
Model-Driven Software Configuration Management and Semantic Web
in Applied Software Development

ARTURS BARTUSEVICS, ANDREJS LESOVSKIS, LEONIDS NOVICKIS

Faculty of Computer Science and Information Technology
RTU

Kalku Street 1, Riga LV-1658, Latvia
LATVIA

arturik16@inbox.lv, andreyl@inbox.lv, lnovickis@gmail.com

Abstract: - Nowadays one of the most important factors of software development is the enhancement of agility.
The reason behind this is that modern software development is focused on delivering software to customers as
quickly as possible. Software configuration management (SCM) is a set of practices, tools, and techniques
designed to control software evolution. In most cases, companies already have the tools and solutions needed to
achieve the mentioned goals and the main challenge is to find out how to adopt and implement these tools and
solutions in the new projects. This paper presents a new model-driven approach to perform software
configuration management using a set of models. Unlike other solutions, this approach is designed to increase
the reuse of the existing solutions without any restrictions on the tools being used. Models that represent
software configuration management from different levels of abstraction are transformed from one level to
another. Authors also investigate how the use of Semantic Web technologies could improve this approach and
what benefits they could provide. Lastly, the approach is evaluated in terms of applicability in the field of
applied software and further works are defined.

Key-Words: - Software Configuration Management, Model-Driven Approach, Semantic Web

1 Introduction
Nowadays software configuration management is
challenged not only with problems like choice of a
version control system for particular project and
definition of an optimal branching strategy.
Analyses of the most popular trends in software
development area allow to define the requirements
for fast and high quality releases [1], [3], [11], [12],
[14]. Agile development is one of these trends; it is
built on the idea that the customers can decide what
they want best and whether they are getting it if
software is shown to them early on and often [12].
In order to ensure fast, high quality releases, it is
necessary to synchronize and automate multiple
tasks from software configuration management,
build management, and release management.
DevOps [2] is a one of the most popular approaches
that provides techniques and tools to automate
software configuration management tasks needed to
achieve fast and full-automated releases. There are
different sets of tools that provide functionality to
support DevOps approach: Serena, rPath,
ServiceNow, StreamStep, UrbaneCode, etc. [2].
These tools enable full automation of build
management, continuous integration, and
continuous delivery processes.

In most cases, companies already have the tools
and solutions needed to achieve the mentioned goals
and the main challenge is to find out how to adopt
and implement these tools and solutions in the new
projects with minimal additional efforts (i. e., how
to efficiently reuse the existing solutions). Even
though the tools mentioned in [2] provide a way to
fully automate a release process, there is a lack of
approaches and recommendations how to reuse the
same solutions in the new projects. Additional
problems can be caused by refusal of the companies
to use new tools; especially, if these tools are not
open source or from a well-known, trusted
organization. Their stance on this matter is that they
might get a new problem while solving the existing
ones and it is unclear whether the end result will be
positive.

1.1 Problem formulation
This paper covers the following problems in the area
of software configuration management:
• Use of multiple different configuration

management tasks in one solution. For example,
use of one script that performs source code
management, build management, and installation

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 108

management tasks. Such multifunctionality
makes this script specific for one particular
project and makes it impossible to reuse it
without modifications.

• Lack of approaches and recommendations on
how to design reuse-oriented solutions for
configuration management that could be used in
the other projects without additional
customizations to save up time and resources.
 Reusable configuration management solutions

should be parameterized and structured by different
tasks. It means that, for example, solutions on how
to build the product from the source code should be
independent from the other tasks like source code
management or installation management. The
mentioned product build solution should receive a
set of parameters and return an executable or an
error message. It should not contain any details or
hardcoded information like the location of the
source code or the address of the server where the
executable should be installed.

 To make configuration management-related
solutions reusable, it is necessary to define a bridge
from process to technical solution. First, define an
abstract process of software configuration
management. Then, select the abstract actions to
implement general process. Finally, select and
implement a concrete solution for all abstract
actions. MDA (Model-Driven Approach) [9] is a
popular software design approach that aims to
improve the efficiency of software engineering. The
same ideas have been found in the related solutions
to improve reuse of software configuration
management [4], [5], [6], [7], [8], [10], [13].

1.2 Novelty of paper
The paper describes a new model-based approach
for implementation of software configuration
management. Unlike the other approaches, it is not
oriented to any particular tool or script that “should
solve any problem” but describes the steps how to
increase the reuse of the existing solutions. This
approach is agnostic to the tools used for source
code management, continuous integration, bug
tracking, and build management as it only defines a
way to make a solution reusable. The approach
contains three levels of models to describe the
configuration management process from different
sides. Authors also investigate how Semantic Web
technologies like OWL and SPARQL could be used
to improve this approach and to perform
transformations between different levels of models.

1.3 Structure
The second section introduces the approaches

related to software configuration management to
identify main trends. The third section provides a
general description of the new approach; and the
next section contains detailed descriptions of all
models from the approach. The fifth section covers
the use of Semantic Web technologies to perform
transformation of models from different levels.
Finally, the last section is related to the practical
application of this approach in the field of applied
software and outlines the directions for further
work.

2 Related Works
The following approaches [4], [10], [5] define a
configuration management process as a whole, not
just a specific task. Solution in the article [4] defines
a united concept of configuration management as a
meta-model which allows the creation of an abstract
model of software configuration. The solution is
oriented to projects that use a model-driven
approach. There are no recommendations on
whether this approach could be used in projects that
use classical development methodologies.

The principles of configuration management
outlined and used to create abstract models in
solution [5] are taken from the ITIL (Information
Technology Infrastructure Library) standards. These
abstract models allow simulation of the
configuration management process and can be
transformed into platform specific models later.
Although this solution also includes an
implementation of model-driven configuration
management, it is focused on a single technology
(Java).

Study [10] focuses on the integration of various
configuration management tools. The maintenance
of a full configuration management process requires
the following tools: version control system, issue-
tracking system, build server, continuous integration
server, etc. Practical experience indicates that all
tools work separately from each other. The main
goal of the solution is to integrate different tools to
solve all of the configuration management tasks.
However, in order to integrate various configuration
management tools together, it is necessary to define
a general concept of each tool that should be
integrated [10]. The study presents an ontology for
software configuration management. This ontology
is used as a configuration management model that
describes how various configuration management

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 109

tools are integrated. However, the study does not
offer any instructions on how the ontology could be
used for a specific project configuration
management. It is not clear what kind of ontology
modeling tools are advised to use and how to
determine the moment when the changes have to be
made.

The study [6] provides an approach to reuse
installation packages in the different versions of
Linux. The author outlines a problem related to the
design of reusable code for installation packages.
The mentioned approach is only related to Linux
installation packages and does not contain any
general recommendations on how to apply it for
other technologies or for the other parts of
configuration management.

The solution provided in [7] is oriented to
increase reuse of release management with design of
geographically distributed concurrent change and
configuration management system. The paper
describes the high-level architecture and process
framework that could be used to implement new
configuration management systems.

Some of the reuse-oriented configuration
management approaches provide solutions only for
particular tasks, for example, measurements. The
article [8] presents a quantitative model for health
evaluation project that helps the decision makers to
make the right decision early on to amend any
discrepancy that may hinder timely, high-quality
software delivery.

This study is not the first attempt to introduce the
Semantic Web technologies into software
configuration management. In a related study, Falbo
[15] proposed an SCM ontology that was used to
establish a common conceptualization about the
SCM domain in order to support SCM tools
integration.

3 Model-driven approach for software
configuration management
In the context of a new approach, the following
steps are required to solve all of the software
configuration management tasks and implement all
the IT operations that are related to release
management:
• Identify all instances where software product

should be deployed. For example, TEST, QA,
and PROD. Nowadays all sub-processes of
general software development project usually use
one particular instance. For example, DEV
instance is being used for development, TEST

instance is being used for testing, and PROD
instance is being used by the end-users to.

• Identify all actions required to implement the
flows of software changes between instances
mentioned before. For example, in order to
transfer changes from DEV to TEST instance,
particular source code should be extracted from a
source code repository, then it should be
compiled to an executable file, and after that the
executable file should be installed on TEST
environment. Thus, the actions should be
“Prepare source code”, “Build product”, and
“Install product”. The actions are abstract and no
details about implementation are given.

• Choose particular solutions for any abstract
actions defined in the previous step. The main
condition is that all solutions for all actions are
stored at a centralized database. After this step,
any actions can contain details about particular
implementation. For example, action “Build
product” has a script that builds Java project
using ANT script.

A new approach has been designed according to the
mentioned positions for software configuration
management. The approach contains a set of
different models:
• Environment Model (EM) – simulates all

instances in a project and all flows of software
changes between these instances.

• Platform Independent Action Model (PIAM) –
simulates all tasks needed to apply all flows
between the environments from Environment
Model.

• Source Code Branching Model (SCBM) –
simulates all branches of source code and
directions of merge. The content of the model
strongly depends on Environment Model and
shows which branches should be created by
version control system and defines directions for
merges between the mentioned branches.

• Platform Specific Action Model (PSAM) – an
extended variant of PIAM model where all
actions are performed with specific details about
implementation. All required technical details are
mentioned in this model. For example: platform
name, name of version control system,
continuous integration server, build and
installation scripts, etc.

• Service Model (SC) – simulates pairs of different
tools from PSAM model that should be
integrated with each other. To apply all actions
from PSAM model, a set of different tools is
required. For example, to prepare a build for a
Java project, Jenkins server should have access

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 110

to Subversion version control system in order to
extract source code. Therefore, Service Model
should contain an element “Jenkins ->
Subversion” that initializes a service that could
get the information from Subversion and could
post common operations from Jenkins. This
server could be used by PSAM model to
implement actions related to source code
management.
Fig. 1 contains a general scheme of a new model-

driven approach. Arrows with digits represent steps
from the approach.

Metamodel of EM (Environment
Model)

Use Metamodel

1

Environment Model (EM)

Source Code Branching Model
(SCBM)

Platform Independent Action Model
(PIAM)

2

3

Platform Specific Action Model
(PSAM)

5

Service Model
(SM)

6

Solutions database

4

Fig. 1. Model-Driven Approach for Configuration
Management.

The first stage “1” represents building of
Environment Model from special meta-model.
Configuration manager builds Environment Model
from a set of components from the mentioned meta-
model. During the second stage “2”, Environment
Model is transformed into Source Code Branching
Model. The goal of stage “3” is the transformation
of Environment Model to Platform Independent
Actions Model. The main task is to detect the
actions needed to apply each flow between

environments. The stages “5” and “6” require the
interaction from a configuration manager to analyze
a prepared Platform Independent Action Model and
choose the solutions for each action from “Solutions
Database”. Structure of “Solution Database” is
provided in Fig. 2.

Fig. 2. Solutions Database.

Solutions Database contains all information
about all configuration management actions
described in PIAM model. For example, action
“Compile” could have five different solutions to
compile software from source code for the
following technologies: Java, Ruby, C++, Oracle,
C#. The mandatory requirement is that all solutions
are parameterized and there are no dependencies to
solutions of other actions. For example, compilation
script should not know any details about other
actions from PIAM, hardcodes from bug tracking
management, hardcoded hosts, absolute paths etc.
All details should be given as parameters. Any
solution stored in Solution Database has the
following attributes:
• ID – unique identifier in database;
• PlatformID – reference to platform;
• ActionID – reference to action. Table “Action”

contains all possible actions from PIAM meta-
model;

• NeededTools – set of tools to implement current
solution;

• LocationsOfSolutions – information about ready
scripts, frameworks, functions, including paths,
locations of servers, web-pages etc.;

• Description – some notes provide additional
information about implementation.

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 111

3 Models for software configuration
management

According to the model-driven approach
provided in the previous section of this paper, the
following models should be used to describe an
implementation of software configuration
management process.

3.1 Environment Model
Environment Model simulates developers, instances,
and flows of changes between the mentioned
instances. The key element of Environment Model
is Environment. In the context of EM, Environment
is an infrastructure (i. e., servers, applications, web-
services, etc.) for particular process. For example,
DEV environment is for development and TEST
environment is for testing. Environment Model
shows the flows of changes between different
environments. From configuration management
side, it is important to detect a way how particular
changes have been made.

The following attributes are defined to describe
Environment in the context of EM model:
• Name – unique name of Environment;
• Description – some notes about scope of the

current Environment;
• CustomerSupportFlag – flag that defines

whether this environment is supported by
customer;

• DevelopmentFlag – flag that defines whether this
environment is for development;

• OriginalEnvironmentFlag – flag that defines a
scope of the environment: sub-process of project
(development, testing, quality accepting) or only
integration or testing builds;

• OriginalEnvironmentName – In case when
OriginalEnvironmentFlag attribute value is set to
“false”, this attribute should contain a name of
the corresponding original environment. For
example, if current environment is a copy of the
original test environment, this attribute should
contain a name of the original test environment.
Example of Environment Model is given in

Fig.3.

DEV

1

TEST

Pre_TEST

test 1

2

Actor

Fig. 3. Environment Model.

3.2 Platform Independent Action Model
The purpose of Platform Independent Action Model
is a simulation of abstract actions needed to apply
all flows from Environment Model. PIAM model
has the following elements:
• ContinuousIntegrationServer – simulates a

framework for implementation of configuration
management actions. This element has the
following attributes:
o PlatformName – information about

platform,
o SolutionName – unique name,
o NeededTools – tools needed to implement

the current framework,
o SetupNotes – information about installation,
o LocationsOfSolutions – location of complete

scripts or frameworks.
• Abstract actions that simulate sub-tasks of

general process:
o DEVELOPMENT – simulates development

by programmers and regulations that are
used to control quality of development.

o COMMIT_CHANGES – simulates
submission of changes (i. e., commit
operation) to a version control system.

o PREPARE_BASELINE – simulates source
code management actions that involve
operations with branches, baselines, and
transfers of changes between different
branches.

o BUILD_PRODUCT – simulates build
management and all operations related to
building executables from particular source
codes.

o INSTALL_PRODUCT – simulates all
actions related to installation of particular
builds.

o DELIVERY_PRODUCT – simulates
preparation of an installation package for
software product.

o ENV_UPDATE_NOTIFICATION –
simulates all actions related to status
management. After a customer updates the

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 112

environment, a supplier should apply a set
of operations to confirm the update (change
statuses in a bug tracking system, refresh a
promotion branch, send notifications to a
project team, etc.).

• Events – all events from Environment model.

3.3 Source Code Branching Model
The purpose of Source Code Branching Model is to
define a general strategy on how to manage source
code according to Environment Model. In general,
this model shows which branches are needed to
support a code baseline for all original environments
from Environment Model. Additionally, SCBM
model defines directions of merges between
different branches.

3.4 Service Model
Service Model shows a set of tools, which should be
able to call from continuous integration server
defined at Platform Independent Action Model.
Service Detection Algorithm takes all actions from
PSAM model, extracts the value of NeededTools
attribute, and prepares the following pairs:

ContinuousIntegrationServer.NeededTools:

Action(i).NeededTools,

where i – number of action from PSAM, 0 < i <

General Count of Actions.

These pairs of tools define that it is needed to
develop a set of services to execute remotely
common functions of tools in attribute
"NeededTools" from continuous integration server
before PSAM model will be implemented.

4 Model transformation using
Semantic Web technologies
The Semantic Web is based on the idea of having
data on the Web defined and linked in a way that it
can be used by machines not just for display
purposes, but for automation, integration, and reuse
of data across various applications. The Semantic
Web is composed of a set of technologies, and it can
be defined as a symbiosis of Web technologies and
knowledge representation. Authors think that the
Semantic Web technologies can be efficiently
utilized in the Software Configuration Management
(SCM) to ease and improve efficiency of processes

like data integration and reuse, transformation, and
searching.
Ontologies serve as a key enabling technology for
the semantic software configuration management.
Ontologies are developed to provide a machine-
processable semantics of information sources that
can be communicated between different agents
(software and humans). Ontology is an explicit
formal specification of a shared conceptualization.
'Conceptualization' refers to an abstract model of
some phenomenon in the world which identifies the
relevant concepts of that phenomenon. 'Explicit'
means that the type of concepts used and the
constraints on their use are explicitly defined.
'Formal' refers to the fact that the ontology should
be machine readable. Hereby different degrees of
formality are possible [16].
According to Guarino, ontologies can be classified
into the following categories [17]: (1) foundational
ontologies (also called top-level ontologies), which
describe very general concepts such as time, object,
event, action, etc., (2) domain ontologies, which
describe the conceptualization related to a generic
domain (for example, finance, medicine, etc.), (3)
task ontologies, which describe the
conceptualization related to a generic task (for
example, sale), and (4) application ontologies,
which describe concepts dependent on a particular
domain and task.
OWL is an ontology language designed for use in
the Semantic Web and is the language
recommended by the W3C for this use. OWL DL
and OWL Lite semantics are based on Description
Logic (DL). OWL 2 exhibits the desirable features
of Description Logics, including useful expressive
power, formal syntax and semantics, decidability,
and practical reasoning systems, resulting in OWL 2
providing effective ontology representation
facilities.
Arantes et al [17] came to the conclusion that
ontology from [15] lacked some important concepts
mostly related to change and version control.
Therefore, they presented what they called an
evolution of this ontology that introduced a few new
concepts and a taxonomy of change control actions.
The new version features concepts like Repository,
Branch, Version, Artifact, Change, etc.
Authors believe that Arantes et al’ SCM ontology
could be used in the proposed model-driven
approach. That would allow the reuse of the expert
knowledge encapsulated within this ontology.
However, it is necessary to correspondingly modify
it according to the needs of this approach. One of
the main reasons for these changes is that the
ontology was not designed with a good reasoning

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 113

support. However, reasoning plays a very important
role in the ontology-based model transformation.
One of the key benefits of the use of the Semantic
Web technologies is that they provide means to
reason and query over semantically annotated
metadata from the software configuration models.
Reasoning provides an opportunity to perform an
inference.
Inference is a process to infer a new relationship
from the existing resources and some addition
information in form of set of rules. Inference base
technique is also used to check data inconsistency at
time of data integration. The inference engine can
be described as a form of finite state machine with a
cycle consisting of three action states: match rules,
select rules, and execute rules [18]. The use of DL
reasoners allows OWL ontology applications to
answer complex queries and to provide guarantees
about the correctness of the result. This is obviously
of crucial importance when ontologies are used in
safety critical applications.
OWL does not restrain developers to use any
particular inference engine (i. e., they are free to
choose what they want to use). However, the
standard reasoners like Pellet or FACT++ have a
few major disadvantages: they have a limited
functionality (i. e., some rules can’t be evaluated
with the existing open-source reasoners) and their
performance is not that good. Therefore, in order to
provide extra functionality it might be needed to use
additional tools (for example, Jena's library or some
of the Protege plugins).
The Semantic Web Rule Language is a language for
the Semantic Web that can be used to express rules
as well as logic, combining OWL DL or OWL Lite
with a subset of the Rule Markup Language [19].
SWRL complements DL by providing the ability to
infer additional information in DL ontologies, but at
the expense of decidability. SWRL rules are Horn
clause-like rules written in terms of DL concepts,
properties, and individuals. SWRL includes a high-
level abstract syntax for Horn-like rules in both the
OWL DL and OWL Lite sublanguages of OWL.
An SWRL rule is composed of an antecedent (body)
part and a consequent (head) part, both of which
consist of positive conjunctions of atoms. The
SWRL rule syntax is the following:

antecedent ⇒ consequent

where both antecedent and consequent are
conjunctions of atoms written a1 ∧ ... ∧ an. For
example, we can say that if a is a parent of b and b
is a parent of c, then a is also is a parent of c using
the following rule:

parent(?a, ?b) ∧ parent(?b, ?c) ⇒
parent(?a, ?c)

SWRL atom can be either a class, an object
property, a data type, a data type property, or a
built-in. A rule is satisfied by an interpretation if
every binding that satisfies the antecedent also
satisfies the consequent.
SWRL has already been successfully used in the
quite related field of Network Access Control
Configuration Management [20]. This experience
suggests that SWRL rules can also be used to
implement ontology-based SCM model
transformation rules.
Given the rich SCM ontology, SWRL provides
developers with an opportunity to define the
resilient rules for different kinds of model
transformation scenarios all while inferring possible
new knowledge.

4 Use cases of model-driven approach
in applied software fields
The proposed methodology of software
configuration management based on model-driven
approach and semantic web has been validated in
the process of development of Web-based business
oriented portals in the areas of e-logistics.

Several business portals in e-logistics were
developed within the frameworks of different EU
funded projects: eINTERASIA [23],eLogmar-M
and eLogmar.eu [22]

Each next Web portals version is based on the
results of previous projects and MDA and Semantic
Web approach (Fig. 4).

Fig. 4. The results of EU funded projects.

www.elogmar-m.org

Web-Based Demonstrator

www.einterasia.com
Adaptation to local conditions of

Cental Asian countries
(at the stage of final development)

www.elogmar.eu

Busines-oriented Portal in e-logistics

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 114

http://www.elogmar-m.org/
http://www.elogmar.eu/

The main goal of the eLogmar-M project [22]

was to create a Web portal demonstrator which
incorporates business process of different partners
operation along the selected maritime freight route.
The demonstrator provides online cooperation for
two target groups.

The following business processes are supported
by the Web portal:

1. Cargo group:
• Preparation of a contract for Sale/

Purchase
• Looking for suitable actors from cargo

transportation group in accordance with
the terms and conditions from a contract
of Sale/ Purchase and estimation of a
start-to-finish transportation rate.

2. Transportation group:
• Promotion of services by the way of

information via Internet and mobile
communication

• Preparation and maintenance of the
initial information about services.

www.elogmar.eu Web portal represents
commercialized, business-oriented version of the
demonstrator produced by eLogmar-M project [22].

Additional functionalities were implemented:
• Integration of PayPal payment system
• Modification of Web interface forms

taking into account the results of
demonstrator’s validation

• Improvement of homepage design etc.
The 7th Framework Program project

eINTERAISA [23] is aimed at the adaptation,
dissemination, and local exploitation of EU research
results in Central Asian countries. The development
of an integrated Web portal in the area of e-logistics
adapted to the business requirements and specific
needs of the target region is one of the main
objectives of the project.

It incorporates functionalities of
www.elogmar.eu portal, cargo auction mode and
research results of selected EU projects.

Application of model- and Semantic Web -based
approach showed its ability to support the
development and configuration management
processes of applied software.

5 Conclusions
The paper presents a new model-driven approach
for implementation of software configuration
management process. Unlike other related
approaches, it describes a whole development

process: from planning to technical
implementation. The approach is oriented to
increase reuse of existing solutions using well-
known and trusted tools. A set of meta-models was
designed to describe software configuration
management process using models. Authors also
investigate how Semantic Web technologies like
OWL and SPARQL could be used to improve this
approach and to perform transformations between
different levels of models. Finally, validation of new
methodology described.

The most important further work is the
development of a tool to automate process of
creating and transforming mentioned models. A set
of experiments will be performed in order to
evaluate the effectiveness of the new model-driven
approach. Authors hope that the results of the
experiments will contain feedback that could be
used to improve models in the approach.

Actually, model-driven approach is abstract and
initially it shows only steps, types of models, and
relations between them. It means that
implementation of the models could be different
from the one provided in this paper. It could
generate new ideas on how to improve the existing
models or how to implement it in another way.

Acknowledgments

This work is partly funded by Latvian State
Research Program „Cyber-physical systems,
ontologies and biophotonics for safe&smart city and
society”.

References:
[1] Bill Chamberlin's HorizonWatching. 2014. Top

18 Trends in Application Software
Development for 2014 | Bill Chamberlin's
HorizonWatching. [ONLINE] Available at:
http://www.billchamberlin.com/top-18-trends-
in-application-software-development-for-2014/.
[Accessed 20 October 2014].

[2] Azoff, R., DevOps: Advances in Release
Management and Automation. [ONLINE]
Available at: http://electric-cloud.com/wp-
content/uploads/2014/06/EC-IAR_Ovum-
DevOps.pdf [Accessed 20 October 2014].

[3] CMCrossroads | Three Major Trends in
Software Release Management You Should
Adopt . 2014. [ONLINE] Available at:
http://www.cmcrossroads.com/article/three-
major-trends-software-release-management-

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 115

you-should-adopt. [Accessed 20 October
2014].

[4] de Almeida Monte-Mor, J., GALO: A
Semantic Method for Software Configuration
Management. In Information Technology: New
Generations (ITNG), 2014. USA, 7-9 April,
2014. ITNG: IOT360. 33 - 39., 2014.

[5] Giese H., Seibel A., Vogel T., A Model-Driven
Configuration Management System for
Advanced IT Service Management. Available
at:
http://www.hpi.unipotsdam.de/giese/gforge/pu
blications/pdf/GSV-MRT09_paper_7.pdf,
2009.

[6] Guo., P.,J., CDE: A Tool for Creating Portable
Experimental Software Packages. Computing
in Science & Engineering (Volume:14 , Issue:
4), Pages: 32-35, 2012.

[7] Munirul, I., CCMS: A geographically
distributed concurrent change and
configuration management system, Bell Labs
Technical Journal (Volume:8 , Issue: 3),
2014.

[8] Nagy, A., A Bayesian Based Method for Agile
Software Development Release Planning and
Project Health Monitoring, Intelligent
Networking and Collaborative Systems
(INCOS), 2010.

[9] Osis J., Asnina E., Model-Driven Domain
Analysis and Software Development:
Architectures and Functions. IGI Global,
Hershey - New York, 2011, 514 p.

[10] Pindhofer W., Model Driven Configuration
Management. Master work of Wien University,
Wien, 2009.

[11] Taking Release Management to the Next Level.
2014. [ONLINE] Available at:
http://www.slideshare.net/xebialabs/taking-
releasemanagementtothenextlevel. [Accessed
20 October 2014].

[12] Trends in Software Engineering - Dice News.
2014. [ONLINE] Available at:
http://news.dice.com/software-engineering-
talent-community/trends/. [Accessed 20
October 2014].

[13] van der Storm, T., The Sisyphus Continuous
Integration System, Software Maintenance and
Reengineering, 2007. CSMR '07., 2007.

[14] What Are Current Hot Trends In The Field Of
Software Engineering?. 2014. [ONLINE]
Available at: http://bloggless.com/it/software-
engineering/what-is-currently-popular-in-
software-engineering/. [Accessed 20 October
2014].

[15] Falbo, R., A., Calhau, R. F. A Configuration
Management Task Ontology for Semantic
Integration. In: Proceedings of the 27th Annual
ACM Symposium on Applied
Computing.ACM, New Yorok, 2012. Pages
348-353.

[16] Fensel D. Ontologies: Silver Bullet for
Knowledge Management and Electronic
Commerce. Springer, 2003, 162 p.

[17] Guarino, N. Formal Ontology and Information
Systems. In: Formal Ontologies in Information
Suystems, IOS Press, 1998, 3 - 15.

[18] Arantes, L., D., Falbo, R. D., Guizzardi G.
Evolving a Software Configuration
Management Ontology. [ONLINE] Available
at:
http://citeseerx.ist.psu.edu/viewdoc/download;j
sessionid=C71AC33F802C1644AB292AFD92
68ED9F?doi=10.1.1.95.9969&rep=rep1&type=
pdf

[19] Dalwadi, N. et al, / (IJCSIT) International
Journal of Computer Science and Information
Technologies, Vol. 3 (3) , 2012,pp. 3843-3847.

[20] Horrocks, I. et al. SWRL: A Semantic Web
Rule Language Combining OWL and RuleML
[ONLINE] Available at:
http://www.w3.org/Submission/SWRL/

[21] Fitzgerald, William M. and Foley, S. N. and Ó
Foghlu, M. (2009) Network Access Control
Configuration Management using Semantic
Web Techniques. Journal of Research and
Practice in Information Technology, 41 (2). pp.
99-117.

[22] Novickis L., Vinichenko S. Essential Logistics
Principles for Creating a Web-Portal of
Transport Services Consumers. In: Scientific
Proceedings of the eLOGMAR-M Project. It
&T Solutions in Logistics and Maritime
Applications, ISBN: 9984-30-119-2, Riga,
JUMI Printed House, 2006, pp.21-29.

[23] ICT Transfer Concept for Adaptation,
Dissemination and Local Exploitation of
European Research Results in Central Asian
Countries, 2013. {ONLINE} Available at
http:// www.einterasia.eu {Accessed 26
October 2014].

Recent Advances In Telecommunications, Informatics And Educational Technologies

ISBN: 978-1-61804-262-0 116

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C71AC33F802C1644AB292AFD9268ED9F?doi=10.1.1.95.9969&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C71AC33F802C1644AB292AFD9268ED9F?doi=10.1.1.95.9969&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C71AC33F802C1644AB292AFD9268ED9F?doi=10.1.1.95.9969&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C71AC33F802C1644AB292AFD9268ED9F?doi=10.1.1.95.9969&rep=rep1&type=pdf
http://www.w3.org/Submission/SWRL/

