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Abstract: There have been various proposals of lightweight ciphers for resource constrained devices, including
proposals that use only 4 rounds of a Feistel cipher, similar to DES. In this article we show that 4-round DES-like
cipher is inherently insecure with a practical attack based on impossible differentials.
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1 Introduction

Many applications in the areas of mobile computing,
e-health services, wireless sensor networks, etc. re-
quire a simple way to secure communication chan-
nels. Standard cryptography provides robust and se-
cure cryptographic primitives such as AES or its vari-
ants [4]. However, AES can be two complex/costly
for some applications. The balancing issues be-
tween cipher security and implementation costs are
the main object of study of the lightweight cryptogra-
phy. Lightweight cryptography focuses on simple ci-
pher designs that provides enough security with lower
costs in hardware or software implementations.

The question of general lower bounds on imple-
mentation of ciphers with given security criteria is an
open problem, although some results are known for
specific types of Boolean functions that are important
building blocks of the ciphers [5]. Thus, design of
lightweight ciphers is mostly influenced by the known
standard cipher designs, such as the Data Encryption
Standard (DES). DES is now a historical cipher that
is considered insecure due to short key and many ex-
isting attacks. There are however many promising
lightweight variants of DES such as DESL [8].

In [10], an extremely lightweight version of DES
is proposed with only 4 rounds of Feistel encryption.
It is already known that such a design is insecure from
the theoretical point of view [11], due to collision at-
tacks. However, the complexity of these attacks is
O(2n/2), where n is the block size. Thus, it might
seem that problems with 4-round DES-like cipher can
be avoided by large enough block size. In this pa-
per we show a practical key-reconstruction attack on
generalized 4-round DES-like cipher. Its complexity
depends on the S-box size, which cannot be increased

too much (due to implementation constraints). Thus
we show that 4-round DES-like ciphers are inherently
insecure and should not be used in practice.

2 Definitions and Notation
Let e : ZnB

2 × ZnK
2 → ZnB

2 be a block cipher operat-
ing on nB-bit blocks and having nK bit key. We will
construct function e as a composition of partial func-
tions that denote the individual steps of the encryption
algorithm.

We will call e a generalized DES cipher, if it has
a Feistel structure, and its round function consists of
bit expansion, key addition, S-box evaluation and bit
permutation layers.

A cipher with Feistel structure works as follows:

1. Split the input string into left and right half,

2. Transform right part with a (key-dependent)
round function F and XOR it into the left part,

3. Swap the two parts.

This is repeated r times, where each repetition of this
process will be denoted as a round (of encryption).

Mathematically, let x = (l|r) denote the input
string. Then y = (r|l ⊕ Fk(r)) is an output string of
one Feistel round (⊕ denotes XOR operation on bit
strings).

Let nB = 2m for some positive integer m, and
let n ≥ m, and let s be an integer that divides both
m, and n. Let KS : ZnK

2 → (Zn2 )r denote a
key schedule algorithm. This algorithm provides r
subkeys k1, k2, . . . , kr given a master key k. I.e.,
KS(k) = (k1, k2, . . . , kr). Subkeys are used to de-
fine key dependent round functions for Feistel cipher.
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Let σi : Z
n/s
2 × Zm/s2 denote any Boolean func-

tion. We define S-box layer (containing s parallel S-
boxes) as a function S : Zn2 × Zm2 , where

S(x0, . . . , xn/s−1,xn/s, . . . , xn−1) =

(σ1(x0, . . . , xn/s−1), . . . ,

σs(xn−n/s, . . . , xn−1)
)
.

I.e., we apply s S-boxes in parallel on (n/s)-
bit substrings of the input, producing corresponding
(m/s)-bit substrings of the output.

Let ε : Zn → Zm, n > m, such that for every
y ∈ Zm, there is at least one x ∈ Zn such that y = εx.
Bit expansion function E : Zm2 × Zn2 is defined as

E(x0, x1, . . . , xm−1) =
(
xε(0), xε(1), . . . , xε(n−1)

)
.

This means that each input bit is copied into output
bits (in any order), and some of the input bits can oc-
cur in the output multiple times (are duplicated, tripli-
cated, etc.).

Let π : Zm → Zm be a bijection. Bit permutation
function P : Zm2 × Zm2 is defined as

E(x0, x1, . . . , xm−1) =
(
xπ(0), xπ(1), . . . , xπ(n−1)

)
.

This means that each input bit is copied into output
bits in the order prescribed by permutation π.

Round function F : Zm2 × Zn2 → Zm2 of a gener-
alized DES cipher can be written as

F (x, ki) = P (S(E(x)⊕ ki)),

where S : Zn2 × Zm2 denotes the S-box layer, E :
Zm2 × Zn2 is the bit expansion, and P : Zm2 × Zm2 is
the bit permutation.

In non-mathematical terms, generalized DES is a
Feistel cipher, with round function that first performs
bit expansion (takes m input bits, and reorders/copies
them to n output bits), XORs the expanded input with
the round key, applies S-boxes in parallel, and finally
mixes the output bits with bit permutation P .

In the following section we will show the attack
on 4-round generalized DES using impossible differ-
ences.

3 Attack on 4-round generalized
DES

Differential cryptanalysis was introduced by Biham
and Shamir in 1991 [2]. They attack DES-like ciphers
by studying the statistical distribution of differences
during the encryption process. Classical differential
cryptanalysis requires the knowledge of S-boxes to

Figure 1: The propagation of difference in a 4-round
Feistel scheme.

produce a statistical model of S-box differential re-
sponse, i.e., the probability that a given change of S-
box input produces a particular S-box output differ-
ence. When S-boxes are key dependent, or kept secret
in other way, it is not possible to use standard tech-
niques of differential cryptanalysis (such as comput-
ing the S-box difference table and searching for suit-
able differential trajectories, as described in [6]). In-
stead, we adapt a method of impossible differentials
[3] in a way that does not require the knowledge of
concrete S-boxes in generalized DES.

3.1 Attack overview
Let us study the response of Feistel cipher to a single
bit change in the left half of input. The situation is
depicted in Figure 1. First we encrypt any plaintext
(xL, xR), getting ciphertext (yL, yR). The attacker
chooses a single bit difference δ ∈ Zm2 , i.e., wH(δ) =
1. He then encrypts the plaintext (xL⊕δ, xR), obtain-
ing ciphertext

(y∗L, y
∗
R) = (yL ⊕ dL, yR ⊕ dR).

A good cipher should provide a strong avalanche ef-
fect, i.e., the output differences dL and dR should
be unpredictable (with approximately one half of bits
equal to zero, and one half equal to one).

If we study the encryption in more detail, we can
see that in the first round the input to round function
Fk1 is the same in both encryptions (xR). Thus, the
difference δ is unchanged, and is only swapped to the
right side (and zero difference is swapped to the left
side). In the second round the input to function Fk2 is
different during the two encryptions, it differs exactly
by the difference δ. If we do not know more details
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about the structure of F , we cannot predict how will
the outputs of Fk2 differ. We will denote the output
difference in this second round ∆. The difference ∆
gets swapped to the right side, and the difference δ
back to the left side. In the third round the input dif-
ference to Fk3 is ∆, which is unknown, thus we do not
know the output difference of Fk3 as well. However,
we know that ∆ on right side is unchanged and gets
swapped to the left side. In the fourth round difference
∆ is further changed by the output difference of Fk4 .

Once the attacker obtains the ciphertexts and
learns differences dL, and dR, he can propagate them
backwards. Difference dL is exactly the input differ-
ence of Fk4 , and we can see that dL⊕ d3 is the output
difference of Fk3 . Difference dR is the XOR sum of ∆
and the output difference of Fk4 . Thus, if the attacker
somehow knows subkey k4, he can compute ∆ in the
following way:

∆ = dR ⊕ Fk4(yL)⊕ Fk4(y∗L).

The difference ∆ is an output difference of Fk2 pro-
vided a single bit input difference δ. If F has a DES-
like structure described in Section 2, only some of dif-
ferences ∆ are possible. Let us denote a set of impos-
sible differences ∆ byR, i.e.,

R = {∆;PrX (Fk2(X)⊕ Fk2(X ⊕ δ) = ∆) = 0} .

Given two P-C pairs ((xL, xR), (yL, yR)), and
((xL ⊕ δ, xR), (y∗L, y

∗
R)), attacker can use set R to

quickly discard some of the potential subkeys used in
the last round. The attacker chooses subkey value kT ,
and computes

∆T = dR ⊕ FkT (yL)⊕ FkT (y∗L).

If kT = k4, ∆T cannot belong to set R, otherwise
there is a chance proportional to R/2m that ∆T be-
long toR. Thus, if ∆T ∈ R, the attacker immediately
knows that kT 6= k4. This allows the attacker quick
computation of the last subkey, which is an efficient
attack on cipher if the subkey leaks information about
the key, and if the subkey is not longer than the full
cipher key. However, if the cipher has DES-like ci-
pher, we can do much better by studying the structure
of function F in more details.

3.2 Characterization of impossible differen-
tials

First, let us consider how the setR is constructed. The
attacker chooses a single bit difference δ. Let us sup-
pose that the bit which is changed has index i. The
expansion function E propagates the change to all po-
sitions j such that ε(j) = i. The only S-boxes that are

influenced by the change are those, where the change
is propagated to. We call these S-boxes active, and
other S-boxes inactive.

Suppose that a = mini |{j; ε(j) = i}|. The at-
tacker will choose i in such a way that he gets at most
a active S-boxes (and s − a inactive S-boxes). When
S-box is inactive, its inputs do not change between en-
cryptions, thus also its outputs do not change, and its
output difference contain only zero bits. The output
difference bits for the active S-box can be both zero
and one. We expect that the attacker do not know the
S-boxes, thus we cannot (and do not need to) model
the distribution of output differences from active S-
boxes. Still, due to the presence of inactive S-boxes,
we can be certain that the number of non-zero bits in
difference is at most a ·m/s (out of possible m bits).
The zero-difference bits from the output of S-boxes
are further distributed by permutation function P . A
difference ∆, which has non-zero bit in a position that
is an output of inactive S-box is impossible.

We can characterize the setR in a computation by
a bit mask µ, which has 0 exactly in a position that is
an output of active S-box, and 1 in a position that is an
output of inactive S-box. We can quickly test whether
∆ ∈ R: compute bitwise AND between ∆ and µ. If it
is non-zero, the difference ∆ is impossible. Moreover,
we can test ∆ in parts: compute bitwise AND just
between a selected bits of ∆ and corresponding bits
of µ. The non-zero result immediately tells us that
∆ is impossible, regardless of the rest of the bits that
were not tested.

3.3 Attack on the last subkey and S-boxes
Once we compute the mask µ, we can focus on the
attack on the last round subkey. We want to find all
values of kT that do not lead to impossible differen-
tials. We do not need to compute the whole output
of FkT to discard some key, it suffices to find some
part of ∆T that can be compared with mask µ and
discarded. Key kT is XOR-ed to expanded input yL,
and y∗L, respectively, before computing the output of
S-boxes. Thus, to compute the m/s bits of ∆T , we
only need to guess n/s bits of kT , and the contents
of a single S-box. If the S-box is key-dependent, we
guess the corresponding key bits that are used to gen-
erate the S-boxes. After computing the corresponding
m/s bits of the difference ∆T , we check it with the
corresponding part of the mask µ. If the difference
∆T is impossible, we know that the key guess was
incorrect.

We can separate the search for a correct subkey
and S-boxes: Just work with a single hypothesis for
S-boxes, and try to find the correct subkey. If the
S-box hypothesis is incorrect, the impossible differ-
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entials will eliminate all subkeys, otherwise a correct
subkey will remain (and S-boxes are found).

For each part of the key, we test only 2n/s hy-
potheses separately, for a total work of s2n/s, instead
of 2n tests, which is an exponential speedup. E.g. for
classical DES, n = 48, and to find the subkey using
a whole ∆T , we would need 248 ≈ 3 · 1014 tests. If
we test 4-bit blocks of ∆T separately, we only need
8 · 26 = 512 tests. To prevent this attack, we would
need to significantly increase the value n/s. However,
the size of S-boxes is also exponential in n/s, thus this
is not possible due to implementation constraints.

A single set of two P-C pairs
((xL, xR), (yL, yR)), and ((xL ⊕ δ, xR), (y∗L, y

∗
R))

provides only a partial reduction in possible key
space. Suppose that we test 4-bit blocks (m/s = 4).
If the corresponding part of mask µ is 0000, we
cannot eliminate any key hypothesis. We try to avoid
such blocks, or to test two or more blocks together
in such a case (so that the corresponding mask
does not contain only zeros). If the corresponding
mask has a single bit equal to one, we can eliminate
approximately half of hypotheses. If the mask has all
ones, only approximately 1 out of 16 hypotheses is
not eliminated. Furthermore, the attacker can provide
a different sets of input P-C pairs, each of which will
eliminate a fraction of remaining key hypotheses,
until at most one will remain. The number of required
sets of P-C pairs is logarithmic in the key space
(comparable to n/s, instead of 2n/s). Thus the attack
has very low complexity even for ciphers with large
blocks and key sizes.

After the attack on the last round is successful,
we can either reconstruct the original key (depending
on the key schedule), or adapt the attack to a simpler
3-round structure.

4 Conclusion
We have shown a practical key recovery attack on gen-
eralized 4-round DES-like cipher. It can be concluded
that similar designs are inherently insecure and should
not be used in applications that require secure com-
munication. Still, the 4-round construction has rel-
atively good avalanche, thus it might be possible to
use it in place where only avalanche effect and not
strong security is required, e.g., in steganographic sys-
tems [7]. It is possible to strengthen the cipher by
increasing the number of rounds, but it is not clear
how many rounds are required to provide enough re-
sistance against more sophisticated attacks than the
one presented in this paper.

From the security point of view, we recommend
to use standard ciphers, such as AES [9], instead of

custom designs, and try to conserve resources in other
parts of the system. Alternatively, it is possible to
consider replacing block cipher with a fast and sim-
ple stream cipher [1] (see also [12] for stream cipher
overview).
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