  can be taken in the form 

 

  





  ,
0

, 1,2,...,
m

m j m j
j

z h z m          (24) 

 
with  ,j  calculated by the recurrence relationships 

  
   

 
    

 
0, , 1,1, 1 , 1,2,3,...,j j

j
j

j
      (25) 
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see [51]. The expression (24) can be used for discretization of (9) 
 

 
             

 
 

    , ,
0 0

, 1,2,...,
m m

m j m j m j m j
j j

h E E h m    (26) 

 
which will, together with standard difference approximations for the first and second derivatives, lead to an 
algorithm for numerical integration of the systems containing fractional differential equations. Finally, we 
comment on the term fractional. It is a traditional word that could be replaced by arbitrary real order since the 

order of the derivative can be   2 1. Thus, the words differential equations of arbitrary real order can be 
used as well. 
 

6.3 The Applications 
As a first example, we analyze the viscoelastic compliant contact impact model with fractional derivative type 
of dissipation (9). We intend to show that the dynamics of the problem is governed by a single differential 
equation of real order. The obtained equation will be numerically solved. The comparison will be made to the 
solution obtained by the Laplace transform method and Post's inversion formula. The predictions of the model 
concerning the duration of the impact, maximal values of the impacting force and deformation as well as the 
restitution coefficient are determined for several values of the system parameters. The influence of the 
thermodynamical restrictions on constitutive equations (10) will be taken into account as well. 
 

6.3.1 The impact against a rigid wall - an ideal case 
The impact of solid bodies is a complicated phenomena and could be studied by several different approaches, 
see [11], [25] or [26], for example. If impacting bodies are taken to be deformable, then one has an advantage 
of being able to determine the impacting time, maximal deflections and impacting forces. Special feature of 
viscoelastic impacting body is that there exists hysteresis-like behavior in force displacement diagram. Such a 
behavior was explained either by nonlinear models [35], or by the use of the standard linear viscoelastic model, 
as done in [13]. We believe that generalized model of viscoelastic body used here is capable of describing 
impact in a more accurate way, while still remaining in the linear theory, [8]. 

Consider a block of mass m  sliding on an ideal straight line with constant velocity 0v   and impacting 
against the rigid wall (infinite mass), through a deformable body, we model as a straight rod of negligible mass. 
We assume the rod is of constant cross-sectional area A  that we assume remains the same during the 
deformation, and of length l in the undeformed state. The assumed value of the friction coefficient between the 
block and the line is zero, say 0.   We use x  to measure uniaxial deformation of that deformable body, see 
Fig.4. This deformation is assumed to be isothermal. 

 

F 
Fig. 4: The system under consideration. 

 
Let f  be the force between the body and the wall. This force also acts on the block, so its equation of 

motion following from fundamental axiom of dynamics [43], reads 
 

         2 1
0, 0 0, 0 , 0 0,m x f x x v f             (27) 

 

x

m
l
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where we used     /k k kd dt    to denote the k  th derivative with respect to time  .t   The relation between 

 f f t  and  x x t  (constitutive equation of the deformable body) can be taken in different forms. Noting 

that the stress and strain used here are given as /f A   and /x l  , respectively, and applying it to (9) we 
get the complementary constitutive equation in the following form  
 

    ,E A
f f x x

l
 

                 (28) 

 

that should be followed by (10). As above     denotes the th   derivative of a function    taken in the 

standard Riemann-Liouville form. 
Introducing the dimensionless coordinate, force, and time 
 

, , ,
xE A E Af

x f t t
m gl m g m l

              (29) 

 
as well as the dimensionless quantities 

 
/2 /2 1/2

0, , ,
E A E A v E A

m l m l g m l

 
  

                  
     

     (30) 

 
into (27) and (28), after omitting the bar, we get the following equations describing the impact of the system 
presented in Fig. 4, 

 
(2) (1), (0) 0, (0) , (0) 0,x f x x f              (31) 

 
 ( ) ,f f x x 

                   (32) 

 
where derivatives are taken with respect to dimensionless time. Note that this model belongs to the class of 
continuous-dynamics models of collision, i.e., collision dynamics is treated as a continuous time dynamics 
phenomena restricted to local deformations (vibration effects of the solid body are not taken into account). In 
other words, it allows rapidly changing velocities without discontinuities. Also, note that thermodynamical 
restrictions (10) 2,3  in dimensionless form remain the same. The impact ends at instant ,t T  when  

 
  0.f T                (33) 

 
Actually, the study of considered fractional standard linear solid models, which is another name for the 

modified Zener model, possess an essential mathematical interest too. In this section, we start with simple 
numerical procedures for the solution of (31) and (32). First, we remove the non-homogeneous initial condition 
(31) 3  and eliminate  f  . Namely, by introducing the variable  

 
    ,z t x t t               (34) 

 
and using basic properties of the Riemann-Liouville fractional differentiation, instead of (31), (32), we obtain 
the following differential equation of real order  
 

       
 

2 2 12
,

2
z z z z t t  

 
 

  


 
     

 
       (35) 

 
with homogeneous boundary conditions  
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   0 0, 0,1,2.kz k              (36) 

 
Using the first order approximation of the problem (24) for derivatives of the order   and 2   with 

corresponding coefficients (25) ,j  ,  ,2 ,     we derive the following algorithm to obtain the numerical 

solution, see [51],  
 

0 1 20, 0, 0,z z z               (37) 
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        (38) 

 
where h  is the introduced time step. Noting that    m mz z t z m h   from (34) we obtain  

 
.m mx m h z               (39) 

 
Finally, using the second-order backward differences from (31) 1  we find  
 

 1 2
2

2
.m m m

m

x x x
f

h
  

             (40) 

 
As an alternative algorithm of finding approximative solutions, we are going to apply the Laplace transform 

and Post's inversion formula. Namely, applying the Laplace transform to both (31), (32), after some 
calculations one gets the following images of the deformation and the force in viscoelastic rod  

 

 
 

 
 

2 2 2 2

1 1
, ,

1 1

s s
X s F s

s s s s s s

 
 

   
   

   
    

 
 

     
    (41) 

 
respectively. The originals  x t  and  f t  follow by the use of Post's inversion formula, see [45] p. 380, i.e.  

 

 
 

 
 

1 1

( 1) ( 1)
lim , lim .

! !

n n
n nn n

n n

n n n n
X F

t t t tx t f t
n n

 

 

               
             (42) 

 
Although Post's formula, discovered in 1930 [53], may be regarded as an analytical result, very useful for 
applications, difficulties, essentially technical in nature, prevented its usage in practical problems. However, 
nowadays the n  -th derivatives of (41) needed for the right-hand-side of Post's formula (42) could be easily 
calculated by the use of standard software packages. In such a way, we can obtain the results useful for error 
estimations of numerical solutions. At the same time, the Post result could serve as an analytical approximation 
for  x t  (and  )f t  provided the computer has enough memory and is fast enough to perform a large amount 

of symbolic differentiation. 
The described numerical method was experimentally verified on a number of test problems for 1.   
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In Table 1 we present the duration of impact T , determined by (33), the maximal values of x  and f  for 
several values of dimensionless relaxation times and for several values of constants ,    and .  The 
values of dimensionless time corresponding to these maximums are given in parenthesis. The values x  and  

 1x  at T , (    1x T  determining the restitution coefficient) are also presented. The numerical values of 

constants 0 1,     and   were taken from the paper of Fenander, where the railpad models were 
investigated, [24]. 

The values shown in Table 1 are taken from [5]. In all the calculations the time step was 310 .h   
It should be noted that the agreement between the numerical results obtained by (39), (40) and (42) was 

satisfactory even for relatively small values of n  ( 40n   in case 1  ). 
In Fig. 5 we present some solutions  x t . The values obtained by applying Post's inversion formula for  

1,   1 0.04   and 1 0.2   are also presented (squares in Fig. 5). The difference between the numerical 

solution (39), (40) and the solution obtained by Post's formula (42) for 70n  , is less than 25 10 .  Also, the 
values calculated by Post's formula for 0.23  , 0.004,   1.183   for 40n   are also marked by 
circles in Fig. 5. It is worth noting that modern computers allow larger n  and thus more accuracy. 
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Fig. 5: Curves  x t  for standard linear solid 1,   1 0.04   and 1 0.2   (dotted), fractional standard solid 

with 0.49  ,    85 10 , 0.886,   (solid line) and for 0.23  , 0.004,   1.183   (dashed). 
 

Finally, the hysteresis diagrams corresponding to the solutions presented in Fig. 5 are shown in Fig. 6. 
 

 
 
Fig. 6: Hysteresis diagrams for standard linear solid 1,   1 0.04   and 1 0.2   (dotted), fractional 

standard solid with 0.49  ,    85 10 , 0.886,   (solid line) and for 0.23  , 0.004,   

1.183   (dashed). 
 

From the values presented in Table 1 we conclude that for the case when 1   the solutions for the 
fractional standard linear solid are very close to the ones that describe the standard linear solid (for 1   and 
the same values of the constants describing the material). In other words, the solution is continuous with respect 
to the order of the derivative. Note that when compared to standard linear viscoelastic solid, for the same values 
of relaxation constants, the solid described by fractional derivatives exhibits shorter duration of impact, smaller 
maximal deformation and larger maximal force and smaller amount of dissipated energy. Also, the calculations 
show that when  1 1     there is no damping as expected, i.e. the velocity after the rebound is almost of the 

same intensity as before the impact. In such a case, the presented values of  T   and  m axx   could be compared 
with the case of nonlinear spring as presented in [39]. Namely, in [39] the impact is modeled by the equation  

 
       2 13/2, 0 0, 0 1,x x x x                (43) 

 

x

t

x

f

x
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For example, if we take 1   we obtain 3.218,T      1 1x T    and m ax 1.093.x   Our final remark 

concerns the thermodynamical restrictions. Violating them could pose severe problems. Roughly speaking, 
putting     will lead to the rebound velocity which is higher than the approaching velocity, i.e.  

       1 1 0 1x T x   . 

We close this section with two remarks. First, note that more details on the model of viscoelastic rod in 
unilateral contact with a rigid wall, with respect to mathematical analysis, can be found in [6]. Finally, we may 
cast the impact problem we are dealing with here in another form. Namely, by applying the similar steps as 
when (11) was transformed to (23), from (32) one obtains  

 

      ,0

1 1
1 , ,

t
f t x t x e t d 

 
   

    
   

   
       

   
       (44) 

 
and then using (31) the description of impact  is given in the form of the Cauchy problem for integro-
differential equation 
 

     2
,0

(1)

1 1
1 , 0,

(0) 0, (0) .

tx x t x e t d

x x

 
 

   

    
   



   
        

   

 

      (45) 

 
This form can be suitable for both different numerical procedures, as in [14], and the more general case when 
the problem is treated in the presence of dry friction, as in [32]. This case, 0,   will be considered later. 

The next engineering application is more demanding with respect to duration of integration procedure and 
will be treated by slightly different procedure. It considers a mass moving on a straight line under the action of 
a harmonic disturbing force. The mass is fixed to a viscoelastic rod whose other end is anchored, and whose 
description is given by (9), (10). It will be shown that the dynamics of the problem is governed by a single 
differential equation of real order. The obtained equation will be solved using the Laplace transform method. 

 

6.3.2 The forced vibrations with fractional type of dissipation pattern 
The study of forced vibrations is a classical problem. The interest in it increases if the materials included are 
taken to exhibit nonlinear behavior with or without damping. As a part of it, the problem of eliminating 
undesirable oscillations and vibrations has emerged. Namely, the new tendency in civil engineering favors the 
design of slender structures made of new viscoelastic materials which provide necessary extra damping. For 
example, in [22], an example of a forced oscillator including fractional damping elements was given and the 
solution was obtained by the Grünwald algorithm and the finite element method. The influence of the order of 
fractional derivative on the solution for one value of disturbing force frequency was considered. In this work, 
we intend to reexamine the problem. Namely, we are going to solve the problem by different methods. We plan 
to use the method of Laplace transformation with inversion performed by complex integration, see [29] or [56]. 
As alternative approaches in this subsection, we are going to show the numerical method described by 
Podlubny, [51] and Post's inversion formulae, see [45] or [53]. The alternative approaches are more convenient 
for engineers but are usually followed by problems concerning the convergence in the large time domain and 
the short memory principle. Our analysis closes with the influence of four parameters included in the 
viscoelastic material description on the solution for different values of disturbing force frequencies. Namely, 
taking into account the restrictions on the parameters, following from the Clausius Duhem inequality, the 
amplitude ratio (or magnification factor) will be analyzed. In doing so, the resonance recognition problem will 
be tackled. 

Consider the mass m  moving on a smooth straight line under the action of a harmonic disturbing force, say  

0 sin ,F t  where 0F  and   are positive constants and t is time. The mass is fixed to a viscoelastic body, 
which is assumed to be a rod of constant cross-sectional area A  and of length .l  We assume that the other end 
of the rod is anchored and we use x  to measure uniaxial, isothermal deformation of that rod. Let f  be the 
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force between the rod and the mass. As before, we start with the fundamental axiom of dynamics [43], and the 
Newton-Laplace principle, i.e. we describe the considered motion by 

 
         2 1

0 sin , 0 0, 0 0, 0 0,m x f F t x x f              (46) 

 
where we assumed that the mass was at rest at initial instant of time 0t  that correspond to the undeformed 
and unloaded state of the rod. 

The relation between  f f t  and  ,x x t  i. e. the constitutive relation of the deformable body, will be 

taken in the form of modified Zener model of a viscoelastic body (28), with restrictions given by (10). 
Introducing the dimensionless coordinate, force, and frequency of the excitation force, say  
 

0 0

, , ,
a

xE A f m l
x f

F l F E A
              (47) 

 
respectively, as well as the dimensionless time as in (29), and relaxation constants as in (30) 1,2  from (46), (28) 

and (47) we get the system of equations describing the forced vibrations with fractional type of dissipation 
consisting of the equation 
 

         2 1sin , 0 0, 0 0, 0 0,x f t x x f              (48) 

 
that is complemented with (32) and the restrictions (10). As before, all the derivatives are taken with respect to 
dimensionless time and the bars are suppressed over the dimensionless variables. Note that as a consequence of 
the second law of thermodynamics from (10) 3  we have  
 

0,                    (49) 

 
and there will be no damping if 0,   see [24]. Also, note that following the lines of the classical vibration 

theory, when ,    we expect the resonance and the vibroisolation to be exhibited for 1  and 1   
respectively. 

In order to compute the solution of (48) and (32), as before we eliminate ,f  and then using basic properties 
of the Riemann-Liouville fractional differentiation, we obtain the following (single) differential equation of real 
order  

 
       

         

2 2

1 2

sin , ,

0 0, 0 0, 0 0,

tx x x x t S

x x x

 
             

  

       (50) 

 

where      2 1 2 1 1
0, 1 2 2j j j

jtS t j    
         stands for the th   Riemann-Liouville derivative 

of sin ,t  see [46], p. 355. As in the previous case, introducing the discrete time ,mt m h  where h  is time 
step, and using the first order approximations, as in [60], we derive the following algorithm to obtain the 
numerical solution  
 

  
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1
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 



   

 

 

  
  

    

 
    

  

     

      (51)
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where homogeneous initial conditions (50) 2,3,4   correspond to  0 1 2 0.x x x     

The described numerical method was experimentally verified on a number of test problems. In the case of 
equation (50), with  ,m hS    given as above, it seems that it will work provided the time m h  does not 

leave the convergence domain of that series. Since we know that  1,tS    coincide with  cos t  , see 

[46], p.318, we may speculate that if  1,m hS    does not coincide with  cos m h  , for say ,cm m  then 

we are not to expect the series  ,m hS    to be convergent for cm m  and 1,   and thus the algorithm 

(51) may fail for ,cm m  or .ct m h  This really does happen in practice. For example, the numerical 

examination shows that cost and  1,1tS  , truncated after 80 terms, does not coincide for 30.t  Another 

problem that could be encountered while processing (51) is the short memory problem. Namely, if we take h   
to be small enough for large values of m  the number of the addends in the fractional-derivative approximation 
of type as (24), becomes enormously large, which causes some extra technical problems, see [51], p. 203. 

Since we do not know the duration of the oscillator transient regime, using (51) we may, or may not, reach 
the steady state solution of the forced oscillator problem. This increases our interest in finding the alternative 
algorithms. Thus, in the following we are going to apply the Laplace transform and Post's inversion formula by 
following the lines as in the above impact problem. Namely, applying the Laplace transform to both (48) and 
(32), after some calculations we get the images  

 

   
 

     
 

 2 2 2 2 2 2 2 2

1 1
, .

1 1

s s
X s F s

s s s s s s s s

 
 

   
   

 

    

  
 

       
  (52) 

 
In the special case when 1  , corresponding to the Zener model, the direct inversion of (52), easily 
performed using standard software packages, yields the solutions  x t  and  .f t  In the general case 1   the 

standard software packages fail to proceed, but one could obtain both  x t  and  f t  using Post's inversion 

formula (42). The Post result could serve as analytical approximation for  x t  and  f t  provided the 

computer has enough memory and is fast enough to perform a large amount of symbolic differentiation that is 
in case of (52) more complex and therefore more time and memory consuming than (41). Note that this 
procedure avoids the problems connected to the convergence of the series  ,tS    but despite the 

simplicity of the Post inversion formula the expressions obtained by it are very long and rather difficult to 
handle. Thus, we turn now to the most elegant solution of the system (48), (32) with (10). 

In order to examine the motion of the forced oscillator, the inversion of (52) by complex integration will be 
done. Following the standard procedure, [29] p. 259, first, we chose the contour with a cut along the negative 
real axis, say ,  as shown in Fig. 7 (the path )A B D EFG A . Then we analyze the number of poles of (52) 

inside  . The poles 1s j   and 2 ,s j   where j stands for the imaginary unit, are obvious. In order to 
determine the other ones, we apply the Rouché theorem, see [56], p. 287. Namely, rewriting the second 

multiplicand in (52), as  11/ p p  where 2 1p s   and    1 / 1 ,ap s s
        and noting that for 

js e   the condition / 1g f   is satisfied on   we conclude that p  and 1p p  have the same numbers of 

zeros inside ,  (in our case 2). 

In order to find two more poles of both  X s  and  F s , we split the equation  

 
2 2 1 0,s s s 

                   (53) 

 
into the system  

 

 

2 2

2 2

cos 2 cos2 cos 1 0,

sin 2 sin2 sin 0.

 
 

 
 

        

        





    

   
       (54) 
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Fig. 7: Contour of integration. 
 
Applying the Newton method we can find the solutions of (54) that correspond to the principal branch, say   

and  , and the remaining poles of  X s  and  F s , say 3 4, .j js e s e      With this preparation done, 

we are ready to find  
 

           1 1lim 2 , lim 2 ,
k K j k K jst st

k K j k K jK K
x t j e X s ds f t j e F s ds 

  

  
       (55) 

 
for 0,t  i.e., as the integral along ,A B  where k  is suitably chosen, so all poles lie to the left of the line  

.s k  Let us find the original  x t  first. It remains to explore the residue theorem. According to it, the 

integral along the closed path   is 2 j  times the sum of the residues of  ste X s  at the singularities enclosed 

by .  Rewriting  ste X s  as    1 2, /F s t F s  with  

 

         2 2 2 2
1 2, 1 , 1 ,stF s t s e F s s s s s  

               (56) 

 
the residue of    1 2, / ,F s t F s  at the point ,os  reads    1 2, /o oF s t F s  where prime represents the 

derivative with respect to ,s  see [20] p. 161. Referring to Doetcsh once again, we conclude that the integrals 

along B D , G A  and EF  vanish (when R    and 0).r   After calculating the sum of the integrals along 

D E  and FG , we finally obtain the motion of the forced oscillator with fractional type of dissipation as  
 

   
 

   
4

1

1 2

, sin
,i a

i i

F s t
x t I t

F s
   




 
           (57) 

 
where  
 

 
 

       

12 2

2 22 2 2 2
0

.
1 2 1 cos

rte d
I t



   
   

  

          

 

 




     
     (58) 

 
Note that the residuals of  X s  determine the value of  0 .I  The value  I t  could be easily calculated by 

standard numerical procedures. Also, note that  lim 0.t I t    

In order to illustrate the above results, we are going to present motions of the forced oscillator for numerical 
values of constants 0 1,     and   taken from the paper of Fenander where the railpad models were 
investigated, [24]. 
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Namely, for 0.23  , 0.004,f   1.183x   and 1 , the solutions of (54) read 1.499   and 

1.679.    Substituting these values into (57), (58) we obtain the amplitude of the steady state regime to be 
0.818. Performing the same type of numerical experiments while increasing   we conclude that the system 
goes towards the vibroisolation area. For example for 0.23  , 0.004,   1.183   and 10  the 

amplitude of x  in the steady state is less than 0.01. When compared to the standard viscoelastic solid 1   the 
solution for 1   exhibits smaller amplitudes, which agrees with the results presented in [22]. Namely, noting 
that  

 

       
4 1 1

1 2
3

lim , sin 0,i i a
t

i

F s t F s I t    
 




        

 
we obtain the steady state solution in the form  
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 
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The amplitude of it reads  
 

 
 

 
 

 
 

 
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2 2 2 2

,0 ,0 ,0 ,0
.s

F j F j F j F j
A

F j F j F j F j   

      
               

        (59) 

 
Calculating (59) for different values of ,  ,    and   we can obtain the magnification factor for the 
oscillator with fractional type of dissipation. Since the dimension of the parameter space in the introduced 
model is 4, we omit here the usual graphical presentation of that factor. However, with introduced   as in 

(49) we note that increasing the value   the value of sA  decreases. This fact could be very useful in 
engineering applications. 

Finally, we may pose a question how the system under consideration will behave if the second law of 
thermodynamics is violated. Choosing 0   and solving (54) yield /2   and thus 

    14
3 1 2lim , ,i i it
F s t F s





      which leads to a motion represented by time diverging function. The last 

comment deals with the possibility of obtaining time diverging functions. Once again, we turn to the equation 
(53). If the roots of (53) are imaginary and symmetrically displaced about the origin, it is possible to have one 
of them coincide with   in which case we would have a second order pole at s j   and a diverging time 

function, [63], p.196. Namely, putting    and /2   in (54), for 0   one obtains  
 

 2 2 21 cos 0, 0,
2


   

                  (60) 

 
which can be satisfied only if 1  and    . Indeed, if we put     into (53) the straightforward 

inversion yields    sin cos /2.x t t t t
      We close by noting that     is never satisfied for 

thermodynamically well-behaved models and that for such models the resonance may not occur. This agrees 
with the classical linear theory with spring and dashpot as a model. Thus, as a consequence of the Clausius 
Duhem inequality, we claim that the time diverging functions are allowed only for the linearly elastic 
(Hookean) models, which are not realistic, once again see [10], p.155. 

So far, both applications were single degree of freedom systems. The presented methods can be applied in 
the analysis of impact and forced oscillations in systems incorporating elastomers, polymers and, biological 
tissues since they are well described by the modified Zener model. It should be noted that biosystems are more 
complex and less well defined. Particularly, the human form is not composed of simple geometrical shapes and 
besides mechanical functions it has physiological functions too. It has more degrees of freedom to deal with. 
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Thus, one may pose a problem how much effort is needed for more complex systems. For simplicity reasons, 
we shall avoid biological problems and consider a seismic response of a column-like structure with ductile 
regions composed of polymers and elastomers. What distinguishes this particular damping system from those 
previously tested on the same model structure is the constitutive model of ductile regions that comprises a 
simple shear deformation pattern, fractional derivatives of shear stress and shear strain and the restrictions on 
the coefficients that follow from the Clausius-Duhem inequality. In the next section, we shall pose the problem 
and show that the dynamics of the system lead to coupled differential equations of real order. Then, we are 
going to solve the problem using the Laplace transform and inversion by complex integral. 

 

6.3.3 A column-like structure under seismic load 
In the earthquake-prone regions, the principal problem of structural dynamics is the behavior of structures 
subjected to earthquake-induced motion of the base of the structure. Various types of viscous dampers have 
been used for over fifty years in order to reduce seismic response. Conventional seismic design is based on 
allowing structures to dissipate energy in specially detailed ductile regions. Following a strong earthquake 
damage to these viscoelastic regions is to be expected, but prevention of structural collapse to ensure the 
preservation of life-safety maintained, [48]. These regions, usually composed of elastomers and polymers, 
significantly attenuate the seismic response of the structure and provide a considerable energy dissipation while 
the main non-ductile structural load carrying elements remain unchanged. The principal objectives of this 
subsection are twofold: to predict the response characteristics of the column-like structure with such dampers 
and to estimate the influence of four parameters included in the viscoelastic material description on the solution 
which can be used in evaluating shear resisting capacity of each story, leading to a new model of either sky-
scrapers or antic-columns protection. 

We study dynamics of a system of three stone blocks positioned one on another with viscoelastic plates 
between them. We assume that there is no sliding between the blocks and the plates. Initially, the system was at 
rest forming a column-like structure. At a certain moment 0 0t t   the lowest block - the base - will start to 

move along the horizontal line with u  as an absolute coordinate of the base movement. This, in turn, causes the 
horizontal movement of the upper blocks, caused by internal shearing forces through deformable plates of 
negligible mass, see Fig. 8, representing the plane of material symmetry. 

Let 1m  and 2m  be the masses of the blocks, and let 1x  and 2x  be the relative displacements between the 

block and the base and between the blocks respectively, see Fig. 8. In what follows we use if   1,2i  to 

denote the internal shearing forces in the first and the second deformable plate. 
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Fig. 8: System under considerations, free-body diagrams and simple shear deformation pattern. 

 F 
From the free-body diagram presented in Fig. 8 we write the differential equations of motion  
 

           2 2 2 2 2
1 1 1 2 2 1 2 2, ,m u x f f m u x x f               (61) 

 
and the corresponding initial conditions  
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               1 1
1 2 1 2 1 20 0 0, 0 0 0, 0 0 0.x x x x f f             (62) 

 

with usual notation      /k k kd dt    for k  th derivative with respect to time .t   

The model of grounded motion  2u  is represented by      2 2 ,gstu t u  in which  t  is a deterministic 

non-negative envelope function and  2
gstu  is a stationary ground acceleration. The stationary random ground 

acceleration at a time t is obtained by a summation over all frequency components 
     2

1 sin 2N
igst g i i gu A t      where g  is a random phase angle varying between 0  and 2  and gA  is 

the amplitude of the ground motion acceleration which is related to the modulus of the physical ground 
acceleration, [33]. In this study, we do not put stress on the earthquake model but on viscoelastic behavior of 
the structure and thus we use a simplified earthquake model with  

 
     2 2

0exp sin ,gu a t u t             (63) 

 
with ga  being a positive constant of dimension time to the power -1. 

In our analysis, as before, we use the constitutive model of the plates that comprises simple shear 
deformation pattern, fractional derivatives of shear stress and shear strain taken in the standard Riemann-
Liouville form, and the restrictions on the coefficients that follow from Clausius-Duhem inequality. Namely, 
introducing the shear angles i , and assuming that tan /i i i px h    we can take the constitutive equations 

in the following form  
 

         1 1 1 1 2 2 2 2, ,p p

p p

G A G A
f f x x f f x x

h h
    

                 (64) 

 

where 0 , 1,    pA  and ph  stand for the area of the cross-section and thickness of the plates, G   and G 

are the shear modules,   and   are the relaxation constants of dimension  tim e ,  and  , and   are 

the relaxation constants of dimension   tim e  . In equations (64) we use   ,  , ,    to denote the 

th   derivative of a function    taken in the standard Riemann-Liouville form. In order to be well behaved, 

we assume that the model satisfies fundamental restrictions on the coefficients of the model that follow from 
the second law of thermodynamics  
 

0, 0, , 0, 0, .G G                         (65) 

 
For one possible set of these four constants obtained for applications in civil engineering we refer to (20). 

Next, we introduce the following dimensionless quantities 
 

1

2 0 0

1 1

1

/2 /2

1 1

,  ,   , ,  1,2;

,  ,   ,

,  ,  , ;

i pi
i i

p

p p p
g g

p p p

p p

p p

G fhm x
x f i

m G u G A u

m h m h G A
a a t t

G A G A m h

G A G A

m h m h



 



 

 

 
   

 

      

    

   

   
        

   

      (66) 
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and from (61), (63) and (64) we get the system of equations describing the dynamics of simplified earthquake 
model of the column-like structure with fractional type of dissipation  
 

         2 2 22 2
1 1 2 1 2 2exp sin , exp sin ,g gx a t t f f x x a t t f             (67) 

 
        1 1 1 1 2 2 2 2, ,f f x x f f x x   

                   (68) 

 
where the derivatives are taken with respect to dimensionless time and where the bars are suppressed over the 
dimensionless variables. The equations (67) and (68) together with (62) and (65) 2,3,5,6  remain unchanged. 

Introducing the Laplace transform of  ix t  and  if t  say      0
st

i i i iX X s x t e x t dt      and 

     0 , 1,2st
i i i iF F s f t e f t dt i      from (67), (68) and (62) we get 

 

         
   

3 2

1 2 2

1 1 1 1 1
,

a a

g

s s s s s
X

s a D s

 
                

  
 

    (69) 

 
where 
 

         

         

4

2

{ 1 1 [1 1

1 1 1 ] 1 1 }

a a

a a

D s s s s s s

s s s s s

 
   

 
   

   

      

      

     

     (70) 

 
and 

   
   

3

2 2 2

1 1a

g

s s
X

s a D s


    


  
 

          (71) 

 

         
   

3 2

1 2 2

1 1 1 1 1
,

a a

g

s s s s s
F

s a D s

 
                

  
 

    (72) 

 

   
   

3

2 2 2

1 1
,

a

g

s s
F

s a D s


     


  
 

         (73) 

 
where we have used the standard expression for the Laplace transform of the   th derivative, 

0 , 1,      given by (12). 

The functions  iX s ,  iF s , 1,2,i  have the originals  ,ix t   ,if t  1,2i , respectively. In order to 

prove that, we use the argument presented in [44], p. 85. Namely, for each  iX s ,  iF s , 1,2,i  say  ,Y s  

it has to be shown that  Y s  is analytic in the area 0R e( )s k  that tends to zero when Im ( )s   and that 

 Y k j d 
   converges. In order to examine the motion of the column-like structure after a major 

seismic event the inversion of (69), (71) - (73) by complex integration will be done. Following the standard 
procedure first, we chose the contour with a cut along the negative real axis, say A B D EFG A   of Fig. 9. 

Then we analyze the number of poles of (69) inside ,  noting that the same analysis will be applied to (71) - 
(73). 
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Fig 9: Countour of integration for the column problem. 
 

The poles 1 gs a j    and 2 ,gs a j    where j stands for the imaginary unit are obvious. In order to 

determine the number of zeros of  ,D s  given by (70), once again we apply Roushè's theorem. Namely, first 

we note that 1 as  and 1 s
  does not vanish on the first sheet of the Riemann surface. Then, we rewrite 

the function      / 1 1aD s s s
       in the form    u s w s  with  

 
   

 
     

       

4 2

2

1 1 ,

1

1 1

.
1 1 1 1

u s s s

s s
w s s

s s

s ss s

s s s s

 
   

 
 

  
      

   
   

  

     
 
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

   

      

   
   

   
   

  
     

 

 
Finally, we put s in the form  cos sinj   , then show that 0lim / 1w u   and lim / 1w u   and 

conclude that u  and u w  have the same number of zeros inside ,  in this case four. 

In order to find four more poles of (69), say ,bs  3,..,6,b   using (70), we split (70) into the system 

 
   

 

   
   

     
 

4 4

4 4

2

2

2 2

cos 4 cos 4

cos 4 cos4

(1 ) cos 2

(1 ) cos 2

(1 ) cos 2 1 cos2

cos cos c

  
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


 
   


 


 

   
   

         
     

         
      

          
          

  



 







    
  

    
   

      
   os 0  

    (74) 
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 
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 
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      
   in 0 

     (75) 

 
Applying the Newton method we can find the solutions of (74), (75) that correspond to the principal branch, 

say 3
3 3 ,js e   3 5

4 3 5 5,j js e s e     and 5
6 5 .js e    With this preparation done, we are ready to find  

 

     

       
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
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 

  

     (76) 

 
where k  is suitably chosen, so all poles lie to the left of the line ,s k  for each ,ix  ,if  1.2.i  It remains to 

explore the residue theorem. According to it, each of the integrals along the closed path   is 2 j  times the 

sum of the residues of each of  ,st
ie X s   ,st

ie F s  1,2,i  at the singularities enclosed by ,  in Fig. 9. We 

use (69) - (73) and rewrite  
 

     
 

     
 

, ,
exp , exp , 1,2,i i

i i

U t s W t s
X s ts F s ts i

C s C s
      (77) 

 

with      
2 2 ,gC s s a D s   

 
 and where  ,iU t s  and  ,iW t s  are obtained by multiplying the 

numerators of (69) - (73) by tse  respectively. The residue of    , / ,iU t s C s  (as well as    , /iW t s C s  

1,2)i  at the point 0s  reads    0 0, /iU t s C s  where prime represents the derivative with respect to s. 

Referring to Doetcsh once again, we conclude that the integrals along B D , G A  and EF  vanish (when 
R   and 0).r  After calculating the sum of the integrals along D E  and FG , we finally obtain the 
motion and shearing forces as  
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   


    









 
        



 
        

  (78) 

 
The integrals on the right side of (78) could be easily calculated by standard numerical procedures. 

In order to illustrate the above results, we are going to present the motions of the system for numerical 
values of constants 0.25,ga   3  that determine the ground motion in horizontal direction and the values 

of constants 0 , 1,    ,f f    and ,x x   . Namely, for 0.23  , 0.004,   1.183,   0.49,   
85 10 ,    0.886,   in Fig. 10 we present the motion of the blocks and the corresponding shearing 
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forces. The corresponding solution of the system (74), (75) reads 3 0.886,   5 2.393,   3 1.703,   

5 1.784.    
Introducing a        and         we note that increasing the values , ,   as well as the 

values ,a    the more energy will be dissipated and thus the amplitude of the blocks motion decreases as 

expected, see [60]. This fact could be very useful for sky-scrapers and antic-columns protection. Finally, we 
may pose a question how the system under consideration will behave if the second law of thermodynamic is 
violated. Choosing 0, 0       and solving (74), (75) yield 3 5, /2    and thus  6

1lim b
t




  in (78) 

tends to infinity, which leads to the motion represented by the time diverging function. More numerical 
examples are given in [68]. 

 

 
 

Fig 10: The solution  ix t ,  if t , 1,2i  for 0.23  , 0.004,   1.183,   0.49,   85 10 ,    

0.886,   

 
For the time being we are mainly concerned with linear problems, since the contribution of fractional 

modeling, given by (9) and (10), to good descriptions of viscoelastic properties of real materials, while still 
remaining in physically linear theories, has been most valuable. This is due to the fact that the use of fractional 
derivative constitutive law can be viewed as the limit for linearized models to capture nonlinear response. In 
other words, it seems that a generalized linear model of a viscoelastic body that contains fractional derivatives 
of stress and strain is capable of describing viscoelastic behavior of real materials in a more accurate way than 
nonlinear constitutive models with derivatives of integer order. However, apart from physical considerations 
nonlinearity can come from purely geometrical arguments. Following this line, one may pose a problem on how 
to treat finite deformations coupled with so called standard fractional viscoelastic body. This will lead to 
nonlinear fractional differential equations. Actually, the study of considered fractional standard linear solid 
models possessas an essential mathematical interest too. In dealing with it, special care is needed since not all 
properties of integer derivatives are recognized for fractional ones. 

In the following subsection the motion of an airplane landing on a smooth straight line and stretching a 
weightless viscoelastic fiber whose ends are anchored at the points at a given distance from the line will be 
considered. The dynamics of the problem can be represented by a single integral equation involving the Mittag-
Leffler-type function whose solution is ensured by the Contraction Mapping Principle, see [61], and will be 
obtained numerically using the first-order fractional difference approximation. 

 

6.3.4 A geometrically nonlinear problem 
Consider the motion of an airplane landing on a straight line and stretching a weightless viscoelastic fiber 
whose ends are anchored at the points at a given distance from the line, see Fig. 11. Roughly speaking, the 
landing script could be as follows. At the time 0t  the airplane of mass ,m  with velocity 0,v  touches the 

f

f

x
x
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flight deck and at the same moment, it touches the weightless viscoelastic fiber, of length 2 ,l  which was 
perpendicular to the line of landing. It is assumed that the area of the fibre cross-section A  remains unchanged 
during the deformation process. The stretching of the fibre will proceed until the airplane slows dawn. With a 
very low velocity, say at ,t t  the airplane will release the fibre and in order to stop, if necessary, will use the 
classical brake. This last part is not the subject here, it will be postponed for the next subsection. 
 

 
 

Fig. 11: Landing phase under consideration. 

 F 
The differential equation of motion of an airplane and the initial conditions read  
 

         2 1
02 sin , 0 , 0 0, 0 0,m f v f               (79) 

 

where     /k k kd dt    denotes the k   th derivative with respect to time ,t  and where  t   and 

 f f t  stand for the coordinate and the contact force between the airplane and the fibre. It should be noted 

that large values of   and   (the angle describing the fibre deformation) are allowed. 

The strain measures are often defined with special requirements in mind, see [3]. Let  x x t  be the half 

measure of the isothermal uniaxial deformation of the fibre. Note that with  ,f f t  /f A   and  ,x x t  

/x l  , a complementary constitutive equation of the deformable fibre (9), may be taken in the usual form 
(28), (10). Further, it is assumed that  

 
 0 0.x                (80) 

 
In the following the obvious geometrical relations  
 

   22 2sin / , ,l x l x l                  (81) 

 
are going to be very useful. Namely, introducing the dimensionless quantities  
 

/2 /2

1 0

2
, , , ,

2 2
, , ,

2

E Ax f
x f t t

l l E A m l

E A E A m
v

m l m l E A l





 
 

   




    

   

           

      (82) 

 
one gets the following system describing the airplane landing phase  
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         2 1

12
, 0 , 0 0, 0 0,

1
f f

   


    


       (83) 

 
with (32) and  
 

 22 1 1 .x                (84) 

 
In equations (83), (84) the bar was omitted and the derivatives are taken with respect to dimensionless time. 
Once again, note that the thermodynamical restrictions (10) 2,3  in dimensionless form remains the same, as in 

the whole Chapter. 
The main concern of this work is the solution of (83), (84). Before one proceeds to it, two remarks should be 

made here. First, by differentiating (84) twice, variable   could be eliminated, i.e., the nonlinear equation  
 

 
 

   
 
 

21

2
2

2
0,

1 2 1

x x
x fx

x x x x

     
  

         (85) 

 
is to be solved together with (32), with initial conditions 
 

       10 0, 0 0, 0 0,x x f            (86) 

 

but this form of the problem is not tractable enough, (note that    2 2
10 0)x   . Secondly, recall that the 

constitutive equation (32), the so called modified Zener model, is good enough to describe viscoelastic 
behavior for a wide class of real materials, metals, geological strata, glass, polymers for vibration control, see 
[54], for example. When dealing with (32), a special attention should be paid to the thermodynamical 
restrictions (10) 2,3  that should be observed in determining the parameters of the model from experimental 

results. However, in some problems, despite the fact it violates thermodynamical constraint 0,   the term 

  is small enough and could be neglected, for example, see [24], where   reads 90.69 10  0.49sec . In 
such cases the problem (32), (85) reduces to the single nonlinear fractional differential equation  
 

 
 

   

    
 

21 2

2
2

2
0,

1 2 1

x xx xx
x

x x x x


      

  
      (87) 

 
with initial conditions (86) 1,2 . 

In order to solve the airplane landing problem the Laplace transform method will be applied. It will be 
shown that the dynamics of the problem is governed by a single integral equation involving the Mittag-Leffler-
type function, whose solution is ensured by the Contraction Mapping Principle, [36]. In doing so we use (44) 

and (84). Namely, substituting 2 1 1x     in (44) and the obtained expression for  f t  into (83), the 

landing problem reduces to the following initial data problem 
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 (2) 2

2

2
,

0

(1)
1

1
1 1 1
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( , ) 1 ( ) 1 ,

(0) 0, (0) .
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e t d

 
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   
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  

          
   

       

 

        (88) 

 
Thus,   has to satisfy the following integral equation  
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

                  

     
 



     (89) 

 
to which the fixed point theorem can be applied, as in [61]. 

Finally, using (26) together with the geometrical relation (84) the influence of the four constants describing 
the fiber properties on the landing track could be examined, see [51] and [61] for details. The obtained 
algorithm reads  
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  (90) 

 
with 0 0,   0 0,f   and 1 2,   given as a solution of  
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1 1
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with  
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1 1 1 1 ,
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h
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and  
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1 1
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2 2 1,

1 1
1 1 .
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h h
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 

 
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In order to illustrate the above results, the numerical solution for 0.23  , and dimensionless values 
0.004,f   1.183x  , 1 1  , the motion of the system is presented in Fig. 12. 

 F 
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Fig 12: Motion of the airplane in landing phase for 0.004,f   1.183x   and 1 1  . 
 
In the aforementioned examples of engineering applications all the constraints were ideal. In reality, it is not 

so. Dry friction, as a strictly dissipative process, plays an important role in the analysis of energy dissipation. 
The motion of mechanical systems ceases in a finite time due to the presence of dry friction. In the next section 
we shall reexamine the impact problem by showing that the constitutive equation describing modified Zener 
model can be coupled with a set-valued force law describing dry friction phenomena. That law leads to an 
accurate model of the sliding to stick phase of motion. Moreover, the problem is rather challenging since the 
coupling of nonlocal operators with nonsmooth multifunctions has to be treated for both qualitative and 
numerical mathematical analysis. Namely, in the last decade both noninteger differentiation and nonsmooth 
mechanics have received much interest from the Nonlinear Dynamics community, so both areas were 
developed to the necessary mathematical and physical consistency. However, while each of the areas has 
success in models that describe behavior of real systems, well established numerical procedures that merge 
noninteger derivatives with nonsmooth dynamics approach are still lacking. Namely, increasing number of 
papers dealing with systems with unilateral constraints, set-valued fractional differential equations or 
differential inclusions of noninteger type is noticeable but applications of such a model in engineering are still 
missing. Note that in modeling real practical problems nonsmooth phenomena, caused by kinematic constraints 
or physical effects like friction, impact or backlash, have been considered as errors and have therefore been 
neglected for a long time, [52]. Later, these phenomena were considered in an approximate manner by 
smoothed characteristics often unjustified from the physical point of view and just recently, in refined and more 
precise models, they have been taken into account correctly as nonsmooth effects. 

When a body impinges against the wall, it could either separate or continue to be in contact. Both scripts, 
rebound and capture, are predicted by the use of the Hertz theory of impact with adhesive forces, see [4]. 
Despite that, the model used therein is not realistic, since it does not include energy dissipation. With a 
different approach, as noted in the first example, energy dissipation was taken into account ab initio, but only 
rebound script was considered. In order to get responses that are very close to what experiments show, besides 
the constitutive model that comprises fractional derivatives of stress and strain and restrictions on the 
coefficients that follow from Clausius-Duhem inequality, in the following, we intend to include dry friction in 
the sliding surface, so the body can come to rest in a finite time after the impact. In modeling dry friction 
phenomena we shall use the Sgn-multifunction but instead of formulation that decomposes it into two unilateral 
primitives, leading to linear complementarity problems at velocity-impulse level and combinatorial evolution, 
see [26], as above we shall use a Hertz type theory, together with a slack variable algorithm, used for handling 
discontinuous model motion phases, see [65]. As a result, the prediction of three different impact scripts: 
rebound after the impact, capture in the approaching phase and capture in the rebound phase will be confirmed 
as a real outcome after impact, see [32]. With respect to qualitative analysis, an example of the fractional 
extension of ordinary differential equations of the Filippov type will be given. We have in mind a mechanical 
system that contains both the Riemann-Liouville derivatives of arbitrary real order as well as multifunction 
leading to a so called set-valued fractional differential equation. With respect to numerical analysis, a possible 
numerical method of dealing with both nonlocal operators and inequality constraints will be explained. 
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6.3.5 The impact problem in the presence of dry friction 
Once again consider a rigid block of mass ,m  sliding on a dry horizontal surface, as shown in Fig. 1 above. 

This time there is a dry friction between the block and the surface, so the coefficient of friction   reads 0.   
All other assumptions remain. 

The differential equation of motion of the block in the presence of dry friction and the initial conditions 
read: 
 

(2) (1)
0, (0) 0, (0) , (0) 0,m x p q x x v p              (91) 

 
where q  is to denote the friction force that resists the motion between the mass and the surface. The 
complementary relations to (91) are (28) that should be followed by (10). Among all existing dry friction 
models we assume that the force q  obeys Coulomb's frictional law given in the following set-valued form 

 
  1 ,q N x  Sgn              (92) 

 
with   as the friction coefficient, and where  uSgn  stands for a maximal monotone set-valued map (the 

filled-in relay function) defined as 
 

{1}, if 0

( ) 1,1 ,if 0

{ 1}, if 0.

u

u u

u

 


    
  

Sgn             (93) 

 
Note that from the free body diagram one obtains that normal reaction of the horizontal surface N  equals 

the weight of the block m g . Also, note that coefficients of friction for impact phenomena   cannot be 
accurately determined, and consequently their specification rests upon either pure hypothesis or corresponding 
values for non-collision processes, [28]. However, during collisions large amounts of energy may be dissipated 
in a very short period of time and Coulomb friction is not sufficient to account for this loss, [30]. Therefore, 
extra constitutive laws are necessary for modeling impacts. Here, we use the one that is thermodynamically 
consistent and taken ab initio, by use of (28), (10). On the other hand, note that several regularizations of the 
set-valued friction law (92) by smooth function are possible, but since they can not describe properly the stick 
phase, we are not going to consider them here, see [40]. 

There are many results of nonsmooth dynamics that could be related to this problem, for example, see the 
papers cited in [32]. For the purpose of the problem at hand we recall that three different scenarios for planar 

contact problems: sticking  1( 0x   ),q N  positive sliding   1 0x q N     and negative sliding 

  1 0 .x q N    Small friction leads to a sequence of states of sliding with alternating sign of the velocity 

after impact. As expected increasing   the system tends to the state of rest. The sticking case, when motion 

ceases after the impact motivates the adopted model with the friction force q  as a multifunction. Note that q  

may jump to any point within the set [ , ],   when transition to stiction occurs, see [27]. Besides, when 

motion ceases, a constant displacement from initial position is maintained, leading to equilibrium of the forces, 
in our case p  and .q  We intuitively understand that, for the case when the body come to rest in a finite time 
after the impact, the viscoelastic rod is captured between the wall and the asperities of the dry surface below the 
block, and thus the impact is followed by some kind of stress relaxation due to compression of the rod. We do 
not treat here this relaxation process since the viscoelastic rod is assumed as massless. 

Introducing the duration of impact, say ,T  we consider that the body is separated when the contact force is 

equal to zero i.e.   0,p T   with    1 0,x T   or the body is captured after impact that is    1 0,x T   with 

    0.p T q T   Note that the capture case may take place in either approaching or rebound phase depending 
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on the amount of dissipated energy during motion. Namely, the amount of initial energy of the system  
2
0 /2,m v  dissipated during impact reads 

 
    1 1

0
.

T
px q x dt               (94) 

 
The described model of impact belongs to the Hertz's type theories. Its special feature is that it avoids usual 

problems of the classical nonsmooth dynamics impact theory related to specification of the restitution 
coefficients that rests upon pure hypothesis, as for example in [26]. 

Next, we add the dimensionless friction force to (29), as  /q q m g  and get the relations describing the 

impact of the system presented in Fig. 1 with 0,   it reads 
 

(2) (1), (0) 0, (0) , (0) 0,x p q x x p             (95) 

 
  1 ,q x  Sgn                (96) 

 
together with (32) and (10) 2,3 , that belong to a class of set-valued fractional differential equations (or 

multivalued differential equations of arbitrary real order). As usual, the bar was omitted and the derivatives are 
taken with respect to dimensionless time. 

Before one proceeds to the solution of the posed problem, it should be noted that it can be cast in a form that 
is more tractable for mathematical analysis. Namely, using (44) the dynamics reduces to the Cauchy problem 
for a single integro-differential inclusion, i.e. 
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   

 

Sgn

   (97) 

 
An existence result for the Cauchy problem given by integrodifferential inclusion (97) could be found as 

Theorem 2.1, p. 270, of [1]. 
In order to compute the solution of the problem described by (95), (96), (32) and (10) 2,3 , we apply the 

numerical method presented in the first Section, [51] together with a slack variable algorithm used for handling 
discontinuous model motion phases, see [65]. Namely, in dealing with inequality constraints related to stiction 
and friction effects, included in (96), the unknown in the problem is the time t  when the equality condition is 
reached. Referring again to [30] we note that determining the time t  is a computation-intensive operation and 
it consumes a major portion of computation time. Thus, we apply the Turner algorithm. Namely as in [65], 
introducing the slack variable that replaces time as the independent variable, leading to extended state-space, 
one can calculate the exact value of t  in just one step. The procedure is as follows. 

First, as above, introducing the variable     ,z t x t t   we remove the non-homogeneous initial condition 

and obtain 
 

(2) (1), (0) 0, (0) 0, (0) 0,z p q z z p              (98) 

 

   
 

( ) 12
,

2
p p z t z t 

 
 

  



    

 
          (99) 

 
  1 ,q z   Sgn             (100) 
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Next, we introduce a time step ,h  ( ,mt m h  0,1,2,...),m   and note that from (98) 2 4  it follows that 

0 0 0,z p   1 0,z   and for 0m   discretization of (99) yields 
 

   
1

1

(2)( )1 1
1 .

1 (2 )

m

m m j m j m j
j

m h
p m h z h z p

h h




   


     
 




 


             
   (101) 

 
With this preparation done, we start the integration procedure in the original state-space model 
 

(2) , 1,2,...m mz p m                (102) 

 
together with (101), under the condition 

 
(1) 0.mz                  (103) 

 
We increase m  until we violate (103). The last value of m  before the violation of (103), and the 

corresponding ,t  we denote by 1m  and 
1mt  respectively. Then we introduce the slack variable (1)

a mz    

and, using the Euler method, in one step, integrate the extended state-space model, see [65], in order to obtain 

the value of at  that corresponds to equality condition 0a
   as well as the end of the approaching phase,  that 

is 
 

1

1

0

1
( ),a m a a

m

t t
p

 


   
 

           (104) 

 
with (1)

10 .a mz    Note that the step 
11 ,a mh t t h    could be used to integrate (102) and obtain the state of 

the system at .at t  Instead, since the duration of impact is short and computation costs are low, we go back to 

0t  and repeat the integration procedure with a new time step 1 1/ ,h h h m    reaching time at  and the 

corresponding state after 1m  iterations. Noting that at  corresponds to the switching sign of the velocity 

component (    1 0ax t  ) where the model motion phase should change, we examine the value of dissipated 

energy. If the dissipated energy equals the initial kinetic energy, the motion will stop. This ends the capture 
script in the approaching phase. Note that this script is followed by instantaneous change of the friction force. 
Namely, in the approaching phase p  and q  are of the same direction opposite to the velocity, q  equals .  

When the motion stops q  may jump to any point within the set [ , ].   It jumps to a positive value less than 

  and equal to the value of p  that is always positive by assumption. Thus the duration of impact ending with 

the capture in the approaching phase reads ,aT t  the impact ends with    .a ap t q t   If this is not so, the 

motion will start in opposite direction (the rebound phase with opposite direction of friction force). Then we 
apply the model 

 
(2)

1 1, 1, 2,...m mz p m m m               (105) 

 
together with (101), and the history identified for 1m m  that is valid under the condition 

 
(1) 0.mz                 (106) 

 
In the integration algorithm with the step h  that follows it could happen that for some instant of time t T  

the contact force  p T  could vanish with the corresponding value      1 1 0x T z     which confirms the 

rebound script when the block and the wall separate with a relative velocity that is less than .  This is due to 
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dissipation introduced with both modified Zener's model and dry friction as strictly dissipating processes. If it is 
not the case, we continue to increase m  unless we violate (106). Then, by 2m  and 

2mt  we denote the last 

value of m  before the violation of (106), and the corresponding t respectively. As before, we use the slack 
variable r  but this time with the corresponding original model (106) and by similar procedure obtain the 

instant of time rt  where the motion in the rebound phase stops, i.e. 
 

 
2

2

1

1
,r m r r

m

t t
p

 


   
 

           (107) 

 

with (1)
1 2r mz    and 0.r

   Noting that    1 0,rx t   the duration of impact reads .rT t  The remaining 

values of the state vector can be obtained using the Euler method and integrating in the extended state space, 
see [65]. Also, note that in the rebound phase the forces p  and q  are of opposite direction, q  equals   and 

when motion ceases it instantaneously jumps to the value equal to  .rp t  Finally, since q  was chosen to be 

multifunction, both denominators in (104) and (107) are well defined. 
In Fig. 13 we show the solutions for 0.23,   0.004,   1.183.   For 0.2   the block will 

separate from the wall after 2.086T   with velocity    1 0.538.x T    The capture in rebound phase was 

obtained for 0.6.   The motion ceases after 2.705,T   the corresponding values of reaction force and 

friction force in equilibrium reads 0.381. For 0.9   the block will come to rest in the approaching phase in 

the finite time 0.667.T   The corresponding value of the reaction force reads   0.804,p T   and the 

corresponding jump of the friction force was from 0.9  to   0.804.q T    

From the curves presented in Fig. 13 we conclude that by increasing ,  the maximal values of reaction 

force m axp  and deformation m axx  decreases, while the residual deformation of the viscoelastic rod  x T  

increases. All the scenarios were confirmed and for 0.49,   85 10 ,    0.886.   The values of   

were assumed as for noncollision processes. In all the calculations the value of   was equal to 1, and the initial 

time step was 10 3.  In order to examine the influence of the initial time step on suggested numerical procedure, 
it was changed to 10 4.  Then all the calculations were repeated yielding the same results as shown in the 
following tables. As expected for 0,   the results of the first subsection were recovered. For the values 

0.3   the mass will rebound from the wall for both sets of viscoelastic constants, see Table 2. 

In Table 3 we present the results for 0.3  . When compared for the same value of 0.4   the material 

with 0.23   will separate from the wall, which was not the case for material with 0.49.   This result was 
expected since increasing   the dissipated energy in the deformation process increases. For the values 

0.5  , for both sets of viscoelastic constants, the capture was the predicted impact script. Namely, it takes 

place in the rebound phase for 0.6   and in the approach phase for 0.9  . 

Finally, we comment on the calculated values of post-impact velocities    1x T  obtained for the realistic 

choice of constants (10) and  . These values correspond to the restitution coefficient of the Newton's impact 

law since pre-impact velocities     1/2

0 / /v E A m l g      were chosen to be 1. It seems that these values 

could be used in various engineering applications: systems with impacts and sliding friction, backlash, accident 
reconstructions, feeding and drilling machines, etc., see [50], [42], [21], [62], and the references therein. 

The last engineering application considered belongs to a class of parallel studies of fractional differential 
equations to the well-known theory of ordinary differential equations, and particularly on set-valued fractional 
differential equations that had appeared after several well-known papers of Bagley and Torvik published in 80s 
of the former century. The suggested numerical method was based on the convexication proposed by Filippov 
in the 1960s that extends a discontinuous fractional differential equation to a fractional inclusion. The physical 
model composed of the standard fractional linear viscoelastic body and the set valued dry friction force law can 
be used as an extension of the previously analyzed problems too. 
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Figure 13: Impact scripts for 0.23,   0.004,   1.183.   and 0.2   (separation), 0.6   

(capture in rebound phase) and 0.9   (capture in approaching phase). 
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Table 2 

Friction Viscoelastic constants Viscoelastic constants 
  0.23     0.49    
   0.004     85 10     
  1.183     0.886    

   m ax 0.91 1.356p      m ax 0.831 1.141p    

   m ax 1.034 0.632x      m ax 1.109 0.643x    

  2.024T     2.150T    
0    0.135x T       0.232x T    

     1 0.771x T         1 0.597x T     

    0p T       0p T    

    0q T       0p T    

    0.203T       0.321T    

   m ax 0.905 1.349p      m ax 0.826 1.134p    

   m ax 1.028 0.628x      m ax 1.103 0.638x    

  2.025T     2.153T    
0.01    0.134x T       0.230x T    

     1 0.761x T         1 0.586x T     

    0p T       0p T    

    0.01q T       0.01p T    

    0.209T       0.327T    

   m ax 0.825 1.203p      m ax 0.735 1.014p    

   m ax 0.94 0.554x      m ax 0.992 0.557x    

  2.086T     2.318T    
0.2    0.110x T       0.173x T    

     1 0.538x T         1 0.361x T     

    0p T       0p T    

    0.2q T       0.2p T    

    0.355T       0.434T    
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Table 3 
Friction Viscoelastic constants Viscoelastic constants 
  0.23     0.49    
   0.004     85 10     
  1.183     0.886    

   m ax 0.746 1.070p      m ax 0.649 0.908p    

   m ax 0.852 0.487x      m ax 0.886 0.486x    

  2.456T     3.118T    
0.4    0.076x T       0.197x T    

     1 0.203x T         1 0x T    

    0p T       0.198p T    

    0.4q T       0.198p T    

    0.479T       0.5T    

   m ax 0.674 0.957p      m ax 0.575 0.819p    

   m ax 0.772 0.431x      m ax 0.793 0.427x    

  2.705T     2.179T    
0.6    0.235x T       0.394x T    

     1 0x T        1 0x T    

    0.381p T       0.531p T    

    0.381q T       0.531p T    

    0.5T       0.5T    

   m ax 0.58 0.819p      m ax 0.482 0.713p    

   m ax 0.667 0.362x      m ax 0.676 0.357x    

  0.667T     0.676T    
0.9    0.362x T       0.357x T    

     1 0x T        1 0x T    

    0.804p T       0.650p T    

    0.804q T       0.650p T    

    0.5T       0.5T    
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6.4 Conclusion 
We believe that the proposed thermodynamically consistent rheological model is very tractable for engineering 
applications. It should be included in both analytical and experimental projects ab initio, particularly in 
experiments in which newly developed materials are tested. Also, recent developments in solving fractional 
differential equations gives us hope that the proposed model has a chance to be suitable for detailed multibody 
system models of different degree of idealization that are to be generated for further investigations of the 
physical world. Particularly, when combined with the set-valued dry friction law, it can predict different 
scenarios and valuable estimation of energy dissipation in various applications for the purpose of computer 
simulation, analysis and control. 
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Abstract: DNA transcription process is well described at biochemical level. During transcription, double DNA 

interacts with transcription proteins; a part of double DNA is unzipped, and only one chain helix is used as a 

matrix for transcription. Different models of two coupled homogeneous DNA chain vibrations are proposed in 

the literature. To better understand the DNA transcription process and its behavior through biomechanical point 

of view, we consider double DNA (dDNA) as an oscillatory system that oscillates in forced regimes.  When 

data from dDNA molecule are not transcripted, we consider that dDNA molecule oscillates in a manner of free 

fractional order vibrations.On the basis of previous results (DNA mathematical models published by 

N.Kovaleva, L. Manevich in 2005 and 2007, and multi-pendulum models by Hedrih (Stevanović) and Hedrih) 

we obtain a corresponding pair of main chain subsystems of the double DNA helix. Analytical expressions of 

the eigen circular frequencies and eigen fractional order characteristic numbers for the homogeneous model of 

the double DNA fractional order chain helix are obtained. Also, the corresponding eigen free and forced 

fractional order vibration modes and possibilities of the appearance of resonant regimes, as well as dynamical 

absorption under the external forced excitations are considered. Two sets of eigen normal coordinates of the 

double DNA chain helix for separation of the system into two uncoupled main eigen chains are identified. On 

the basis of the derived analytical expressions, a transfer of external excitation forced signals is analyzed. There 

are different cases of the resonant state in one of the main chains, and there are no interactions between main 

chains for special cases of the external one frequency forced excitation. This may correspond to the base pair 

order in complementary chains of DNA double helix in a living cell. 

 

Key-Words: Double DNA helix chain, forced vibrations, eigen main chains, resonant state, dynamical 

absorption, elastic model, fractional order model, transfer of signals.  

 

 

7.1 Introduction - DNA-structure and function  
DNA is a biological polymer which can exist in different forms (A, B, Z, E) but only B form can be found in 

live organisms. Chemically, DNA consists of two long polymers of simple units called nucleotides, with 

backbones made of sugars and phosphate groups joined by ester bonds. To each sugar is attached one of four 

types of molecules called bases (Adenine-A, thymine-T guanine-G and cytosine-C). Two bases on opposite 

strands are linked via hydrogen bonds holding the two strands of DNA together. It is the sequence of these four 

bases along the backbone that encodes information. 

 The basic function of DNA in the cell is to encode the genetic material. For using that information to make 

proteins, DNA molecule has to interact with other molecules in the cell. DNA molecule is moving, changing its 

position and shape during the interactions. DNA molecules can be considered to be a mechanical structure on 

the nanolevel. 
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Fig.1. Model of DNA transcription (modified from, http://www.untiredwithloving.org/satr.html) 

 

 

From the biochemical point of view, during the transcription process, genetic information is transcribing 

from DNA to RNA. The transcribed DNA message is used to produce proteins. There are three main steps to 

the process of DNA transcription: binding of RNA polymerase to DNA, elongation and termination. RNA 

polymerase is an enzyme that binds to a specific nucleotide sequences that "tell" RNA polymerase where to 

begin and where to end the transcription. RNA polymerase attaches to the DNA at a specific area called the 

promoter region. Fig 1. a) Certain proteins, called transcription factors, unwind the DNA strand and allow RNA 

polymerase to transcribe only a single strand of DNA into a single stranded RNA polymer called messenger 

RNA (mRNA). The DNA is unwound at the promoter region by RNA polymerase The strand that serves as the 

template is called the antisense strand. The strand that is not transcribed is called the sense strand. RNA 

polymerase moves along the DNA until it reaches a terminator sequence, Fig1.b) and c). At that point, RNA 

polymerase releases the mRNA polymer and detaches from the DNA. The DNA that is been transcribed is 

rewound into original configuration. Fig.1. 

Every process which binds or reads DNA is able to use or modify the mechanical properties of DNA for the 

purposes of recognition, packaging and modification. It is important to note that DNA found in many cells can 

be macroscopic in length - a few centimeters long for each human chromosome. Consequently, cells must 

compact or "package" DNA to carry it within them, [6]. Knowledge of the elastic properties of DNA is required 

to understand the structural dynamics of cellular processes such as replication and transcription. Binding of 

proteins and other ligands induces a strong deformation of the DNA structure. The mechanical properties of 

DNA are closely related to its molecular structure and sequence, particularly the weakness of hydrogen bonds 

and electronic interactions that hold strands of DNA together compared to the strength of bonds within each 

strand. 
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Single-molecule biomechanics of DNA extension, bending and twisting; protein domain motion, 

deformation and unfolding; the generation of mechanical forces and motions by bimolecular motors is another 

approach to explain the biological function of DNA in the cell, [4]. 

 Knowledge of the elastic properties of DNA is required to understand the structural dynamics of cellular 

processes such as replication and transcription. For details for possible movements of DNA molecule, see 

Appendix E.  

 There are different approaches to studying the mechanical properties of the DNA molecule (experimental, 

theoretical modeling). 

 The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a biological system in 

a specific boundary condition that are possible to occur in a live system during regular function of a DNA 

molecule. The quick review of mechanical properties of DNA achieved experimentally and relevant existed 

mechanical models of specific dDNA dynamics are given billow. One of soliton existence supporting model of 

DNA-DNA model by N. Kovaleva and L. Manevich and derived oscillatory models of DNA by Hedrih 

(Stevanovic) and Hedrih is specially discussed. 

 

 

7.2  Mechanical properties of DNA achieved experimentally 
Experimental evidence suggests that DNA mechanical properties, intrinsic curvature and flexibility in 

particular, have a role in many relevant biological processes. 

For small distortions, DNA overwinds under tension, [18]. Lowering of the temperature does increase the DNA 

curvature. The DNA double helix is much more resistant to twisting deformations than to bending 

deformations, and almost all of the supercoiling pressure is normally relieved by writhing, [2]. The twist angle 

of the helix has been shown to depend on sequence when the molecule is in solution both by the effects on 

supercoiling parameters when short segments of known sequence are inserted into closed circular DNA  [47], 

[53]. 

     Under low tension, DNA behaves like an isotropic flexible rod. At higher tensions, the behavior of over- and 

underwound molecules is different. In each case, DNA undergoes a structural change before the twist density 

necessary for buckling is reached [6]. The environment and its ionic strength have influence on DNA curvature. 

Mg2+ can induce or enhance curvature in DNA fragments and helps stabilize several types of DNA structures, 

[5]. DNA length varied in solution with different ionic force. It is significantly longer in solution with lower 

ionic force, [14]. 
 

 

7.3  Mechanical models of the DNA 
A number of mechanical models of the DNA double helix have been proposed until today. Different models are 

focusing on different aspects of the DNA molecule (biological, physical and chemical processes in which DNA 

is involved). A number of models have been constructed to describe different kinds of movements in a DNA 

molecule: asymmetric and symmetric motion; movements of long and short segments; twisting and stretching 

of dDNA, twist-opening conditions. We are going to mention some of the models that can explain twist-

opening conditions. Details for some types of the models are given in the Appendix E.2. (see Ref [23]). 

 Bryant et al. (see Ref. [6]) have shown that an over- or underwound DNA molecule behaves as a constant-

torque wind-up motor capable of repeatedly producing thousands of rotations, and that an overstretched 

molecule acts as a force–torque converter. The production of continuous directed rotation by molecular devices 

has potential applications in the construction of nanomechanical systems  [4]. Polymer models are used to 

interpret single-molecule force-extension experiments on ssDNA and dsDNA. They show how combining the 

elasticity of two single nucleic acid strands with a description of the base-pairing interactions between them 

explains much of the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments [8,56]. Eslami-

Mossallam and Ejtehadi, [13] proposed the asymmetric elastic rod model for DNA. Their model accounts for 

the difference between the bending energies of positive and negative rolls, which comes from the asymmetric 

structure of the DNA molecule. The model can explain the high flexibility of DNA at small length scales, as 

well as kink formation at high deformation limit. A special type of DNA models are soliton-existence 

supporting models. One of the first of this kind was the Yakushevich model of DNA and models based on it  

[15]. The dynamics of topological solitons describing open states in the DNA double helix are studied in the 

framework of a model that takes into account asymmetry of the helix. Yakushevich, et al  [55] investigated 
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interaction between the solitons, their interactions with the chain inhomogeneities, and stability of the solitons 

with respect to thermal oscillations, and have shown that three types of topological solitons can occur in the 

DNA double chain. González and Martín-Landrove, [16] gave a complete qualitative analysis of soliton 

interaction in DNA torsional equations. The model emphasizes the importance of the solitons for opening of the 

double DNA helix. The region of the chain where there is a maximum opening is larger for the general case, 

since the asymptotical behavior for the kink type solitons is smoother than the one corresponding to the 

solutions in the particular case. There is possibility that an enzyme takes charge for the opening of the chain. 

The supersonic solutions, since they represent states that are totally open, could contribute significantly to the 

fusion of the DNA chain to the enzymatic activity. The presence of a propagating soliton along the chain could 

contribute to its opening through the interaction among different types of open states. The composite model for 

DNA is also based on the Yakushevich model (Y model). The mechanism for selecting the speed of solitons by 

tuning the physical parameters of the non-linear medium and the hierarchal separation of the relevant degrees 

of freedom are described in this model,see [7,11]. In the symmetric twist-opening model of DNA the small 

amplitude dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear 

Schrödinger equations. Conditions for modulation instability occurrence are presented and attention is paid to 

the impact of the backbone elastic constant K. It is shown that high values of K extend the instability region. 

This model can be reduced to a set of coupled discrete nonlinear system equations. The growth rate of 

instability has been evaluated and increases with the coupling constant K. The kink-bubble soliton, made of two 

parts of different size, has been shown to be mobile. Authors supposed that the kink-bubble solution can be 

used to describe the internal dynamics which usually consists of long-range collective bending and twisting 

modes of the bases, short-range oscillations of individual bases, and the reorientation of the spin label [52]. 

Binding of proteins and other ligands on DNA induces a strong deformation of the DNA structure.  

The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a biological system in 

a specific boundary condition that are possible to occur in a live system during regular function of a DNA 

molecule. We consider double DNA (dDNA) as an oscillatory system that oscillates in forced regimes during 

the DNA transcription process. To model the oscillation of dDNA in free and forced regimes we use, as a basic 

approach, the model of dDNA proposed by N.Kovaleva, L.Manevich, V.Smirnov (see [41], [42]). Basis of the 

DNA models proposed by Kovaleva and Manevich, will be given in the section bellow. 

 

 

7.4  DNA models by N. Kovaleva and L. Manevich  
One of the soliton-existence supporting models of dDNA is also the model proposed by N.Kovaleva, 

L.Manevich, V.Smirnov, see [41,42]. They show that in a double DNA helix localized excitation (breather) can 

exist, which corresponds to predominant rotation of one chain and a small perturbation of the second chain, 

using a coarse-grained model of the DNA double helix. Each nucleotide is represented by three beads with 

interaction sites corresponding to phosphate group, group of sugar ring, and the base [41]. 

 

      
                   Fig. 2. a                      Fig. 2. b       

 

 Fig. 2. a The model scheme of a double helix on six coarse-grained particles (Kovaleva, Manevich, and 

Smirnov, 2007). Fig. 2.b Fragment of the DNA double chain consisting of three АТ base pairs. Longitudinal 

pitch of the helix  ; transverse pitch  (see Ref. [42] by Kovaleva, and Manevich, 2005).  
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Kovaleva, Manevich, and Smirnov, [41] point out that solitons and breathers play a functional role in DNA 

chains. In a model, the DNA backbone is reduced to the polymeric structure and the base is covalently linked to 

the center of the sugar ring group, thus a DNA molecule with N nucleotides corresponds to 3N interaction 

centers. Starting from a coarse-grained off-lattice model of DNA and using cylindrical coordinates, the authors 

derive simplified continuum equations corresponding to vicinities of gap frequencies in the spectrum of 

linearized equations of motion. It is shown that obtained nonlinear continuum equations describing modulations 

of normal modes, admit spatially localized solitons, which can be identified with breathers. The authors 

formulated conditions of the breathers’ existence and estimated their characteristic parameters. The relationship 

between a derived model and simpler and widely used models is discussed. The analytical results are compared 

with the data of numerical study of discrete equations of motion. See Fig. 2.a. 

Kovaleva, and Manevich, [42] developed the simplest model describing the opening of DNA double helix. 

The corresponding differential equations are solved analytically using multiple-scale expansions after transition 

to complex variables. Obtained solution corresponds to localized torsional nonlinear excitation – breather. The 

stability of breather is also investigated. They consider B form of the DNA molecule, the fragment of which is 

presented in Fig. 2b. The lines in the figure correspond to the skeleton of the double helix, black and gray 

rectangles show the bases in pairs (AT and GC).  

Let us focus our attention on the rotational motions of bases around the sugar-phosphate chains in the plane 

perpendicular to the helix axis. 

The authors deal with the planar DNA model in which the chains of the macromolecule form two parallel 

straight lines placed at a distance h  from each other, and the bases can make only rotation motions around their 

own chain, being all the time perpendicular to it. The authors accepted as generalized (independent) coordinates 

1,kϕ  that are the angular displacement of the k -th base of the first chain, and as generalized (independent) 

coordinates 2,kϕ the angular displacement of the k -th base of the second chain. Then, using the accepted 

generalized coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both chains in the DNA model, the authors derived 

a system of differential equations describing DNA model vibrations in the following forms: 
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Here, 1kJ ,  is the axial moment of mass inertia of the k -th base of the first chain; 2,kJ  is the axial moment 

of mass inertia of the k -th base of the second chain, and the point denotes differentiation in time t. For the base 

pair, the axial moments of mass inertia are equal to 
2

, ααrm=1kJ , 
2

2, ββ rm=1kJ . The value of the base mass 

αm , the length αr , and the corresponding axial moment of mass inertia 
2

, ααrm=1kJ for all possible base pairs 

the authors accepted as in the [42]. The fourth terms in the previous system of equations describe the 

interaction of the neighboring bases along each of the macromolecule chain. The parameter ikK , , 

2,1=i characterizes the energy of interaction of the k -th base with the ( 1+k )-th one along the i -th chain 

2,1=i . There are different estimations of rigidity. For the calculation, the most appropriate value is close 

to ]/[106 3

, molkJKK ik ×== . 
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7.5  Modified DNA models by N. Kovaleva and L. Manevich for the forced regimes 
We have modified the previous model by Kovaleva and Manevich [42] to investigate how the system of dDNA 

will behave when it is exposed to external excitation. In the process of transcription, the binding of RNA 

polymerase may correspond with external excitation. 

Let’s suppose that both coupled chains from the system of the DNA model by Kovaleva and Manevich are 

excited by the system of external excitation containing two series of the one frequency excitations in the forms 

tk.,k 1.1,0 cosΩM  and tk.,k 2.2,0 cosΩM , nk ,.....,3,2,1= , where 1,0 .,kM  and  2,0 .,kM  are amplitudes, 1.kΩ  and 

2.kΩ  frequencies of the external forced couples each applied to one of the mass particles of the  double DNA 

model coupled chains. Then, the corresponding system of the nonlinear forced vibrations of the double DNA 

model coupled chains is in the following form: 
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7.6  Consideration of the basic DNA model - linearized Kovaleva-Manevich's DNA 

model  
Let us investigate an oscillatory model of DNA considered in the [42] by N.Kovaleva, L. Manevich, (2005) and 

presented in section 4 by a system of differential equations (1) expressed by generalized (independent) angular 

coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both chains in the DNA model. 

For a start, it is necessary to consider a corresponding linearized system of the ordinary differential 

equations of the previous system of differential equations in the following form: 
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or in the following form: 
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For the case of homogeneous systems, we can take into consideration that JJJ 2k1 == ,,k  and 

KKK kk == 2,1, . 

Using change of the generalized independent angular coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both 

chains in the linearized DNA model into the following new kξ  and kη  by the following dependence: 

2,1, kkk ϕϕξ −=    and   2,1, kkk ϕϕη +=                                                              (5) 

the previous system of differential equations (3) obtains the following form: 
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The first series of the previous system of ordinary differential equations are decoupled and independent with 

relations of the second series of the ordinary differential equations. We can conclude then that new coordinates 

of kξ  and kη  are the main chain coordinates of original DNA model double chain system and that we obtain 

two fictive decoupled eigen single chains of the DNA linearized model. This is the first fundamental conclusion 

as an important property of the linearized model of vibrations in a double DNA helix.   

The systems of differential equations (6)-(7) contain two separate independent subsystems of no 

autonomous differential equations expressed by coordinates of kξ  and kη  which are the main chain 

coordinates of a double DNA chain helix system and separate linear DNA model of forced vibrations into two 

independent (fictive, mathematical) chains. 

 

 

7.6.1. Consideration of the free vibrations of a basic DNA model - linearized Kovaleva-

Manevich's DNA model  
We assumed that the system of dDNA oscillates with free vibrations when it is not involved in the process of 

transcription and oscillates with forced vibrations during the process of transcription. 

The corresponding systems of autonomous differential equations are joined to the systems of non-

autonomous differential equations (6)-(7), which also contain two separate subsystems of non-autonomous 

differential equations expressed by coordinates kξ  and kη  which are the main chain coordinates of a double 

DNA chain helix system. The solutions of these corresponding systems of autonomous differential equations are 
n -frequency time functions which correspond to free vibrations with different subsets of n circular frequencies. 

The solutions of the non-autonomous differential equations (6)-(7) are multi-frequency time functions with a 

corresponding subset of eigen circular frequencies containing  n  eigen circular frequencies of free vibrations 

and all frequencies of external forced excitations applied to the double DNA helix chain system. So, if external 

excitation is with n2  circular frequencies jk ,Ω , 2,1=j , nk ,...,3,2,1= , then forced vibrations of the independent 

main chain coordinate of the main chains of the linear DNA model are nn 2+ -frequency time functions. 

To prove this conclusion, for a start, it is necessary to express the solutions of the corresponding systems of 

autonomous differential equations and add the corresponding particular solutions of the systems of non-

autonomous differential equations (6)-(7). 

 Then, for that aim, to obtain the solutions of autonomous system of differential equations, it is possible to 

apply the trigonometric method (see [48],[49] and [24],[25]) to both series of autonomous differential equations 

(both subsystems obtained from the system (6)-(7) put 0,0 =j,kM , 2,1=j , nk ,...,3,2,1= ) in the form: 
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( ) ( )αωϕαωξ +=+= tkCtAkk cossincos , nk ,.....,3,2,1=                           (8) 

ϕkCAk sin=                                          (9) 

( ) ( )βωϑβωη +=+= tkDtAkk
~cossin~cos

~
, nk ,.....,3,2,1=                            (10) 

ϑkDAk sin
~

=                               (11) 

where kA  and kA
~

 are amplitudes of separate eigen main chain coordinates of main chains of the model of 

double DNA chain helix, and ω  eigen circular frequency of the one, free vibration mode. 

After introducing the proposed solutions into the corresponding autonomous differential equations obtained 

from the previous separate subsystems (5)-(6) in which we incorporate 0,0 =j,kM , 2,1=j , nk ,...,3,2,1= , we 

obtain the following separate subsystems of homogeneous algebraic equations along the amplitudes kA  and 

kA
~

: 

( ) ( ) 01
2

12 1

22

1

2 =−












−











−










−−

−
++− −+ kk1k

J
A

K
rr

K

K

K

rrrK
AA ω

ω
ω

βα
αβ

αβαββαααβ
            (12) 

( )
0~2

12 1
2 =−







−

−
++− −+ kk1k

J
A

KK

rrrK
AA ωβαααβ                           (13) 

After applying the following denotations: 

( ) ( )2
1

2
1

2
βα

αβ

αβαββαααβ

ω
ω

κµ rr
K

K

K

rrrK
−










−−

−
=−                                          (14) 

( )2
1

2
1

2
βα

αβ

αβαβ

ω
ω

κ rr
K

K
−










−= .  

( )
K

rrrK βαααβµ
−

=                                     (15) 

         
2ω

K
u

J
=                                                      (16) 

we obtain the following simple forms of the subsystems (12)-(13) in the following separate subsystems of 

homogeneous algebraic equations along the amplitudes kA  and kA
~

: 

( ) 12 1 0A A u Aµ κ+ −− + + − − − =k 1 k k
                                                       (17) 

                       ( ) 12 1 0A A u Aµ+ −− + + − − =k 1 k k
� � ��                                                                    (18) 

After introducing the proposed solutions (9) and (11), the trigonometric method is applied and we obtain two 

equations: 

( )[ ] 012cos2sin =−−++− ukC κµϕϕ                                                          (19) 

 ( )sin 2cos 2 1 0D k uϑ ϑ µ− + + −  = �                                                                 (20) 

From the previous system, we obtain the following eigen characteristic numbers for both separate eigen 

chains of the model of double DNA chain helix system free vibrations in the following forms:  

 ( )κµ
ϕ

−+=
2

sin2 2u                                                                           (21) 

   22sin
2

u
ϑ

µ= +�                                                                                   

(22) 

and the corresponding analytical expressions of the square of ω  - eigen circular frequencies of vibration 

modes of separate eigen main chains in the following forms: 

 ( )




 −+= κµ
ϕ

ω
2

sin2 22 s
s

J

K
  ns ,.....,3,2,1=                                          

(23) 
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 







+= µ

ϑ
ω

2
sin2~ 22 r

r
J

K
   nr ,.....,3,2,1=                                                          

(24) 

Solutions of main chains coordinates for free vibrations are in the following forms: 

( ) ( ) ( ) ( )∑∑∑
=

=

=

=

=

=

+=+==
ns

s

ssss

ns

s

ss
s

k

ns

s

s
kk tkCtA

111

cossincos αωϕαωξξ , nk ,.....,3,2,1=                 (25) 

( ) ( ) ( ) ( )∑∑∑
=

=

=

=

=

=

+=+==
nr

r

rrrr

nr

r

rr
r

k

nr

r

s
kk tkDtA

111

~cossin~cos
~

βωϑβωηη , nk ,.....,3,2,1=                 (26) 

  

     

7.6. 2. Boundary conditions of the double DNA chain helix  
Now, it is necessary to consider some boundary conditions (see  [48], [49] and [27]) of the double DNA chain 

helix in accordance with the possible real situations. For that reason, we take into account two cases of double 

DNA chain helix, when ends of the chains are free and when ends of the chains are fixed. Then, we can write 

the following boundary conditions of the double DNA chain helix:  

a* case: both ends of the double DNA chain helix are free: 

For that case, the first and n -th equations from the subsystems are in the form:  

                 ( ) 021 21 =−−−+ AuA κµ                                                                             (27a) 

( ) 0211 =−−++− − uAA nn κµ  

  ( )1 21 2 0A u Aµ κ+ − − − =� ��  

            ( )1 1 2 0n nA A uµ−− + + − =� � �                                                                                       (27b) 

and after applying the proposed solutions (9) and (11) we obtain: 

n

s
s

π
ϕ =   and 

n

s
s

π
ϑ =  ns ...,4,3,2,1=                                                                            (27c) 

b*  case: both ends of the of the double DNA chain helix are fixed: 

                    ϕkCAk sin=   00 =A   01 =+nA  ( ) 01sin1 =+=+ ϕnCAm                                   (28a) 

                   ϑkDAk sin
~

=   0
~

0 =A   0
~

1 =+nA  ( ) 01sin
~

1 =+=+ ϑnDAm                                       (28b) 

                  
( )1+

=
n

s
s

π
ϕ   

( )1+
=

n

r
r

π
ϑ  , ns ...,4,3,2,1= , nr ,.....,3,2,1=                                           (28c) 

 

Then the analytical expressions of the square of sω  - eigen circular frequencies of the vibration modes of 

the separate main chains in the double DNA chain helix are [35]: 

( ) ( )











−










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sin2 βα

αβ
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ω
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ω rr
K

K

K

rrrK

J

K s
s

 ,   ns ...,4,3,2,1=       (29) 

( )2 22sin
2

r
r

K r r rK

J K

αβ α α βϑ
ω

 −
 = +
 
 

�  nr ,.....,3,2,1=                                    (30) 

a* case: both ends of the double DNA chain helix are free (see Fig.3.) : 

( ) ( )











−








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−
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1
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sin2 βα

αβ

αβαββαααβ

ω
ωπ

ω rr
K

K

K

rrrK

n

s

J

K
s

,  ns ...,4,3,2,1=        (31) 

( )







 −
+=

K

rrrK

n

r

J

K
r

βαααβπ
ω

2
sin2~ 22 ,   nr ,.....,3,2,1=                                                  (32) 
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              Fig 3. Double DNK Chain helix in the form of multi-pendulum model with free ends 
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Fig.4. Double DNK Chain helix d model in the form of multi-pendulum system with fixed ends 

 

 

b* case: both ends of the double DNA chain helix are fixed (see Fig.4.) : 

( )
( ) ( )








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


−








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−
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+
= 2

1
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1
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αβ

αβαββαααβ

ω
ωπ

ω rr
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K
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s

J

K
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 ns ,.....,3,2,1=     (33) 

( )
( )2 22sin

2 1
r

K r r rK r

J n K

αβ α α βπ
ω

 −
 = +

+ 
 

�   nr ,.....,3,2,1=                                    (34) 

 

 

7.6. 3. Consideration of the forced vibrations of a basic DNA model - linearized Kovaleva-

Manevich's DNA model  
In order to obtain general solutions of both systems (6)-(7) of non-autonomous differential equations 

corresponding to forced regimes of the main chains vibrations, it is necessary to start with finding the particular 

solutions for this system. Taking into account the denotation (14)-(16), the previous systems (6)-(7) of non-

autonomous differential equations is possible to express in the form: 

[ ] thth
K

kkkk 2.2,,01.1,,01 coscos12
2

Ω−Ω=−−++− −+ kk1kk

J
ξκµξξξ��   nk ,.....,3,2,1=        (35) 

( ) thth
K

kkkk 2.2,,01.1,,01 coscos12
2

Ω+Ω=−++− −+ kk1kk

J
ηµηηη�� , nk ,.....,3,2,1=        (36) 

where 
K

h
.,k

k

1,0

1,,0

M
=    

K
h

.,k
k

2,0
2,,0

M
= , nk ,.....,3,2,1= , reduced external excitation amplitudes. 

Next, taking into account that this system is linear, for simplifications of the calculation procedure, without 

loss of generality, we can solve the system of non-autonomous differential equations describing the main chains 

forced vibrations of the double DNA helix chain system under one frequency external excitation, with 

frequency 1,1Ω  and reduce the amplitude applied 
K

h
.,k

k

1,0

1,,0

M
=  to one mass particle in the first real chain from 

the coupled chains. For that reason, we find particular solutions that correspond to forced vibrations with 

frequency 1,1Ω  in the following form (see Fig. 5): 
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[ ]




≠

=Ω
=−−++− −+

10

1cos
12

2 1.11,1,0
1

k

kth

K
kk1kk

J
ξκµξξξ��  nk ,.....,3,2,1=            (37) 

( )




≠

=Ω
=−++− −+

10

1cos
12

2 1.11,1,0
1

k

kth

K
kk1kk

J
ηµηηη�� , nk ,.....,3,2,1=      (38) 

Particular solutions for the first and second system (37)-(38) are proposed in the forms: 

 , 1,1cosport k kN tξ = Ω   nk ,.....,3,2,1=                                                (39a) 

 , 1,1cosport k kN tη = Ω�   nk ,.....,3,2,1=                                                 (39b) 

and introducing the following denotations: 

 2ω
K

u
J

=  2
1,1, kk

K
v Ω=

J
  2

12,2, kk
K

v Ω=
J

                        (40) 

and introducing the proposed particular solutions (39)-(40) into the system (37)-(38), we obtain the following 

system of algebraic non-homogeneous system:  

           ( )




≠

=
=−−−++− −+

10

1
12

1,1,0
11,1

k

kh
NvNN kk1k κµ   nk ,.....,3,2,1=                      (41) 

        ( )




≠

=
=−−++− −+

10

1~~1
~

2
~ 1,1,0

11,1
k

kh
NvNN kk1k µ   nk ,.....,3,2,1=                      (42) 

where 2
1,11,11,1

~ Ω==
K

vv
J

. 

Using the Cramer rule, for the amplitudes of particular solutions, we obtain the following: 

 ( ) ( )
( )1,1

1,1
1,1

v

v
vN

k
k ∆

∆
=   nk ,.....,3,2,1=                        (43) 

 ( ) ( )
( )1,1

1,1
1,1 ~~

~~
~~

v

v
vN

k
k

∆

∆
=   nk ,.....,3,2,1=                        (44)  

where, for example, two-system determinates, ( )1,1v∆  and ( )1,1
~~
v∆ , are in the following forms (for the de-coupled 

main chains, each with four degrees of freedom): 
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                              (46) 

For the same example the other determinants ( )1,1vk∆  and ( )1,1
~~
vk∆ , nk ,.....,3,2,1= , are obtained from the 

corresponding two-system determinates, ( )1,1v∆  and ( )1,1v∆� �  introducing into the corresponding column, the 

column with free terms from the right sides of the non-homogeneous  algebraic equations (41)-(42): 
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Fig. 5. Double DNK Chain helix  model in the form of multi-pendulum system  with fixed ends 
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Particular solutions of the main chains coordinates of considered examples with eight degrees of freedom of 

double DNA helix chain system containing two coupled chains, each with four degrees of freedom and excited 

by one frequency external excitation, are in the following forms: 
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Solutions of the main chains coordinates of the homogeneous system for the considered example in free 

vibration regime are: 

 ( )∑
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rrrrkfree tkD βωϑη , 4,3,2,1=k                                                (64) 

General solutions of the main chains coordinates of the homogeneous system for the considered example in 

coupled free and forced vibration regimes are: 

 ( ) kpart

s

s
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or in the form 
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r
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For the system of double DNA helix chain system with n2  degrees of freedom, the previous two-sub-

system determinates ( )1,1v∆  and ( )1,1
~~
v∆  are not difficult to express in similar forms. 

Then, taking into account that determinates ( )1,1v∆  and ( )1,1
~~
v∆  are analogous to determinants describing the 

frequency equations of the free vibrations of the double DNA helix chain system, which is possible to express 

in the following forms: ( ) 0=∆ u  and ( ) 0
~

=∆ u , and that we have roots of these frequency equations in the forms 

(23)-(24), then we have roots of the two-system determinates, ( )1,1v∆  and ( )1,1
~~
v∆  in the forms: 
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( ) ( ) ( ) µ
ϑ
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2

sin2~~~~ 22
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r
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K

J
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K

J
v    nr ,.....,3,2,1=                                  (70) 

Using the previous characteristic numbers of the previous two-sub-system determinates, these determinants, 

( )1,1vk∆  and ( )1,1
~~
vk∆ , are possible to express in the forms of products: 

( ) ( )( )n
s
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( ) ( )( )n
r
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r

n
uvv ~~2~~
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1
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=

=

                                                                          (72) 

It is possible, in the same way, to find the expressions for the amplitude of particular solutions depending on 

the number of degrees of freedom n2 . For example, it is obvious without calculations that the amplitude 1N , 

1

~
N  and 2N , 2

~
N  of the particular solutions of the first and second normal coordinates, 1,partξ , 1,partη  and 2,partξ , 

2,partη  of each of the both main chains are in the following forms: 
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General solutions of the main chains coordinates of the homogeneous system for the considered example in 

coupled free and forced vibration regime are in the following forms: 

( ) kpart
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s
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1
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or in the form 

( ) ( ) tvNtkC k

ns

s

sssskpartkfreek 1,11,1

1

,, coscossin Ω++=+= ∑
=

=

αωϕξξξ , nk ,.....,3,2,1=                (77) 
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 ( ) ( ) tvNtkD k

nr

r

rrrrkpartkfreek 1,11,1

1

,, cos~~~cossin Ω++=+= ∑
=

=

βωϑηηη , nk ,.....,3,2,1=       (78) 

For the case when one frequency external excitation with reduced amplitude 
K

h
., 2,10

1,2,0

M
=  with frequency 

1,2Ω  is applied to the other first material particle n of the other of the coupled real chains, then two subsystems 

of the main eigen chains are described by the following subsystems of differential equations: 

[ ]
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K
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J
ηµηηη�� , nk ,.....,3,2,1=   (80) 

Particular and general solutions of these previous equations are not difficult to obtain analogously to the 

previous procedure and by changing the corresponding indices of the kinetic parameters of the main chains. 

 

 

7.6. 4. Consideration of the forced vibration regimes of a basic DNA model - linearized 

Kovaleva-Manevich's DNA model-resonance and dynamical absorption 
From the expressions (73) and (74), the possibilities of the occurrence of resonant regimes in eigen main chains 

can be considered.  

For the case when the determinants (71) and (72), ( ) ( )( ) 02 1,1

1

1,1 =−=∆ ∏
=

=
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s
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n
uvv  and 

( ) ( )( ) 0~~2~~
1,1
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1,1 =−=∆ ∏
=

=

n
r

nr

r

n
uvv   are equal to zero, we obtain two sets of external excitation frequencies for which in 

the system there appears a resonant regime. But taking into account that eigen main chains have different sets 

of eigen circular frequencies as well as different sets of resonant circular frequencies of external excitation, then 

it can be inferred that if in one eigen main chain there appears a resonant regime, then there is no resonance in 

the other eigen main chain. This is an important fact to consider in the light of the real double DNA helix chain 

system.  

Also, using the expressions for amplitudes of the particular forced solutions, the occurrence of dynamical 

absorptions at the corresponding main chain coordinate of eigen main chain is possible. To obtain the external 

excitation frequencies at which the dynamical absorption occurs at the first or second main chain coordinate of 

the main chains are equal to zero:      
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and next 
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 From the last conditions (83) and (84) we can conclude that: 
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 * Dynamical absorption on the first pair of the main coordinates of the main chains occurs on the resonate 

circular frequencies of the set of the double DNA helix chain system with one pair of the material particles less 

compared to the considered real system. 

* Dynamical absorption on the second pair of the main chain coordinates of the main chains occurs on 

the resonate circular frequencies  of the set of the double DNA helix chain system with two pairs of the material 

particles less compared to the considered system. 

This mathematical fact is important to consider in the light of the interruption or break of the double 

DNA helix chain system. By choosing the frequency of external excitation force, it is possible to define the 

conditions of place of the dDNA breakage. 

 

 

7.7  The double DNA fractional order chain model on the basis of the linearized 

Kovaleva-Manevich's DNA models for free and forced vibrations 
In this section fractional order model of dDNA is considered. Free and forced vibrations of this type 

of model are discussed. Analytical solutions for main coordinates and eigen frequencies for coupled 

and decupled system are given. Visualization of the main modes of free vibrations of fractional order 

dDNA helix chain system and corresponding partial fractional order oscillatory modes are also 

presented in this section. 

 

 

7.7.1. Constitutive relation of the standard light fractional order creep element  
Basic elements of the multi-mathematical pendulum system or multi-coupled chain system are: 

1* Material particles with mass km , with each particle having one degree of motion freedom, defined by 

the following coordinate kϕ , when k  changes by Nk ,....,4,3,2,1= . 

2* Standard light fractional order coupling element of negligible mass in the form of axially stressed rod 

without bending, which has the ability to resist deformation under static and dynamic conditions (see Refs. 

[12], [20-22], [24-34]). Standard light creep constraint element for which the stress-strain relation for the 

restitution force, as the function of element elongation, is given by fractional order derivatives in the form  

( ) ( ) ( )[ ]{ }txctxctP t
α

αD+−= 0                                                                          (85) 

where [ ]•α
tD  is operator of the thα  derivative with respect to time t in the following form,[19]: 

( ) ( ) ( ) ( )
( )

( )
( )0

1

1

t

t

d x t xd
x t x t d

dt dt t

α
αα

αα

τ
τ

α τ
  = = =  Γ − −∫D                                          (86) 

where ,c cα  are rigidity coefficients–momentary and prolonged one,  and α  a rational number between 0 and 

1, 10 <<α . 

 

 

7.7.2. The double DNA fractional order chain free vibration model on the basis of the linearized 

Kovaleva-Manevich's DNA model 
In this section, we will define the discrete continuum mathematical pendulum chain as a system of material 

particles inter-coupled by light standard coupling elements (elastic, hereditary or creep) and which are, in 

natural state, on defined inter-distances (when coupling elements are unstressed) (see Refs. [24-33]).  

We used the fractional calculus to model the system that does not have ideally elastic properties. This 

concept may be incorporated into the theory of aging materials. As DNA molecule is aging it loses ideally 

elastic properties and expresses more visco-elastic properties. 

We define discrete homogeneous multi-mathematical pendulum chain system as a system of discrete 

material particles of the same masses, which can rotate/oscillate along the corresponding circles with the same 

radius �  and centers on the one horizontal line. The entire system is in the vertical plane and the gravitational 

field (see Fig. 6 and 7). 
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The number of degrees of freedom of each of these multi-pendulum chains is equal to the number of 

material particles in it, since we accept the previously defined character of the system. 

Furthermore, we introduce the hypotheses about the homogeneity of discrete continual chain, about small 

deformations of light standard coupling elements, and that displacements of material particles are small. 

Also, we introduce the hypothesis that the homogenous discrete continuum, chain, was in natural, non-

stressed state, before the initial moment of motion observation i.e. that light standard coupling elements do not 

have a prehistory or memory of stress-strain state. With these hypotheses, we will direct our research to the 

dynamics of chain-like homogenous multi-pendulum systems. 
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Fig. 6. Double DNK fractional order chain helix in the form of multi-pendulum model with free ends 
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Fig.7. Double DNK fractional order chain helix d model in the form of multi-pendulum system with fixed ends 

 

     For the double DNA fractional order chain model on the basis of the linearized Kovaleva-Manevich's DNA 

model, we accept two chains as presented in Fig. 6 or 7, in the form of the double chain fractional order system 

containing two coupled multi-pendulum subsystems, in which the corresponding material particles of the 

corresponding multi-pendulum chains are coupled by one standard light fractional order element with stress-

strain constitutive relations in the form (85).  

Then, we can use the system (3) of the coupled linear differential equations extended by terms containing 

fractional order differential operators in the form (85). Then, we can write the corresponding system of the 

fractional order differential coupled equations for free fractional order vibrations of the double DNA fractional 

order chain system in the form: 
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where σ,,1kK , σ,2,kK , σαβ ,K and σαβ ,K  are material constants of the double DNA fractional order chain model  

coupling elements pressing fractional order creep properties.  The previous system is possible to rewrite in the 

following form: 
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 As our intention is to use the previous double DNA fractional order chain model for the case of the 

homogeneous system parameters, we take into account that: σ,,1kK = σ,2,kK =K. and σαβ ,K = σαβ ,K . Then, 

taking into account that we introduce the notation (14), (15) and (16), then the previous system of coupled 

fractional order differential equations is possible to write in the following form: 
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where 
K

K σαβ
σκ

,= . 

Using change of the generalized independent angular coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both 

chains in the double DNA helix chain model into the following new coordinates kξ  and kη , as relations (5) in 

section 6 in the form: 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη += , the previous system of ordinary differential 

fractional order equations (89) obtains the following form: 

( ) ( )[ ]1,111 1212
2
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K

ξξκξκξξκµξξ σ
σ Dk

J ��                                (90) 

( ) [ ]1,11,1 212
2

+−+− −+−−=−++− kkktkkk
K

ηηηκηηµηη σ
σ Dk

J
�� ,   nk ,.....,3,2,1=             (91) 

The first series (89) of differential fractional order equations of the previous system (90)-(91) is decoupled 

and independent with relations of the second series (91) of the fractional order differential equations. Then, we 

can conclude that new coordinates of kξ  and kη  are the main chain coordinates of the double DNA fractional 

order chains and that we obtain two fictive decoupled and independent single eigen fractional order chains of 

the double DNA fractional order model. This is a fundamental conclusion as an important property of the 

fractional order homogeneous model of vibrations in a double DNA fractional order homogeneous helix. 

The systems of fractional order differential equations (90)-(91) contain two separate subsystems of 

fractional order differential equations expressed by coordinates of kξ  and kη  which are the main coordinates 

of a double DNA fractional order chain helix and separate DNA fractional order model into two independent 

fractional order chains.  
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7.7.3. Analytical solutions of the subsystems of the main chains fractional order differential equations for 

free fractional order vibrations  

We solve the previous subsystems (90) and (91) of fractional order differential equations using the Laplace 

transformations (for detail see Appendix E.3). After applying the Laplace transformations of the previous 

systems (90) and (91) of fractional order differential equations with fractional order derivative and having in 

mind that we introduced notations ( ){ }tkξL  and ( ){ }tkηL  for the Laplace transformations of unknown normal 

chain coordinates kξ  and kη , as well as that: 
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and also having in mind that we accepted the hypothesis that the initial conditions of fractional order 

derivatives of the system are given using: ( )
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where k0ξ  and  k0ξ�   as well as k0η and  k0η�  are defined by initial conditions of the system material particle 

dynamics in the chains, we can write the following system of the algebraic equations according to the unknown 

Laplace transforms ( ){ }tkξL  and ( ){ }tkηL of unknown normal chain coordinates kξ  and kη : 

        

( )
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Now, we have two separate, uncoupled non-homogeneous subsystems of the algebraic equations in the 

following forms: 

{ } ( ) ( ){ } { } [ ]
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ξξ

ξξξ
p

p
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{ } ( ) { } { } [ ]
( )σ

σκω
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ηηη
p

p
u kk
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1
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0

00
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LLL                                                           (99) 

Taking into account that at initial moment we have: 1.00 ≠= kkξ  and  1.00 ≠= kkξ�   as well as 1.00 ≠= kkη and  

1.00 ≠= kkη�   the previous equations obtain the following form: 

{ } ( ) ( ){ } { } ( )




≠

=
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1,,
2 0101
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kph
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{ } ( ) ( ){ } { } ( )



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where  

 
[ ]

[ ] κ
κω
µω

σ
σ

2
1

2
2

0

2

0

2

−
+
+

=
p

p
v , 

[ ]
[ ]σ

σκω
µω

p

p
u

+
+

=
1

2
2

0

2

0

2

,   
J2

2

0

K
=ω                                           (102) 
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( ) [ ]
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Both subsystems (100)-(101) are of the same form and it is enough to solve one of the subsystems and applying 

the analogy it is easy to solve other subsystem of fractional order differential equations. For that reason, we can 

use the method proposed in the papers [30] and [31]. 

Determinates of the previous algebraic subsystem (100) as well as (101) are in the same form as presented in 

the following form: 

( ) 0

21

12

21

12

≠

+−

−+

+−

−+

=∆

×NN

N

v

v

v

v

v   .                                                      (104) 

Introducing the notation (102) and (103), for the determinants ( )( )ξhvk ,
~
∆ , we can write the following forms: 

( )( )
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To solve the system of the algebraic non-homogeneous equations (100) or (101) with respect to unknown 

Laplace transforms ( ){ }tkξL  or ( ){ }tkηL  of the time function main chain coordinates ( )tkξ  and ( )tkη , 
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unknown normal chain coordinates of the system main chains, we can use the Cramer approach and we can 

write: 

   ( ){ } ( ) ( )
( )

( ) ( ) ( )
( )

2 1

0 0, 1 , ,
k

k k N kk

k N
N N
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Let us first analyze the solution and characteristic equations of the homogenous subsystem as basic 

subsystems of the algebraic non-homogeneous equations (100) or (101) with respect to unknown Laplace 

transforms ( ){ }tkξL  or ( ){ }tkηL  of the time function main coordinate ( )tkξ  and ( )tkη , unknown normal chain 

coordinates of the system main chains. These two of the homogenous subsystem as basic subsystems of the 

algebraic non-homogeneous equations (100) or (101) are in the following forms: 

{ } ( ) ( ){ } { }1 12 0k k kv tξ ξ ξ− +− + + − =L L L                                                    (112) 

{ } ( ) { } { }1, 12 0k k kuη η η− +− + + − =L L L                                                        (113) 

  

The solution of such a subsystem of algebraic homogenous equations (112) or (113), from which we obtain a 

series of determinants, can be obtained using the trigonometric method (see [48] or [27] )) or by obtaining the 

recurrent formulas. Let us use the trigonometric method and, for that reason, the solutions are assumed in the 

following forms:  

 ( ){ } sink t N kξ φ=L ,                                                                             (114) 

and introducing into the previous subsystems (112) or (113), we have that: ( )1cos2 −= ϕv  and 

( )1cos2 −= ϕu , as well as the following two characteristic equations: 
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or in the forms: 

a* for the first main chain with a set of main chain coordinates ( )tkξ : 

( )( ) nspp s ,...,3,2,1,0cos21122 2

0

2

0

2 ==−−+++ ϕκκωµω σ
σ                         (116) 

b* for the second main chain with main chain coordinates ( )tkη : 

( )( ) nspp s ,...,3,2,1,0cos1122 2

0

2

0

2 ==−+++ ϕκωµω σ
σ                                        (117) 

where sϕ  depends on the boundary conditions on the ends of the corresponding system main chain. 

Based on the previous two characteristic equations (116) and (117), the subsystem characteristic 

determinants of the system can be written in the following form: 

a* for the first main chain with a set of main chain coordinates ( )tkξ : 

( )( )[ ] 0cos1122 2

0

2
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≠−−+++=∆ Π
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=
s
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N pp
x

ϕκκωµω σ
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b* for the second main chain with main chain coordinates ( )tkη : 
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from which we obtain a series of determinants when we replace one of the columns with a column of free terms 

on the right side of the fractional order differential equations in system (111) as well as (112), as it is shown by 

the calculus in (91) - (107). Based on that, for given initial conditions for each of the particle coordinates of 

material particles in the corresponding chain, we can obtain the following determinants corresponding to a 

certain column (and to an unknown Laplace transformation ( ){ }tkL of the coordinate ( )tkξ ) in the following 

forms: 
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1.a* for the first main chain with a set of main chain coordinates ( )tkξ  the determinate of the subsystem is: 
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1.b* for the second main chain with main chain coordinates ( )tkη  the determinate of the subsystem is: 
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2.a* for the first main chain with a set of main chain coordinates ( )tkξ  the particular determinates of the 

subsystem are: 
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2.b* for the second main chain with main chain coordinates ( )tkη ( )tkξ  the particular determinates of the 

subsystem are: 
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Based on these previous discoveries, we can deduce the following expressions for the unknown Laplace 

transformations ( ){ }tkξL  or ( ){ }tkηL of the time function main chain coordinates ( )tkξ  and ( )tkη , unknown 

normal chain coordinates of the sub-system main chains: 

3.a* the Laplace transformations ( ){ }tkξL  of the time function main chain coordinate ( )tkξ  for the 

first main chain with a set of main chain coordinates ( )tkξ are: 
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3.b* the Laplace transformations  ( ){ }tkηL  for the second main chain with main chain coordinates ( )tkη  

for the first main chain with a set of main chain coordinates ( )tkη  are: 
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The previous solutions for the unknown Laplace transformations ( ){ }tkξL  or ( ){ }tkηL of the time function 

main chain coordinates  ( )tkξ  and ( )tkη , the unknown normal chain coordinates of the sub-system main 

chains can be written in the following form: 

4.a* the Laplace transformations ( ){ }tkξL  of the time function main chain coordinates ( )tkξ  for the first 

main chain with a set of main chain coordinates ( )tkξ are: 
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  Nk ,...,3,2,1=                       (127) 

4.b* the Laplace transformations  ( ){ }tkηL  for the second main chain with main chain coordinates ( )tkη  

for the first main chain with a set of main chain coordinates ( )tkη  are: 
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Nk ,...,3,2,1=                                          (128) 

5.a* for the first main chain with a set of main chain coordinates ( )tkξ : 
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5.b* for the second main chain with main chain coordinates ( )tkη : 
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After developing the binomials into series of previous particular solutions, it is easy to obtain time solutions in 

the form of the series with respect to time (see Appendix E.3-E.4). 

 

 

7.7.4. Main coordinates of the fractional order double DNA helix chain system and 

corresponding partial fractional order oscillators  
Starting from two subsystems of the main eigen chain fractional order differential equations (90)-(91) and the 

corresponding basic linear subsystems: 

0222
2

11 =−+−+− +− kkk

J
κξµξξξξξ kkk

K
��                                                    (131) 

022
2

1,1 =+−+− +− kk

J
µηηηηη kkk

K
�� ,   1,2,3,.....,k n=                            (132) 

we can find two subsystems of the corresponding independent partial fractional order oscillators. For that 

reason, we applied trigonometric method (see [48], and [24-27]) and introduce into the previous subsystem (59) 

the following assumed solutions:  

( ) ( )αωξ += tAt kk cos                                                             (133) 

where kA  is unknown amplitudes , and ω  is frequency, and α is phase. After introducing the notation: 








 −+= µκω 22
2

K
u

J
                                                                    (134) 

we obtain the following system of the homogeneous algebraic equations: 

( ) 02 11 =−−+− +− kkk AAuA                                                                (135) 

Now, for the amplitudes, we assume the following: 

 ϕkCAk sin=                                        

(136) 

and after introducing in the system (63) the algebraic equations  

      ( ) ( ) ( ) 01sinsin21sin =+−−+−− ϕϕϕ kCkCukC                                            (137a) 
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( ) 0sincos22 =−− ϕϕ kCu                                                   (137b) 

we obtain: 

  ( )ϕcos12 −=u                                                                          (137c) 

as well as: 

 ( )κµϕω −+= 22 sin2
2J

K
                                                                            (138) 

The solution (133) must satisfy boundary conditions for a different case of the ends of the double DNA 

fractional order chain model. For that reason, we must put indices s , and two subsets of the eigen circular 

frequencies of the corresponding main eigen chains are: 
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






 += µ
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ω η
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22 s
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J
 , ns ,....,3,2,1=                                                     (140) 

For the first main chain of the double DNA chain helix, the eigen amplitudes are in the form 
( )

ss

s

k kCA ϕsin=  and generalized main chain coordinates ( )tkξ  of the first main chain is possible to express 

by a set of the main normal coordinates ξζ s  in the following form: 
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                        nk ,....,3,2,1=  

Normal coordinates ξζ s  or normal modes of the first main chain are in the form 

 ( )
ssss tC αωζ ξξ += cos , ns ,....,3,2,1=                                          (142) 

with known frequencies (139) , and unknown amplitudes  sC  and phase sα  depending of initial conditions.  

The transformation of the subsystem (90) of the fractional order differential equations of the first main chain 

by introducing (140) yields: 
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where characteristic numbers expressing fractional order subsystem properties are in the following form: 
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 Taking into account that skϕsin  is equal to zero, only for the boundary conditions, then from (141) we can 

write that is necessary to be: 

[ ] 022 =++ ξ
σ

σξξξξ ζωζωζ stssss D�� , ns ,....,3,2,1=                                          (145) 

where sets of circular frequencies 
2

ξωs and a set of characteristic fractional order numbers 
2

σξωs  are in the 

following forms: 
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ϕ
κκω σσξσξ

2
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2

22 s
ss

KK

JJ
, ns ,....,3,2,1=                      (147) 

The previous system (145) of differential fractional order equations is independent containing one main 

chain coordinate ξζ s  and describing creep vibration modes of the n  independent partial fractional order 

oscillators, each of them with one degree of freedom. 

On the basis of the previous approach for the second subsystems of the second main chain, for the second 

main chain of the fractional order double DNA chain helix, the eigen amplitudes are in the form 
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( )
ss

s

k kDB ϕsin=  and generalized main chain coordinates ( )k tη  of the second main chain are possible to 

express by a set of the corresponding main normal coordinates ηζ s  in the following form: 

       ( ) ( ) ( ) ( ) ∑∑∑
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=+=+=
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n

s
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n

s

ss

s

kk ktkDtBt
111

sincossincos ϕζβωϕβωη ηηη    (148) 

                         1,2,3,....,k n=  

Normal coordinates or normal modes ( )tkη  of the second main chain of the fractional order double DNA 

helix chain are in the form: 

   ( )
ssss tB βωζ ηη += cos , ns ,....,3,2,1=                                               (149) 

with frequencies expressed by (138), and unknown amplitudes sB  and phase sβ  depending of initial 

conditions.  

The transformation of the second subsystem (91) of the differential equations of the second main chain by 

introducing (147) yields: 
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where  
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J
 , ns ,....,3,2,1=                                           (151) 

 Taking into account that skϕsin  is equal to zero, only for the boundary conditions, then from (147), we can 

write that it is necessary to be: 

 [ ] 022 =++ η
σ

σηηηη ηωηωζ stssss D�� ; ns ,....,3,2,1=                                        (152) 

where sets of eigen circular frequencies 
2

ηωs  and a set of characteristic fractional order numbers 
2

σηωs  are in the 

following forms: 
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2
sin

2
4 22 s

s

K ϕ
κω σση

J
= , ns ,....,3,2,1=                                            (154) 

We can see that previous subsystem of the fractional order differential equations (143) with respect to their 

main coordinates ηζ s , as in the previous case corresponding subsystem of the fractional order differential 

equations (152) with respect to their main normal coordinates ξζ s , are two subsystems with independent 

describing creep vibration modes of the n2  independent partial fractional order oscillators, each of them with 

one degree of freedom. Both obtained subsystems (143) and (147) of fractional order differential equations 

contain fractional order differential equations of the same type, each being the fractional order differential 

equations containing one main normal coordinate, ξζ s or ηζ s , and each of them with one degree of freedom. 

Then, we can conclude that we start with one fractional order double DNA helix chain system which is, in 

whole, with n2  degrees of freedom and n2  generalized independent angular coordinates 1,kϕ  and 2,kϕ . And 

using two subsystems of the main chain coordinates 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη +=  we obtained two 

independent subsystems, each with n  degrees of freedom, and with the corresponding subsystem of 

independent eigen main fractional order oscillators described by the corresponding sets of eigen main chain 

coordinates ξζ s or ηζ s , and by subsets of the n  eigen circular frequencies 
2

ξωs  and 
2

ηωs  and the corresponding 

creep properties parameters 
2

σξωs  and 
2

σηωs  for ns ,....,3,2,1= . 

         In order to solve the system of fractional order differential equations (145) and (152), we use an analogy 

between the obtained fractional order differential equations and the corresponding fractional order differential 

equation (E.4.1) in the Appendix E.4, and we can write (see [3] or [34]):   
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7.7.5. Visualization of the main modes of fractional order double DNA helix chain system free 

vibrations and corresponding partial fractional order oscillator modes  

Using the previous expressions (153)-(154) we can separate the following two pairs of the main 

modes of a fractional order double DNA helix chain system in the following forms: 

            a* the first pair for the first main chain of a fractional order double DNA helix chain system 

corresponds to the set of the  main coordinate ξζ s : 

  

a*M  

 

b*M  

c* M  
 

t  

( )α,2 tg  

α  

( )α,2 tg  

t  

α  

( )α,2 tg  

t  

α  

  

 
 

d*       

e*     

t  

( )α,1 tg  α  

( )α,3 tg  

α  

t  

 

f*  

   g*  
 

t  
( )α,5 tg  

α  

t  

( )α,4 tg  α  

 
     Fig.8.                                         Fig.9.                                                Fig.10. 

 

Fig. 8. Time functions ( )α,2 tg surfaces for different multi-plate transversal vibrations kinetic and creep material 

parameters in the space ( )( )αα ,,,2 ttg for interval 10 ≤≤α . 
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Fig. 9. Time functions: d* ( )α,1 tg  and e* ( )α,3 tg surfaces for the same multi-plate transversal vibrations kinetic 

and creep material parameters 2,1 22

0 == αωω  in the space ( )( )αα ,,,1 ttg , as well as in corresponding ( )( )αα ,,,1 ttg  for 

interval 10 ≤≤α . 

Fig. 10. Time functions: f* ( )α,4 tg  and g* ( )α,5 tg surfaces for the same multi-plate transversal vibrations kinetic 

and creep material parameters 2,1 22

0 == αωω  in the space ( )( )αα ,,,4 ttg , as well as in corresponding ( )( )αα ,,,5 ttg  for 

interval 10 ≤≤α . 
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contains two modes like cosine and corresponding sine, with a set of the circular frequencies j
s
2
ξω  and fractional 

order characteristic numbers k
s
2
σξω , with difference in phase analogous to that between cosine tsξωcos   and 

sinus tsξωsin  with the corresponding same circular frequency and difference in phase for / 2π . 

 b* the second pair for the second main chain of a fractional order double DNA helix chain 

system corresponding to the set of the main coordinate ηζ s : 
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contains two modes like cosine and the corresponding sine, with a set of the circular frequencies j
s
2
ηω  and 

fractional order characteristic numbers k
s
2
σηω , with difference in phase analogous to that between cosinus  

tsηωcos   and sinus tsηωsin   with the corresponding same circular frequency  and difference in phase for / 2π . 

      The previously listed analytical expressions (157)-(158) and (159)-(160) for the corresponding pairs of the 

first and second main chains fractional order modes of a fractional order double DNA helix chain system also 

correspond to n2  fractional order modes of the partial fractional order oscillators (145) and (152), each for one 

from the set of  n2  main coordinates ξζ s  and ηζ s  of a fractional order double DNA helix chain system. 

 
 

7.7.6. The double DNA fractional order chain forced vibration model on the basis of the 

linearized Kovaleva-Manevich's DNA model 
For the fractional order forced vibrations of a fractional order double DNA chain model on the basis of the 

linearized Kovaleva-Manevich's DNA model, we accept two chains, as presented in Fig. 6 or 7, in the form of 

the double chain fractional order system containing two coupled multi-pendulum subsystems, in which the 

corresponding material particles of the corresponding multi-pendulum chains are coupled by series of the same 

standard light fractional order elements. 

We assume that both coupled chains from the system of the fractional order DNA model are excited by 

the system of external excitation containing two series of the one frequency excitations in the forms 

tk.,k 1.1,0 cosΩM  and tk.,k 2.2,0 cosΩM , nk ,.....,3,2,1= , where 1,0 .,kM  and  2,0 .,kM   are amplitudes, 1.kΩ  and   

2.kΩ   are frequencies  of the external forced couples, each applied to one of the mass particles of the double 

DNA model coupled chains. 

Then, we can write the corresponding system of the fractional order differential coupled equations in 

the form: 

Chapter 7

172



 

               
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )

( ) ( )[ ] trrK

rrKrrrK

KK

k.,kt

t

1,1,02,,

2

1

2

,

2,,

2

1

2

,

,1,,,1

,,

,1,,,1

,

,,

cos1
4

1

1
4

1

22

Ω=−−









−−

−−−









−−−−−+

+−−−−−−−− −+−+

MD

D

k1k

k1k1k

1k1k1k1k

1k

1k1k1k1k

1k

1k1kJ

ϕϕ
ω
ω

ϕϕ
ω
ω

ϕ

ϕϕϕϕϕϕϕϕϕ

σ
βα

αβ

αβ
σαβ

βα
αβ

αβ
αββαααβ

σσ��

  

                               
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )

( ) ( )[ ] trrK

rrKrrrK

KK

k.,kt

t

2,.2,02,,

2

1

2

,

2,,

2

1

2

2,

2,12,2,2,1

,2,

2,12,2,2,1

2,

2,2,

cos1
4

1

1
4

1

22

Ω=−−









−+

+−−









−++−+

+−−−−−−−− −+−+

MD

D

k1k

k1kk

kkkk

k

kkkk

k

kkJ

ϕϕ
ω
ω

ϕϕ
ω
ω

ϕ

ϕϕϕϕϕϕϕϕϕ

σ
βα

αβ

αβ
σαβ

βα
αβ

αβ
αββαααβ

σσ��

                     

(161) 

The previous system is possible to rewrite in the following form: 
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 As our intention is to use the previous double DNA fractional order chain model for the case of the 

homogeneous system parameters, we take into account that: σ,,1kK = σ,2,kK =K. and σαβ ,K = σαβ ,K  and taking 

this into account, we introduce the notation (14) and (15) and then the previous system of coupled fractional 

order differential equations is possible to write in the following form: 

  

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] t
K

K

k
.,k

t

t

1,
1,0

2,,2,,,

,1,,,1,1,,,1,

cos2

2

Ω=−−−−+

+−−−−−−−− −+−+

M
D

D

k1kk1k1k

1k1k1k1k1k1k1k1k1k

J

ϕϕκκϕϕκµϕ

ϕϕϕϕκϕϕϕϕϕ

σ
σ

σ
σ��

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] t
K

K

k

.,k

t

t

2,

2,0

2,,2,,2,

2,12,2,2,12,12,2,2,12,

2,

cos2

2

Ω=−+−++

+−−−−−−−− −+−+

M
D

D

k1kk1kk

kkkkkkkkk

kJ

ϕϕκκϕϕκµϕ

ϕϕϕϕκϕϕϕϕϕ

σ
σ

σ
σ��

       (163) 

where 
,K

K

αβ σ
σκ = . 

Using change of the generalized independent angular coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both 

chains in the DNA model into the following new main chain coordinates kξ  and kη  by the following 

dependence-relations: 2,1, kkk ϕϕξ −=  and  2,1, kkk ϕϕη += , the previous system of fractional order differential 

equations (160) obtains the following form: 
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The first series (161) and second series (163) of the previous system (164)-(165) of the fractional order 

differential equations are decoupled and independent. Then, we can conclude that new main chain coordinates 

kξ  and kη  are the main chain coordinates of fractional order double DNA helix chain model system for forced 

vibration regimes and that we obtain two fictive decoupled eigen single fractional order chains of the double 

DNA fractional order model. This is also one of the fundamental conclusions as an important property of the 

fractional order homogeneous model of forced vibrations in a fractional order double DNA homogeneous 

helix. 

The systems of fractional order differential equations (164)-(165) contain two separate subsystems of 

fractional order differential equations expressed by main chain coordinates of kξ  and kη  which are the main 

chain coordinates of a fractional order double DNA chain helix forced vibration model and separate DNA 

fractional order model into two independent fractional order chains. 

 

 

7.7.7. Analytical solutions of the subsystems of the main chains fractional order differential 

equations for forced regime oscillations 
We solve the previous subsystems (164) and (165) using the Laplace transformations, as in section 7.3. After 

applying the Laplace transformations to the previous systems (164) and (165) of differential equation’s with 

fractional order derivative and having in mind that we introduced the notations ( ){ }tkξL  and ( ){ }tkηL  for the 

Laplace transformations, as well as that: (92), (93), (94) and (95) and also having in mind that we accepted the 

hypothesis that the initial conditions of fractional order derivatives of the system are given using: 
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where k0ξ  and k0ξ�  as well as k0η and k0η�  are initial angular positions and angular velocities defined by initial 

conditions of the system material particles dynamics in the chains at initial moment, we can write the following 

system of the equations with unknown Laplace transforms: 
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The previous system is possible to rewrite in the following form: 
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Now, we have two separate, uncoupled non homogeneous subsystems of the algebraic equations in the 

following forms: 
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or in the following forms: 
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Both subsystems are of the same form and it is necessary to solve one of the subsystems and applying the 

analogy it is easy to solve the other of the subsystem equations. For that reason, we can use the method 

proposed in the papers [32] and [31]. The determinate of the previous subsystem (174) as well as (165) is in the 

following form (104) as for the subsystems of algebraic equations (100) and (101) in section 7.3. 

The algebra no homogenous algebra equations (171) and (172) for special case as in section 7.3 are of the 

same form, as presented in (101) and (102), and we can write: 
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The determinates of the previous algebraic subsystems (180) as well as (181) are of the same form, as 

presented in (104). Introducing the notation ( ) ( )2,01,0
2

2,1
2

1,101011 ,,,,,, kkh hhphph ΩΩ+ ξξ ξξ �  and 

( ) ( )2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph ΩΩ+ ηη ηη  defined by (178) and (179), for the determinants ( )( )ξhv
k

,
~
∆ , we can 

write similar expressions, as defined by (105)-(109), changing the expressions  ( )0101,, ξξξ
�ph  by expressions 

( ) ( )2,01,0
2

2,1
2

1,101011 ,,,,,, kkh hhphph ΩΩ+ ξξ ξξ �  as well as by ( ) ( )2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph ΩΩ+ ηη ηη . 

To solve the system of the algebraic non-homogeneous equations (180) or (181) with respect to unknown 

Laplace transforms ( ){ }tkξL  or ( ){ }tkηL  of the time function main chain coordinates ( )tkξ  and ( )tkη - 

unknown normal chain coordinates of the system main chains for forced vibrations, we can use the Cramer 

approach in a similar way as in section 7.3. 

  

 

7.7.8. Forced eigen modes of the subsystems of the main chains of a fractional order double 

DNA helix chain system forced vibrations 
In this part, we start with two subsystems of fractional order differential equations (164) and (165) expressed by 

eigen a normal chain coordinates 2,1, kkk ϕϕξ −=   and  2,1, kkk ϕϕη += , and these subsystems can be rewritten 

in the following form: 
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(182) 
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J
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             1,2,3,.....,k n=                                                                                                          (183) 

Without loss of generality, our interest was focused next on considering two subsystems of the fractional 

order differential equations in the following form: 

       [ ] ( )[ ]
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            1,2,3,.....,k n=                                                                                       (184) 
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=−+−+−++− +−−+

10

1cos
212

2 1.11,1,0
1,11
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1,2,3,.....,k n=                                                                                      (185) 

The previous two subsystems are for the case of fractional order forced vibrations of a double DNA helix chain 

system excited by a single frequency external couple t., 1,11,10 cosΩM , with amplitude 1,10 .,M  and frequency 1,1Ω , 

applied to the first  mass particle in the first chain of a double DNA helix chain system.  

The first series (184) and second series (185) of the previous system (164)-(165) of the fractional order 

differential equations for forced vibrations are decoupled and independent. Then, we can conclude that new 

coordinates kξ  and kη  are the main chain coordinates of fractional order double DNA helix chain model 

system for forced vibration regimes and that we obtain two fictive decoupled eigen single fractional order 

chains of the double DNA fractional order model. This is also one of the fundamental conclusions as an 

important property of the fractional order homogeneous model of  forced vibrations in a fractional order double 

DNA homogeneous helix.   

The systems of the fractional order differential equations (184)-(185) contain two separate subsystems of 

fractional order differential equations expressed by coordinates of kξ  and kη  which are the main chain 

coordinates of a fractional order double DNA chain helix forced vibration model and separate DNA fractional 

order chain  model into two independent fractional order main chains.  
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For the first main chain of the double DNA chain helix (184), the eigen amplitudes for free vibrations are in 

the form 
( )

ss

s

k kCA ϕsin=  and generalized coordinates ( )tkξ  of the first main chain for forced vibrations is 

possible to express by a set of this eigen main chain main coordinates ξζ s  for free vibrations (149) in the 

following form: 

( ) ∑
=

=
n

s

ssk kt

1

sin ϕζξ ξ                                                                                     (186) 

                               1,2,3,....,k n=     

and for the other main chain of the double DNA chain helix (185) generalized coordinates ( )tkη  of the second 

main chain for forced vibrations is possible to express by a set of this eigen main chain main coordinates ηζ s  

for free vibrations (146) in the following form: 

( ) ∑
=

=
n

s

ssk kt

1

sin ϕζη η                                                                           (187) 

Normal coordinates ξζ s  or normal modes of the first main chain for forced vibrations is possible to express in 

the form similar to that for free vibrations (142), but introducing the assumption that unknown amplitudes  sC  

and phase sα  depending of initial conditions are not constant, but functions of time, ( )tCs  and phase ( )tsα , and 

for fractional order system the main coordinates are in the form 

 ( ) ( ) ( )( )coss s st C t t tξ ξζ α= Ω + , ns ,....,3,2,1=                                   (188) 

with known frequencies (139), and unknown time functions - amplitudes ( )tCs  and phase ( )tsα  depending of 

time and initial conditions.  

Then, we introduce the expressions (186) and (187) and their corresponding second and fractional order 

derivative into the subsystem of the fractional order differential equations (184) and (185), and we obtain the 

following sub-systems:  
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(190) 

After making group sublimations of some terms in the previous equations (189), we obtain the following 

subsystem: 
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                   1,2,3,.....,k n=  

Then, taking into account the denotations (144), (146) and (145), the previous subsystem of equation is possible 

to rewrite in the following form: 
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Taking into account that it is possible to develop, i.e. to express right hand side into series according to  

skϕsin  in the following series:  
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where  
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It is possible to rewrite the equations (192) in the following form: 

[ ] ( )( ) 0sincos
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ssstssss kth
K
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Then, taking into account that 0sin ≠skϕ , in a general case, from (195) it is possible to obtain the following 

subsystem of fractional order differential equations along main chain normal coordinates ξζ s in the following 

form: 

[ ] ( ) th sstssss 1.11,1,0
22 cosΩ=++ ξ

σ
σξξξξ ζωζωζ D�� , ns ,....,3,2,1=                                  (196) 

where 2
ξω s  square of eigen circular frequencies determined by expression (146) and 2

σξω s  the corresponding 

eigen characteristic numbers expressing fractional order subsystem properties, are determined by the expression 

(147).  

Analogously, using (187) and (180) from (190), it is possible to obtain the second subsystem of fractional 

order differential equations along main chain normal coordinates ηζ s in the following form: 

[ ] ( ) th sstssss 1.11,1,0
22 cosΩ=++ η

σ
σηηξη ζωζωζ D�� , ns ,....,3,2,1=                                  (197) 

where 2
ηωs  the square of eigen circular frequencies is determined by the expression (153) and 2

σηωs  the 

corresponding eigen characteristic numbers expressing fractional order subsystem properties are determined by 

the expression (154).  

Then, we have the system (196)-(197) containing two subsets of the main fractional order forced oscillators, 

each with n  fractional order differential equations along one main chain main coordinates ξζ s  and ηζ s . Each 

of these n2  fractional order differential equations contains only one main eigen coordinate ξζ s  or ηζ s   of the 

system. 

The system (196)-(197) represents the main fractional order forced oscillators along  the independent system 

of main chain main coordinates  ξζ s  or ηζ s  , ns ,....,3,2,1=  each with one circular frequency of external 

excitation and one eigen circular frequency  and one eigen characteristic number from one of the two sets of: 

ξωs  or ηωs  eigen circular frequencies determined by the expression (146) or (153)  and 2
σξω s  or  2

σηωs  the 

corresponding eigen characteristic  numbers expressing fractional order subsystem properties, determined by 

the expression (147) or (154). 

  All fractional order differential equations of the system (196)-(197) are the same type and it is possible to 

solve them in the same way using the Laplace transform ( ){ }tsξζL  and ( ){ }tsηζL . Applying the Laplace transform 

to the system (196)-(197) of the fractional order differential equations, we obtain the following two sub-

systems of equations: 
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Taking into account that:  
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and after introducing into the sub-systems (198)-(199) for the Laplace transform ( ){ }tsξζL  and ( ){ }tsηζL  of the 

system double DNA helix chain eigen main coordinates ξζ s  and ηζ s  for forced regime, we obtain: 
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Then, to obtain the system double DNA helix chain eigen main coordinates ( )tsξζ  and ( )tsηζ   it is necessary 

to apply the inverse Laplace transform to the expressions (205)-(206). Then we can write the following: 

 

( ) ( ) ( )ttt partsss ,hom, ξξξ ζζζ +=                                     (207) 

 and  

  ( ) ( ) ( )ttt partsss ,hom, ηηη ζζζ +=                                               (208) 

where  

a*) ( )ts hom,ξζ  and ( )ts hom,ηζ  are terms corresponding to the solutions of the homogeneous fractional 

order differential equations and the solutions are in the forms (155) and (156) (see Appendix (E.4.1)): 
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b* ) ( )tpars ,ξζ  and ( )tpars ,ηζ  are terms corresponding to particular solutions of the non-homogeneous 

fractional order differential equations system (196)-(197) and the solutions must be obtained as an inverse 

transform of the following expressions: 
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or in a developed form 
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7.8 Concluding remarks  
Finally, we can conclude that new main chain coordinates of kξ  and kη , nk ,...,3,2,1= k composed of the 

generalized independent coordinates in the way 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη +=  , nk ,...,3,2,1=  are the 

main chain coordinates of the main eigen chains of a  double DNA helix chain  system and that it is possible to 

obtain two fictive decoupled and separated eigen single chains of the double DNA chain helix linear model as 

well as fractional order model. This is an important fundamental conclusion as a significant property of the 

linear model of vibrations in a double DNA helix. Considered as a linear or fractional order mechanical system, 

DNA molecule as a double helix chain system has its eigen circular frequencies and that is its characteristic. 

Mathematically, it is possible to decouple it into two chains with their eigen circular frequencies which are 

different. This may correspond to a different chemical structure (the order of base pairs) of the complementary 

chains of DNA. We are free to propose that each specific set of base pair order has its eigen circular frequencies 

and it changes when DNA chains are coupled in the system of double helix. DNA as a double helix in a living 

cell can be considered as nonlinear system but under certain conditions its behavior can be described by linear 

dynamics.  

Then, analytical expressions of the square of sω  - eigen circular frequencies of the vibration modes of the 

separate chains of the homogeneous double DNA chain helix are obtained. By using these results it is easy to 

consider these values of the system sω  - eigen circular frequencies of free vibrations as series of resonant 

frequencies under external multi frequencies excitations, and also possibilities for the appearance of dynamical 

absorption phenomena and find explanation with real processes in the homogeneous double DNA chain helix.  

By using superposition’s of these solutions for the case that external excitation are with the same amplitudes 

and frequencies from the system of differential equations, we can see that for this case of external one 

frequency excitation in one eigen main chain there appear pure free vibrations with eigen subset of circular 

frequencies of its free vibrations, and in the other there appear forced vibrations. This conclusion is possible to 

generalize for the same multi-frequency external excitations applied to each of the material particle pairs in 

double DNA helix chain system. Eigen main chain in which there occur pure free vibrations with eigen subset 

of circular frequencies of its free vibrations may correspond with real chain of DNA that is not used as a 

template in the process of transcription- sense strand. The eigen main chain that oscillates in forced regime may 

correspond with real antisense strand of DNA –one that is transcribed. 
* Dynamical absorption on the first pair of the main coordinates of the main chains appear on the 

resonate circular  frequencies  of the set of the double DNA helix chain system with one pair of the material 

particles less compared to the considered real system. 

* Dynamical absorption on the second pair of the main coordinates of the main chains appear on the 

resonate circular frequencies of the set of the double DNA helix chain system with two pairs of the material 

particles compared to the considered system. 

This mathematical fact is important to consider in the light of the interruption or break of the double DNA 

helix chain system. In order to transcribe specific DNA sequence, RNA polymerase has to recognize the 

specific region of DNA where the sequence starts. Promoter regions make the recognition possible. We are free 

to suggest that, from the mechanical point of view, if specific one frequency excitation caused by RNA 

polymerase is the same as eigen oscillatory frequency of specific promoter region resonance appears, that is the 

condition for starting the transcription from the mechanical point of view. This means that every gene has its 

specific “starting” oscillatory frequency that will correspond with one frequency external excitation. This may 

also correspond with spatially localized solitons in Soliton –existence supporting models of DNA. 

Our next considerations will focus on the small nonlinearity in the double DNA chain helix vibrations and 

rare nonlinear phenomena such as resonant jumps and energy interactions between nonlinear modes. 
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Appendix  A 
 
A1. Gamma Function 

 

Euler's gamma function is defined by the so-called Euler integral of the second kind 

  1

0

( ) ,t zz e t dt z

∞
− −Γ = ∈∫ ℂ .                                                                        (A.1.1)  

Thus                                      
0

(1) 1,te dt

∞
−Γ = =∫                                                                (A.1.2) 

                                                    
Fig.A.1: The real Gamma function Γ  

 
The integral in the right side of (A.1.1) is convergent for all values of complex argument z with positive real 
part. However, by means of an analytic continuation it can be extended to the entire complex plane, excluding 
negative integers and zero.  
Gamma function has several well established properties, the first of which is that it can be seen as a 

generalization of the factorial function. The so called reduction formula holds, for { }\ 0, 1, 2, 3,...z∈ − − −ℂ  

 0( 1) ( ), ( 1) ( 1)! !z z z n n n n nΓ + = Γ ⇒ Γ + = − = ∈ℕ .                                (A.1.3) 

This reduction formula (A.1.2) can easily be proven starting from the integral (A.1.1). The analytic 
continuation of (A.1.1) is then conducted by application of this formula to arguments with negative real parts. 
Points at which the Gamma function is not well defined, i.e. negative integers and zero, are its simple poles. 
Another important relationship for the gamma function is the Legendre formula: 

 ( ) ( ) ( )2 11/ 2 2 2 , 2 0, 1, 2,...zz z z zπ −Γ Γ + = Γ ≠ − − ,                                   (A.1.4) 

Taking 1/ 2z n= +  in the previous relation, and utilizing the fact that for integer arguments Gamma function 
can be evaluated by means of the factorial function, one can obtain a set of particular values of the Gamma 
function: 

 ( ) ( )
( )2 2

2 1 (2 )!
1/ 2

2 1 2 !n n

n n
n

n n

π πΓ +
Γ + = =

Γ +
,                                                         (A.1.5) 

[A1] Podlubny, I. Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering. 
Academic Press, San Diego, 1999. 
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A2. Beta Function 

 

Beta function, also known as the Euler Integral of the First Kind, is an important special function in general, 
very widely used in fractional calculus. The importance of Beta function in this context is that its form is 
similar to the fractional integral and derivative of a number of elementary functions, polynomials in particular, 
but also Mittag-Leffler function (to be introduced next). Beta integral is defined in the following way 

( ) ( ) ( ) ( )
( )

( )
1 1 1

0
, 1 ,B u u du B

α β α β
α β β α

α β
− − Γ Γ

= − = =
Γ +∫                                            (A.2.1) 

Obviously, the Beta-integral is convergent only for and  with positive real parts. However, by means of its 
relation with the Gamma function, it can be continued analytically to the entire complex plane, excluding 
negative integers and zero. 
 

 

Appendix B 
 
Table A.   A comparison of S-Z approximations of the first order, taken from a broad literature, which represent 
special cases of a T-integrator [B1] 
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[B1]  K. J. Åström, B. Wittenmark, Computer Controlled Systems: Theory and Design, 3. ed., Prentice-Hall, 
1997 

 

186

Appendix 



 

 

Appendix C 
 

Appendix C1  Gronwall-Bellman lemma 

 

Lemma (Gronwall-Bellman lemma), [C.1] 
 

Let ( )( ),u t c t  and ( )k t  be real continuous functions defined in [ ], , ( ) 0a b k t ≥ for [ ],t a b∈ .We suppose that on 

[ ],a b  we have the inequality 

( ) ( ) ( ) ( ) ,
t

a

u t c t k u dτ τ τ≤ + ∫                                                                                   (C.1.1) 

then 

( ) ( ) ( ) ( )( )exp .
t t

a

u t c t k c k s ds d

τ

τ τ τ
 
 ≤ +
  

∫ ∫                                                            (C.1.2) 

in  [ ],a b . 

Corollary 1:  If   ( )c t  is differentiable, then  from (C.1.1)  it follows that  

( ) ( ) ( ) ( ) ( )exp .
t t t

a a

u t c a k s ds k s ds c d

τ

τ τ
   
  ′ ≤ +
      
∫ ∫ ∫                                                (C.1.3) 

for  all [ ],t a b∈ . 

 

Corollary 2:  If ( )c t  be a positive, monotonic decreasing function, then from (C.1.1) it  follows that  

           ( ) ( ) ( )exp ,
t

a

u t c t k dτ τ
 
 ≤
 
 
∫                                                                                (C.1.4) 

for   all  [ ],t a b∈ . 

 

 

[C.1] J.K. Hale,  Functional Differential Equations, Springer, New York,1971 
 

 

Appendix C.2    Mittag-Leffler function 

 
Mittag-Leffler function appears in two forms and can be considered as a generalization of the exponential 
function. Mittag-Leffler function generalizes the exponential in two ways. First, its series expansion is a 
straightforward generalization of the exponential series. Second, solutions to a number of fractional differential 
equations are expressed in terms of the Mittag-Leffler function just in the same way as the solutions to a 
number of ordinary differential equations are expressed in terms of the exponential (and its trigonometric 
relatives). The single-parameter Mittag-Leffler function (in fact, the only form actually considered by Mittag-
Leffler) is defined as [C2] 
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where 0α >  and z is an arbitrary complex number. The two-parameter Mittag-Leffler function appears most 
frequently and has the following form 
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where 0, 0α β> > , and z is an arbitrary complex number.  

The importance of the Mittag-Leffler function in a broader concept lays in the fact that for specific values of its 
parameters, the Mittag-Leffler function reduces to a number of special functions appearing in various fields of 

engineering. For example, ( ) ( ),1E z E zα α= , ( )1,1
zE z e= , ( )2,1 cosh( )E z z= , ( )2

2,1 cos( )E z z− = .  

The Laplace transform  of the Mittag-Leffler  function can be easily found to be  
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Fig.C.1: The Mittag-Leffler  function for different , 1α β =  

 

 

[C2] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo,Theory and applications of Fractional Differential equations, 
edited by J.V. Mill.Elsevier, Amsterdam,2006. 

 

 

 

 

 

 

 

 

 

 

 

 

188

Appendix 



 

 

Appendix D 
 
 

Human Skin 
Human skin is the body`s largest organ. It is a major part of integumentary system which comprises between 
15-20 % of the total body weight, and covers 1,5-2 m2 of surface area. Each square centimeter of human skin 
has 6*106 cells, 5*103 sensory points, 15 sebaceous glands and 100 sweat glands.  
 
Functions of Human Skin 
As an organ that interfaces with the environment, skin plays a key role in protecting the body from damage and 
against pathogens (see [D1,D2]). In the human skin Langerhans cells play a protective role since they are a part 
of the adaptive immune system. Important functions of human skin are insulation and temperature regulation. 
Skin heat regulation is performed by controlling blood supply. Since skin blood supply is far greater than its 
requirements heat regulation is controlled by vasodilatation and vasoconstriction (constricted blood vessels 
reduce cutaneous blood flow and conserve heat, while dilated blood vessels increase heat loss).  
Another important function of skin is control of evaporation. The skin provides semi-impermeable barrier 
controlling the body fluid loss. Sweat excretion containing small amount of urea is accomplished by skin. 
However, excretion by sweating is at most a secondary function to temperature regulation. Absorption is also 
one of the functions of skin. Oxygen (see [D.3]), nutrients or synthetic chemicals, applied topically are 
adsorbed and/or transported through skin (see [D.4,D.5]). The skin acts also as water resistant barrier so 
essential nutrients could not be washed out of body. The other important function of human skin is sensation. 
Skin tissue contains variety of nerve endings that react to variety of sensations such as touch, pressure, 
vibration, heat and cold and tissue injury. Finally, function of human skin is storage and synthesis: skin acts as 
a storage center for lipids and water; synthesis of vitamin D by action of UV. 
 
Structure of Human Skin 
Human skin (Figure 1.) is composed of three major layers: 

- epidermis 

- dermis 

- hypodermis 

EPIDERMIS 
The epidermis (Fig.D.1.) is the top layer of human skin, and therefore it is the first barrier between body and 
outside world. The thickness of the epidermis is approximately 0,5-1mm. The epidermis contains four types of 
cells: Merkel cells, keratinocites, melanocites and Langerhans cells. Epidermis consists of five sub layers which 
are usually named as five strata (Fig.D.1.): 

- stratum corneum,  
-stratum lucidum,  
-stratum granulosum, 
-stratum spinosum, 
-stratum germinativum (stratum basale) 
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Fig D.1. Structure of human skin (see [D.6]) 

 
Keratinocites are formed through mitotic cell division at the lowermost portion of epidermis-stratum basale. 
The daughter cells move upwards. As they mature, these cells lose water, flatten out and at the end of their life 
cycle they reach the uppermost layer of the epidermis – stratum corneum. Therefore, stratum corneum contains 
mainly dead keratinocites, keratin proteins and lipids forming a protective barrier. Dead cells from stratum 
corneum permanently slough of and are replaced by new cells coming from below. Human skin completely 
renews itself for approximately 3-5 weeks.  
Melanocites are another significant group of cells. These cells produce melanin the pigment responsible for 
skin color. Langerhans cells are the front door of the immune system and they prevent foreign substances from 
penetrating the skin. As shown in Fig. D.1. epidermis consists of many layers. Stratum corneum is outer layer 
made of flattened epithelial dead cells organized in multiple sub layers. Next layer below is translucent and 
transitional thin layer of cells which might be visible in thick skin. However, nuclei and/or other organelles are 
not visible. Cytoplasm of these cells is mostly made of keratin filaments. Next three to five layers (supra basal 
layers) consist of flattened polygonal cells that have granules in cytoplasm. Below them is a layer of cells that 
contains bundles of keratin filaments and these cells are cube-shaped. The last layer positioned above the 
basement membrane and the dermis is basal or cell division layer. It is a single layer of cells that undergo 
mitosis to renew the epidermal upper layers.  
 
DERMIS 
The dermis is the middle layer of the skin positioned between the epidermis and hypodermis. It is the thickest 
skin layer. The major components of the dermis are collagen and elastin fibers. These macromolecular proteins 
are important for resilience of the skin tissue. The dermis fibroblasts synthesize collagen and elastin as well as 
other structural molecules. Lymph nodes and capillaries are also important constituents of the dermis. 
Capillaries are essential for nourishing, oxygenating and temperature regulation of the human skin. They are 
also very important for protecting the skin from invading microorganisms. Sweat glands, hair follicles, 
sebaceous glands as well as small number of muscle and nerve cells are also present in the dermis. Sebaceous 
glands are of particular importance for skin health since they produce sebum oily protective substance that 
lubricates and water proofs the skin.  
 
HYPODERMIS 
The hypodermis is located below the dermis. The purpose of this layer is to attach the skin to bone and muscle 
and to supply it with nerves and blood vessels. It contains a loose connective tissue and elastin. Hypodermis 
contains fibroblasts, adipocytes and macrophagues as a main cell types. In the subcutaneous tissue the 

190

Appendix 



 

predominant type of cells are fat cells. The fat acts as heat insulator protecting underlying tissue from cold and 
mechanical trauma.  
 

D.1 Proksch, E; Brandner, JM; Jensen, JM (2008). "The skin: an indispensable barrier.". Experimental 

Dermatology 17 (12): 1063–72. 

D.2  Madison, KC. (2003). "Barrier function of the skin: "la raison d'être" of the epidermis",J Invest 

Dermatol 121 (2): 231–41. 

D.3 Stücker, M., A. Struk, P. Altmeyer, M. Herde, H. Baumgärtl & D.W. Lübbers (2002). The cutaneous 

uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and 

epidermis., Journal of Physiology 538(3): 985–994. 

D.4 Felipe, P., Silva, J.N., Silva, R., Cirne de Castro, J.L., Gomes, M., Alves, L.C., et al. Stratum Corneum 

Is an Effective Carrier to TiO2 and ZnO Nanoparticle Percutaneous Absorption. Skin Pharmacology and 

Physiology 2009;22:266-275 

D.5 Vogt, A., Combadiere, B., Hadam, S., Stieler, K., Lademann, J., Schaefer, H., et al. 40nm, but not 750 

or 1,500 nm, Nanoparticles Enter Epidermal CD1a+ Cells after Transcutaneous Application on Human 

Skin. Journal of Investigative Dermatology 

D.6 Wikipedia: http://en.wikipedia.org/wiki/Skin 
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APPENDIX E  

  

APPENDIX E.1 NOMENCLATURE  

 DNA – Deoxyribonucleic acid (DNA) 

1,kϕ [ rad ] -  generalized coordinate – angles of the k -th base of the first chain of the double DNA chain helix;  

2,kϕ [ rad ] - generalized coordinate – angles of the k -th base of the second chain of the double DNA chain 

helix;  

1kJ ,  [ 2kgm ]- is the axial moment of mass inertia of the k -th base of the first chain of the double DNA chain 

helix; 

2,kJ [ 2kgm ]- is the axial moment of mass inertia of the k -th base of the second chain of the double DNA 

chain helix;  

1,kϕɺ [rads-1] - angular velocity of the k -th base of the first chain of the double DNA chain helix;   

2
, ααrm=1kJ , 2

,2 m rβ β=kJ  [ 2kgm ] -  the base pair of the axial moments of mass inertia; 

αm  [ kg ]- the value of the base mass  

αr [m ] - the length 
2

, ααrm=1kJ  [ 2kgm ] - the corresponding axial moment of mass inertia for all possible base pair authors 

accepted as in the  Reference  [17].  

ikK , , 2,1=i  [KJmol-1]- parameters characterize the energy of interaction of the k -th base with the ( 1+k )-th 

one along the i -th chain 2,1=i .  

1]-KJmol[106 3
, ×== KK ik - for the calculation that the most appropriate value is close / 

kξ ,  kη  [ rad ], nk ,.....,3,2,1=  - main orthogonal coordinates of the eigen main chains of the double DNA 

chain helix; 

2,1, kkk ϕϕξ −=     and  2,1, kkk ϕϕη += , nk ,.....,3,2,1=  - functional dependence between main orthogonal 

coordinates kξ and  kη  of the eigen main chains and generalized coordinates 1,kϕ  and 2,kϕ  [ rad ] of the 

double DNA chain helix; 

2αβω [ 1sec− ] - frequencies of rotational motions of the bases,  in similar and opposite directions accordingly, of 

the k -th base of the first chain of the double DNA chain helix; 

1αβω  [ 1sec− ] - are frequencies of rotational motions of the bases, in similar and opposite directions 

accordingly, of the k -th base of the first chain of the double DNA chain helix; 

KKK kk == 2,1,  - for the case of homogeneous double DNA chain helix; 

JJJ 2k1 == ,,k   [ 2kgm ] - for the case of homogeneous double DNA chain helix; 

kA - amplitude 

 u=JK-1ω2- eigen characteristic number of the homogeneous double DNA chain helix; 

 k= αβK 2K-1{1- 
2αβω 1αβω -1) ( )2

βα rr − - parameter of the homogeneous double DNA chain helix; 

µ= ( )βαααβ rrrK − K-1 - parameter of the homogeneous double DNA chain helix; 

2
ξωs [ 2sec− ], ns ...,4,3,2,1= - set of the n  eigen circular frequencies of the first eigen main chain of the 

homogeneous double DNA chain helix; 
2
ηωs [ 2sec− ], ns ...,4,3,2,1=  - set of the n  eigen circular frequencies of the first eigen main chain of the 

homogeneous double DNA chain helix; 
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APPENDIX E.2  

 
dDNA is biological molecule involved in two very important processes in the living cell: replication (doubling 
the DNA molecule and consequently the genetic material) and transcription (transcribing the information from 
DNA to RNA). Replication is a part of the cell division process when one cell is dividing into two new cells but 
with same genetic information. Translation occurs in all metabolically active cells and it is necessary for one 
cell to live. As dDNA is placed in nucleus (in 46 chromosomes in somatic cells) and cell organelles called 
mitochondria in the form of very long polymers it is packed and condensed and in that form it is inactive. Only 
parts of dDNA that are currently in function are decondensed, unzipped and transcribed. The condensed form 
of dDNA is possible gratefully to the special type of proteins called histons and  special elastic properties of 
dDNA that are also relevant for DNA’s physiological function." The elastic properties of a molecule of duplex 
DNA are strongly dependent on nucleotide sequence.” (see Ref [9] by Coleman et al. 2003). They proposed the 
theoretical model where the sequence dependence of elastic properties of dDNA is determined by the 
kinematical variables, called tilt, roll, twist, shift, slide, and rise, (see Fig E.2.1) that describe the relative 
orientation and displacement of the nth and (n11)th base pairs. Very important are the symmetry imposed on 
previous mentioned kinematic variables by the complementarities of bases, i.e., of A to T and C to G, the 
antiparallel nature of the DNA sugar–phosphate chains, and the requirement that kinematic variables are 
independent of the choice of the direction of increasing n,(see Ref [9] by Coleman at al. 2003). 

 
Fig E2.1. Relative orientation and displacement of successive base pairs. From Coleman B.D., Olson 

W.K., and Swigon, 2003. (Ref [9]) 
 

The special enzymes, named topoisomerases, unzipped and zipped dDNA in process of replication and 
transcription." Topoisomerases relieve the torsional strain in DNA that is built up during replication and 
transcription.” (See [40]  by Koster et al, 2005). Using real-time single-molecule observation, Koster et al.  (See 
[40] by Koster et al, 2005) show that Topoisomeras B releases supercoils by a swivel mechanism that involves 
friction between the rotating DNA and the enzyme cavity:  the DNA does not freely rotate. TopIB does not 
release all the supercoils at once, but in multiple steps. “The number of supercoils removed per step follows an 
exponential distribution. The enzyme is found to be torque-sensitive, as the mean number of supercoils per step 
increases with the torque stored in the DNA." (See [40] by Koster et al, 2005). 

 
DNA mechanical models 

A number of models have been constructed to describe different kinds of movements in a DNA molecule: 
asymmetric and symmetric motion; movements of long and short segments; twisting and stretching of dsDNA, 
twist-opening conditions. Some models have, for example, been made for circular double-stranded DNA 
molecules in viral capsids. We are discussing here polymer models, elastic rod models, network models, 

torsional springs models, soliton -existence supporting models,(see [23] by Hedrih, 2011).  
 
Polymer models  

In polymer models DNA molecule is considered to be a polymer and calculations are done as for other 
polymers.There are several DNA polymer models: 

� Gaussian polymer (GP) model  
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� Freely Jointed Chains (FJC) model,  
� Worm –Like Chain (WLC) model 
� Worm –Like Rod Chain (WLRC) model  (see Ref [8] by Cocco et al, 2002).see Fig. E.2.2. 
� bead–spring model   

 

 
Fig E.2.2  Polimer models. From: Cocco,et al. 2002. (Ref [8]) 

 
Double strained DNA differs from simple polymers because it exhibits torsional and bending stiffness and 

under tension DNA supercoiles. These models are used to interpret single-molecule force-extension 
experiments on single strand DNA and dDNA. They show how combining the elasticity of two single nucleic 
acid strands with a description of the base-pairing interactions between them explains much of the 
phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments” (see  [8] by Cocco et al, 2002 and   
[56] by Zhou and Lai, 2001). 
 “A limitation of the initial WLC model was the assumption of intrinsically straight homogeneous polymers 
whose thermal fluctuations are quantified as deviations from the straight line. DNA almost always contains 
curved regions, which can strongly affect the persistence length”, (see  [1] by Anselmi et al, 2005). 

”For better fitting the experimental data in to the WLC polymer model Seol et al,  (see  [50] by Seol et 
al, 2007) develop finite wormlike chain (FWLC) model. FWLC models are suitable for both short (a few 
hundred nanometers in contour length) and very long (microns in contour length) molecule.” (See [23] by 
Hedrih, 2011).  
In the bead–spring model the DNA chain is modeled as a bead–rod system with the first-order effective bead–
spring integration scheme. The proposed effective bead–spring model may help simulate the dynamic behaviors 
of many types of polymer chains with different chain elasticity via an efficient unified integration scheme with 
large time steps. Combining with angular springs, this model can also be used to simulate the bending 
behaviors of semiflexible polymers, (see ref [44] by Liu et al, 2008).  
 
Elastic rod models 

        DNA can be modeled as an ideally elastic rod, or as an anisotropic rod. There are several types of elastic 
rod models: 

� simple elastic rod models 
� sequence-dependent anisotropic elastic model 
� asymmetric elastic rod model 

 
  “In simple elastic rod models rod is ideally elastic which means that it will return to its original shape 

after deformation; one can compute the energy necessary for bending, stretching or torsional deformation. The 
model is not sequence dependent (i.e. all segments are equal) and the model is equally bendable (deformable) 
in all directions. The phenomena that can be described using such simplified elastic model include gross shape 
changes in DNA, such as supercoiling, the response of plasmids to stress, etc. A technique of finite element 
analysis has been applied successfully for small DNA deformations. Model is suitable for DNA in plasmids 
(see [46] by Munteanu et al, 1998). If DNA is modeled as a homogeneous and isotropic elastic rod, the DNA 
chain is characterized by three parameters: The bending rigidity, the torsional rigidity, and the DNA effective 
diameter,( see [45] by Maxim and Kamenetskii, 1997). 
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  In sequence-dependent anisotropic elastic model DNA is considered to be an initially straight, segmented, 
elastic rod, in which the flexibility of each segment is greater towards the major groove than it is in other 
directions. This model can predict local bending phenomena and explains phenomena as the affinity of protein 
binding and kinking (see [46] by Munteanu et al, 1998). Goyal and Perkins (see [17] by Goyal and Perkins, 
2008) extend a computational rod model that captures the non-linear dynamics of hyperelastic, isotropic rods to 
accommodate large and discontinuous variations in bending and torsional stiffness.  
        Modeling DNA, as an isotropic rod can’t explain some mechanical properties of DNA molecule achieved 
experimentally (twist-strech coupling in single DNA measured by rotor bead tracking technique) like 
overwinding of DNA molecule under tensions. DNA molecule reaches the maximum twist level at a tension of 
30 pN, as tension is increased above this critical value, the DNA begins to unwind. Elastic rod model can 
explain these unusual mechanical properties. 

DNA is modeled as an elastic rod wrapped helically by a stiff wire. The inner core of radius R is assumed to 
have a Poisson’s ratio v= 0.5. “The outer wire is affixed to the inner rod helically with a pitch of 3.4 nm, and 
contributes to the overall mechanical properties because it resists stretching and compression. The outer helix 
increases the torsional rigidity and yields a twist–stretch coupling that depends upon the helix angle. Stretching 
generates an overwinding of the helix because the inner rod decreases in diameter as it is stretched. The outer 
helix is then able to wrap a larger number of times over the length of the molecule.”…”These results have 
implications for the action of DNA-binding proteins that must stretch and twist DNA to compensate for 
variability in the lengths of their binding sites.” (See Ref [18] by Gore et al, 2006). Linear isotropic rod model 
has some limitations in predicting DNA supercoiling of long molecules under applied tension and twist. There 
is coupling between bending and stretching (See Ref [51] by Smith and Healey 2008). Bend-twist coupling is 
important in predicting the stability boundary. Eslami-Mossallam and Ejtehadi, (See Ref [13] by Eslami-
Mossallam and Ejtehadi, 2009) proposed the asymmetric elastic rod model for DNA.  

Model of Leburn and Lavery (See Ref [43] by Lebrun and Lavery, 1996) show how the double helix can be 
extended to twice its normal length before its base pairs break. Results correlate well with nanomanipulation 
experiments.” (See Ref [23] by Hedrih, 2011). 
 

The network model 

Double-stranded DNA is treated as a network of coupled oscillators incorporating essential microscopic 
degrees of freedom of DNA and the inherent interactions between them. The constituents of the oscillator 
network model represent the nucleotides, which are regarded as single non-deformable entities.  

No inner dynamical degrees of freedom of the nucleotides are taken into account that is justified by the time 
scale separation between the small-amplitude and fast vibrational motions of the individual atoms and the 
slower and relatively large-amplitude motions of the atom groups constituting the nucleotides. The nucleotides 
are considered as identical objects of fixed mass all of four types of bases are treated as equal. The network 
model can explain the mechanical stability and elasticity properties of dsDNA molecules. This model is 
suitable for studying the opening-closing dynamics of dsDNA molecules that are forced into non-equilibrium 
conformations, which are relevant for bimolecular processes. Hennig and Archilla (see Ref [39] by Hening and 
Archilla, 2004) show that the attainment of a quasi-equilibrium regime proceeds faster in the case of the twisted 
DNA form, than for its thus less flexible ladder counterpart (see Ref [23] by Hedrih, 2011). 
 

Torsional spring model 

In torsional springs model Tung et al (see Ref [53] by Tung and Harvey, 1984) made a distinction between 
purine bases (adenine and guanine) and also between pyrimidines, (cytosine and thymine), using the atomic 
resolution of conformational energy calculations. See Fig E.2.3.  
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Fig E.2.3  Torsional spring model- Torsional spring model for helix twist angles of a trimer. Distances in this 
figure correspond to angels not to lengths. From : Tung, CS, and S.C. Harvey, 1984. (ref [53]). 

 
The model predicts a macroscopic torsional stiffness and a longitudinal compressibility (Young's modulus) that 
are both in good agreement with experiment. They use conformational energy calculations to determine the 
parameters of the model, and can quantitatively predict helix twist angles (see [53] by Tung and Harvey, 1984), 
(see [23] by Hedrih, 2011). 
 

Soliton -existence supporting models 

There several types and its modifications of  soliton- existence supporting models: 
� Yakushevich model (Y model) 

� The composite model (Y based model) 

� Dynamic plane–base rotator model (See  [54] byVasumathi and Daniel, 2008). 

� Symmetric twist-opening model of DNA. (See f [52] Tabi et al, 2009), 

� Nonlinear Volkov-Kosevich DNA model 

� Peyrard–Bishop–Dauxois (PBD)   

� Cross-grained model by Kovaleva and L. Manevich (Y based model) (see  [41,42] by Kovaleva et al, 

2007; Kovaleva and Manevich, 2005) 

 

 

One of the first of this kind was Yakushevich model (Y model) of DNA and models based on it (see [15] by 
Gaeta, 1992, as well as [16] by González and Martín-Landrove,1994)). Dynamics of topological solitons 
describing open states in the DNA double helix are studied in the framework of a model that takes into account 
asymmetry of the helix. Yakushevich, et al (see [55] by Yakushevich, et al, 2002) investigated interaction 
between the solitons, their interactions with the chain inhomogeneities and stability of the solitons with respect 
to thermal oscillations and have shown that three types of topological solitons can occur in the DNA double 
chain. The composite model for DNA is also based on Y model. The sugar-phosphate group and the base are 
described by separate degrees of freedom. The composite model fits experimental data better than the simple Y 
model. DNA nucleotides are represented as two distinct discs, one still centered about the backbone axis and 
representing the sugar–phosphate group and the second rigidly rotating about a fixed point of the former. The 
composite model supports solitonic solutions, qualitatively and quantitatively very similar to the Yakushevich 
solitons. (See [11] by De Leo and Demelio, and [7] by 2008; Cadoni et al, 2008).  

Dynamic plane–base rotator model is suitable for study the nonlinear dynamics of the inhomogeneous 
dDNA especially angular rotation of bases in a plane normal to the helical axis. (See [10] by Daniel and 
Vasumathi, 2007). This model is also used to study the effect of phonon interaction on base pair opening in the 
dsDNA. The velocity of the soliton increases or decreases or remains uniform or even the soliton stops 
depending on the values of the coupling strengths. There is no change in the topological character of the soliton 
in the asymptotic region. (See [54] by Vasumathi and Daniel, 2008).  
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DNA model by N. Kovaleva and L. Manevich  

In this model, three beads represent each nucleotide with interaction sites corresponding to phosphate group, 
group of sugar ring, and the base, see Fig 2a and 2b in the main text. (See [41] by Kovaleva et al, 2007). It is 
soliton-supporting model. 
It is planer DNA model in which the chains of the macromolecule from two parallel strait lines place at a 
distance h from each other, the bases can make only rotation motions around their own chain, being all the time 
perpendicular to it. N. Kovaleva et al. (See Ref [41,42] by Kovaleva et al, 2007; Kovaleva and Manevich, 
2005) point out that solitons and breathers play a functional role in DNA chains. They show that a localized 
excitation (breather) can exist in a double DNA helix. Authors formulated conditions of the breathers’ existence 
and estimate their characteristic parameters describing opening of DNA double helix. They investigated also 
the stability of breathers. 
 
Multi-chain/multi-pendulum system model of double DNA 

Hedrih and Hedrih, (See Ref [35-38] by Hedrih (Stevanović) and Hedrih, 2010; 2009a, 2009b, 2009c) gave 
several mechanical models of double DNA. In their models DNA is in a form of homogenous multi-chain/ 
multi-pendulum system which oscillatory signals can be considered trough a system with fixed and with free 
ends. See Fig. 3 and 4 in the main text. These figures are for the ideal elastic model and different boundary 
conditions. The dynamics of oscillatory signals in multi-chain systems are represented in ref [27] (Hedrih 
(Stevanovic) 2006). Their basic model is linearization of the model propose by Kovaleva and Manevich (See 
Ref [42] by Kovaleva and Manevich, 2005). System is considered as homogeneous, which means that all the 
masses are equal; rigidities of the linear-elastic spring elements are equal. The models differ in the way of 
coupling between the material (mass) particles. If the martial (mass) particles are coupled with standard light 
hereditary elements the model has viscoelastic properties; if the martial particles are coupled with standard light 
fractional order elements it has viscoelastic and creep properties. They are several types of these models:   
 

� Model with ideally elastic properties (linear or nonlinear), 

� Model with hereditary properties and 

� Fractional order model. 

For each of multi-pendulum/multi-chain models, it is possible to calculate main coordinates of eigen main 
chains when system is mathematically decoupled, set of eigen circular frequencies and set of characteristic 
numbers describing hereditary or fractional order system properties. Calculations and analytical analysis show 
that there is no energy transfer between eigen main chains of double chain DNA helix system.  

Using eigen main normal coordinates of the system dynamics it is possible, for each of three models, to 
determine independent oscillators: for linear elastic model with harmonics with constant amplitudes and 
corresponding eigen circular frequencies; for model with hereditary properties n partial hereditary oscillators 
with hereditary properties can be found. Each is defined by one eigen circular frequency and one characteristic 
number. Characteristic number depends on stiffness and relaxation time and determines hereditary properties of 
the corresponding single eigen oscillator. For fractional order model, n independent fractional order oscillators 
can be found, each with one eigen circular frequency and corresponding characteristic number expressing 
fractional order properties of the DNA helix chain system. Characteristic number determines the properties of 
the fractional order system. There are full mathematical analogy and phenomenological mapping between two 
models: a double DNA fractional order chain helix model and a double DNA hereditary chain helix. 

� Model with ideally linear elastic properties  

Authors of the multi-pendulum double DNA model suggest existence of new phenomena named eigen 
main chains of the homogeneous double DNA chain helix. These main eigen chains are partial n -frequency 
oscillators, and each, with n degrees of freedom. Each of these eigen main chains of the homogeneous double 
DNA chain helix (with 2n degree of freedom) is an independent partial n -frequency oscillator which oscillates 

with a subset of n  eigen circular frequencies: first with frequencies from the set 2
ξωs , ns ...,4,3,2,1= - set 

described by characteristic equation of the subsystem of differential equations 

[ ] 012
1

12
0

=−−++− −+ kk1kk ξκµξξξ
ω
ɺɺ , nk ,.....,3,2,1=                           (E.2.1) 
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of the n  eigen circular frequencies of the first eigen main chain of the homogeneous double DNA chain helix; 

and second with frequencies from the set 2
ηωs , ns ...,4,3,2,1=  - set described by characteristic equation of the 

subsystem of differential equations  

( ) 012
1

12
0

=−++− −+ kk1kk ηµηηη
ω
ɺɺ ,     nk ,.....,3,2,1=                              (E.2.2) 

of the n  eigen circular frequencies of the second eigen main chain of the homogeneous double DNA chain 
helix. In the case of forced oscillatory regimes, using the obtained sets of eigen circular frequencies obtained 
from subsystems (E.2.1)-(E.2.2), it is possible that resonant regimes on the corresponding circular frequencies 
are present only on one eigen main chain, while in the other eigen main chain forced oscillatory regimes are 
normal, without resonance. Also, in forced frequency regimes it is possible to identify phenomena of dynamical 
absorptions, without losing mechanical energy of the double DNA chain helix (for detail see [35] Hedrih 
(Stevanović) and Hedrih, 2010). Also, we obtained two subsets of the eigen circular frequencies (ω2

s) of the 
vibration signal modes of separate eigen main chains in the double DNA chain helix using the trigonometric 
method (See  [48,49,27,28] by Rašković and Hedrih (Stevanović)), as well as amplitudes. Two subsets of eigen 
circular frequencies are obtained in the following forms (for detail see [36,37,35], Hedrih (Stevanović) and 
Hedrih): 
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where sϕ  and rϑ  are characteristic numbers depending of boundary conditions of the model of the double 

DNA linear order chain helix. By use corresponding boundary conditions of the obtained eigen main chains of 
the considered double DNA linear order chain helix it is easy to obtain corresponding values of these 
characteristic numbers in a case when both ends of the of the double DNA chain helix are free as well as fixed. 
 
 
 

� Model with Hereditary Properties 

This model of double DNA is considered as a homogeneous system containing two coupled multi 
pendulum subsystems. Corresponding material particles of the corresponding multi-pendulum chains are each 
two inter coupled by one standard light hereditary element (see [35,38,20,22] by Hedrih (Stevanović) and 
Hedrih, 2009a, 2009c,  Goroško and Hedrih (Stevanović), 2001, 2008). Standard light hereditary element has 
relaxation time n. Biological materials are changing their mechanical properties during aging. Biomaterials 
during aging may express relaxation properties and delay elasticity. We propose model with hereditary 
properties because it may be suitable for explaining this behavior. 
 Two subsets of the kinetic parameters corresponding to first eigen main chain ( ) ( ) ( )sss ,,,0 ,, ξξξ ωδδ  and to 

second eigen main chain ( ) ( ) ( )sss ,,,0 ,, ηηη ωδδ of the eigen main hereditary oscillators of double DNA hereditary 

chain helix vibrations like one frequency oscillation modes in the second  approximation are obtained in the 
following forms: 
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 b* Second subset: 
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APPENDIX E.3 

Expansion of the Laplace transform into series (for details see  [19] by Gorenflo and Mainardi (2000); [3] by 
Bačlić and  Atanacković (2000) and [34] by Hedrih (Stevanović)  and Filipovski  (2002)): 
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APPENDIX E.4 

Solution of a fractional order differential equation of a fractional order creep oscillator with single degree of 
freedom.The fractional order differential equations obtained and the considered cases of eigen fractional order 
partial oscillators of the hybrid fractional order multichain system are in mathematical analogy to the same 
fractional order differential equation with corresponding unknown time-functions. We can use the notation 

( )tT  and all previously derived fractional order differential equations of eigen fractional order partial 

oscillators with one degree of freedom correspond to the hybrid fractional order multichain  system dynamics 
with sixth degree of freedom, and can be rewritten  in the following form: 

( ) ( )( ) ( ) 02
0
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α

ɺɺ                                                (E.4.1) 

This fractional order differential equation (E.4.1) on unknown time-function ( )tT ,  can be solved applying the 

Laplace transforms (see [19] by Gorenflo, R., Mainardi, F., (2000); [3] by Bačlić, B. S., Atanacković, T., 
(2000)  or [34] by Hedrih (Stevanović) K. and Filipovski A.,(2002)). Upon that fact, the Laplace transform of 
solution is in the form:  
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where ( )[ ][ ] ( ) ( )[ ]tTLL ptTt R=α
D  is the Laplace transform of a fractional derivative ( )

α

α

dt

tTd for 10 ≤≤α . For creep 

rheological material those Laplace transforms have the form: 
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where the initial values are: 
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so, in that case the Laplace transform of time-function is given by the following expression:  
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For boundary cases, when material parameters α  take the following values: 0α =  i 1=α  we have the two 
special simple cases, whose corresponding fractional-differential equations and solutions are known. In these 
cases the fractional-differential equations are:  

1*  ( ) ( )( ) ( ) 0~ 2
0

02
0 =+± tTtTtT ωω α

ɺɺ  for  0=α                                              (E.4.6) 

where  ( )( ) ( )tTtT =0 , and  

2*   ( ) ( )( ) ( ) 02
0

12
1 =+± tTtTtT ωω α

ɺɺ  for 1=α                                           (E.4.7) 

where ( )( ) ( )tTtT ɺ=1 . 
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The solutions to equations (E.4.6) and (E.4.7) are: 
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for  1=α  and for  2
10

2

1
αωω > . (for soft creep) or for strong creep: 
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for  1=α  and for 2
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For the critical case: 
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Fractional-differential equation (E.1.1) for the general case, when α  is real number from the interval 10 <<α   
can be solved by using Laplace's transformation. Using:  
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and introducing  for initial conditions of fractional derivatives in the form (E.4.3), and after taking Laplace's 
transform of the equation (E.4.1), we obtain a corresponding equation. Analyzing the previous Laplace 
transform (E.4.12) of solution we can conclude that two cases can be considered. 

For the case when 02
0 ≠ω  , the Laplace transform solution can be developed into series in the following way: 

( ){ }









+±+









+=




















+±+

+
=

2

2
0

2

2

0
0

2

2
0

2

2
2

00

1

11

1
α

αα

α

αα

ω
ωω

ω
ωω

p
p

pp

T
T

p
p

p

TpT
tT

ɺɺ
L

            (E.4.13) 

( ){ } ( )
∑
∞

=








+±

−








+=

0
2

2
0

2

2
0

0

11

k

k

k

kk

p
ppp

T
TtT

α

αα

ω
ωωɺ

L                            (E.4.14) 

( ){ } ( ) ( ) ( )

∑ ∑
∞

= =

−








−








+=

0 0
2

2

2

2
0

0

111

k

k

j
j

o

kjjj

k

kk
p

j

k

ppp

T
TtT

ω
ωω α

α
α ∓ɺ

L                                 (E.4.15) 

 
In writing (E.4.15) it is assumed that expansion leads to convergent series. The inverse Laplace transform of 
previous Laplace transform of the solution (E.4.15) in term-by-term steps is based on known theorem, and 
yields the following solution of differential equation (E.4.1) of time function in the following form of time 
series:                                         (E.4.16) 
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