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Abstract: The traditional first order JWKB method (=: (JWKB)1) is a conventional semiclassical approximation
method mainly used in quantum mechanical systems for accurate solutions. General (JWKB)1 solution of the
Time Independent Schroedinger’s Equation (TISE) involves application of the conventional asymptotic matching
rules to give accurate wavefunction in the Classically Inaccessible Region (CIR) of the related quantum mechanical
system, i.e., Bender and Orszag (1999); Deniz (2010) [1, 2]. In this work, Bessel Differential Equation of the first
order (=: (BDE)1) is chosen as a mathematical model and its (JWKB)1 solution is obtained by first transform-
ing into the normal form via the change of independent variable. General (JWKB)1 solution for appropriately
chosen initial values in the normal form representation is being analyzed via generalized (JWKB)1 asymptotic
matching rules regarding to the S̃ij matrix elements defined in Deniz (2010) [2]. Instead of applying the common
(JWKB)1 asymptotic matching rules relying on the physical nature of the quantum mechanical system, i.e., a
physically acceptable (normalizable) wavefunction, a pure semiclassical analysis without interfering the physical
nature of the system is being studied via the model (BDE)1 to show their match in the normal form representation
mathematically.
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1 Introduction
(JWKB)1 method1 is conventionally known to
be a strong and effective semiclassical approxima-
tion method enabling accurate analytical solutions in
quantum mechanical systems, i.e., [1–8]. Quantum
mechanical systems described by the Time Indepen-
dent Schroedinger’s Equation (TISE), which is in the
form of a linear second order homogenous (normal
form) differential equation:

y′′(x) + f(x)y(x) = 0 (1a)

f(x) = k2(x) =
2m

h̄2
[E − V (x)] (1b)

where these terms are in usual meanings (m repre-
sents mass, h̄ represents Planck’s constant divided by
2π,E represents total energy, and V (x) represents po-
tential function, namely) has exact and approximate
(JWKB)1 solutions in the following forms:

yEX(x) =: y(x) = k1y1(x) + k2y2(x) (2a)
1We simply refer to ”nth order JWKB (or WKB)” by a simple

abbreviation: (JWKB)n here.

yJWKB(x) =: ỹ(x) = k̃1ỹ1(x) + k̃2ỹ2(x) (2b)

where k1&k2 and k̃1&k̃2 are the arbitrary constants
and, y1&y2 and ỹ1&ỹ2 are the exact and JWKB com-
plementary solutions, respectively. These constant co-
efficients in the general exact and JWKB solutions can
be found from given initial values. The (JWKB)1
solution has a typical property that both comple-
mentary (JWKB)1 solutions (and hence the general
(JWKB)1 solution) diverge at a small region around
the classical turning point where f(x) = 0 ⇒ E =
V (x), i.e., [1–3]. Moreover, the general (JWKB)1
solution in (2b) is accurate for the Classically Acces-
sible Region (CAR) but it needs asymptotic match-
ing in the Classically Inaccessible Region (CIR) for
accurate (JWKB)1 solutions [1, 2]. CAR is the
region where the particle can classically exist since
its potential energy is smaller than its total energy:
f(x) > 0⇒ E > V (x), and CIR is the region where
it can not classically exist since its potential energy is
greater than its total energy: f(x) < 0⇒ E < V (x).
Conventional (JWKB)1 asymptotic matching rules
require that either of the complementary solutions in

Mathematical Applications in Modern Science

ISBN: 978-1-61804-258-3 22



(2b) should cancel in the CIR as follows [1, 2]:

ỹm.(x) =

{
ỹ(x) for CAR:f(x) > 0

either k̃1ỹ1(x) or k̃2ỹ2(x) for CIR:f(x) < 0
(3)

and,

ỹm.(x)→
{

limx→−∞ ỹ(x) = 0 if CIR lies on the LHS
limx→∞ ỹ(x) = 0 if CIR lies on the RHS

(4)
where ỹm.(x) represents the asymptotically matched
general (JWKB)1 solution. In other words, asymp-
totically diverging term in the CIR should be can-
celled in the general solution so that (4) can hold.
Formal (JWKB)N→∞ approximation formula rep-
resenting both of the complementary functions in (2b)
are actually in the form of an infinite series:

ỹ∞(x) = exp

[
1

δ

N∑
n=0

δnSn(x)

]
,

(
δ → 0
N →∞

)
(5)

where δ = h̄/i → 0 for the TISE and Sn represents
the expansion terms given in [1, 2]. Two-valuedness
of these expansion terms give two complementary
(JWKB)N functions. However, only the first two
terms (with indices i = 0 and 1) are used in the
(JWKB)1 approximation, which is known to give
accurate-enough solutions for slowly changing poten-
tials in the TISE and a criterion for this is given as
follows [1–3]:

0 ≤ g(x) =

∣∣∣∣∣∂xxk(x)

2k3(x)
− 3 [∂xk(x)]

2

4k4(x)

∣∣∣∣∣ << 1 (6)

As the potential in the TISE in (1b) gets sharper (so
does function g(x)) and (6) fails, some of the higher
order terms can no longer be neglected and hence,
higher order JWKB terms leading to higher order
JWKB approximation, (JWKB)N>1, are required
for accurate-enough solutions. So, for a general po-
tential V (x) involving both sharp and smooth do-
mains in the TISE, (JWKB)1 approximation should
give accurate solutions in some subdomain in the
CAR (where the criterion (6) holds) and inaccurate
solutions (in need of asymptotical matching) in some
other subdomains in the CIR (where the criterion
(6) holds). Such a potential with obedient and non-
obedient subdomains in the corresponding TISE is be-
ing studied semiclassically by the first order Bessel
Differential Equation, (BDE)1, as a chosen model
differential equation here.

Since (JWKB)1 method is generally applied to
the quantum mechanical systems, main principles of
the existing asymptotic matching rules rely on the na-
ture of the physical system under study, i.e., a phys-
ically acceptable bound state wave function (solution

of the TISE) in the CIR should not asymptotically di-
verge to infinity (≡Eqn. (4)) so that it can be nor-
malized [1–3]. Its semiclassical explanation for the
Simple Linear Potential (SLP), as a model potential
where the (JWKB)1 applicability criteria is satis-
fied in the entire domain, was studied in terms of the
(JWKB)N expansion terms in [2]. In this work,
similarly, a pure semiclassical analysis of the asymp-
totic matching rules is being studied for the inten-
tionally chosen (BDE)1 where the (JWKB)1 ap-
plicability criteria is now partially satisfied in some
subdomains involving both CAR and CIR. In our
analysis, appropriately chosen associated initial val-
ues are used to compare the general unmatched and
matched (JWKB)1 solutions with the related exact
solutions. (JWKB)1 solutions of some quantum me-
chanical systems involving exponential potential dec-
orated TISE, which is associated with the (BDE)n,
was obtained by the use of the common asymptotic
matching rules given in (4) in the literature [9–11].
Our aim here is rather to search the asymptotic mod-
ifications of the (JWKB)1 approximation for the
(BDE)1 mathematically via the semiclassical theo-
ries, where physical nature of the system regarding the
bound and unbound quantum mechanical system anal-
ysis is no longer interfered. The (BDE)1 is given in
the standard form by:

y′′ +
1

x
y′ +

(x2 − 1)

x2
y = 0 (7)

whose general exact solution in (2a) is the linear com-
bination of two kinds of 1st order Bessel functions
namely:

y1(x) = J1(x) and y2(x) = Y1(x) (8)

(JWKB)1 solution of the (BDE)1 in (7) can sim-
ilarly be written (when solved) as a linear combina-
tion of two complementary functions as given in (2b).
However, to follow this procedure one has to face with
the problem arising from the fact that one can not find
the general (JWKB)1 solution given in (2b) directly
by the conventional methods since the (JWKB)1
technique including the famous (JWKB)1 connec-
tion formulas requires (rather than that in (7)) a Lin-
ear Differential Equation (LDE) in the normal form
given in (1a). So we have to study it in the normal
form with a suitable change of variable. Complemen-
tary (JWKB)1 functions (solutions) in (2b) can then
be easily found by using the famous (JWKB)1 con-
nection formulas given in [1–4]. Once the (JWKB)1
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solution of either region (CAR or CIR) is found, the
other region can directly be determined via these con-
nection formulas.

So, our interest here can be summarized as fol-
lows: i) to find the general (JWKB)1 solution of
the (BDE)1 whose structure is given in (2b) by us-
ing some appropriate change of variable to transform
into a normal form (which is not unique), ii) to check
its accuracy in the (sub)domains of the CAR and the
CIR where the (JWKB)1 applicability criterion in
(6) holds and, iii) to find ways to do the correct asymp-
totic matching in the necessary (sub)domains by semi-
classical analyses mathematically.

2 Statement and Re-statement of the
Problem

2.1 Associated IVP and Statement of The
Problem

The process being followed here can be stated by the
following proposition:

Proposition 1 Once the general (JWKB)1 solution
in the form (2b) is obtained, one can test the accuracy
(or exactness) of this solution by comparing the gen-
eral exact and (JWKB)1 solutions of the associated
Initial Value Problem (IVP) constructed by imposing
the following initial values:

y(d1) = y(x)

∣∣∣∣
x=d1

= α1(c), y′(d1) =
dy(x)

dx

∣∣∣∣
x=d1

= β1(c)

(9)
where d1 is some real constant and c is some parame-
ter in the domain D where the (JWKB)1 method is
suitable for (d1, c)∈ D.

For the common initial values in (9) general exact so-
lution in (2a) and (JWKB)1 solution in (2b) give:

y(c, x) = k1(c)J1(x) + k2(c)Y1(x) (10)

(where k1(c), k2(c) are the c dependent coefficients
satisfying the initial values given in (9)), and

ỹ(c, x) = k̃1(c)ỹ1(x) + k̃2(c)ỹ2(x) (11)

(where similarly k̃1(c), k̃2(c) are the c dependent co-
efficients satisfying the same initial values in (9)).
Since the common initial values are defined in con-
tinuous (or discrete) spectra2 in the domain of param-
eter c, both general exact and (JWKB)1 solutions

2parameter c is used in continuous spectra here, however, it
might be discrete (especially in quantum mechanical bound-state
problems).

span the whole domain of parameter c to enable a suc-
cessful comparison in two variables according to our
proposition (Prop. 1) just as in [2]. But we have to
apply an appropriate change of variable and study it
in the normal form as explained above.

2.2 Change of Independent Variable and Re-
statement of the Problem

Lemma 2 Although (BDE)1 given in (7) is not in the
normal form given in (1a), a simple change of variable
in the independent variable:

x : (−∞,∞)→ (0,∞) , x(ρ) = e
c−ρ
2 (12)

transforms the (BDE)1 in the standard form in (7) to
the following desired normal form (just as in (1a)) in
a new independent variable, ρ:

d2y(ρ)

dρ2
+
ec−ρ − 1

4
y(ρ) = 0 (13)

Proof: Our proof is based on the following neat theo-
rem:

Theorem 3 The change of variable:

ρ(x) =

∫
exp

[
−
∫
p(x)dx

]
dx, u(ρ) = y(x) (14)

transforms the differential equation in the standard
form with the independent variable x given by:

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (15)

into the normal form with the independent variable ρ
as follows:

u′′(ρ) +

{
q(x) exp

[
2

∫
p(x)dx

]}
x=x(ρ)

u(ρ) = 0

(16)

Proof: Suppose we have a change of variable ρ =
f(x) with u(ρ) = y(x), then the derivatives

d

dx
=
dρ

dx

d

dρ
= f ′

d

dρ

d2

dx2
= f

′2 d
2

dρ2
+ f ′′

d

dρ

in (15) gives:

f
′2u′′ + f ′′u′ + pf ′u′ + qu = 0

In order to eliminate the u′ term, f must satisfy

f ′′ + pf ′ = 0
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which gives:

f ′ = exp

(
−
∫
p(x)dx

)
⇒ f =

∫
exp

(
−
∫
p(x)dx

)
dx

And the differential equation for u is in the form:

u′′ +
q

f ′2
u = 0

which is equivalent with (16). ut ut
Various change of variable applications to trans-

form the (BDE)n (with n → 1) into any of the nor-
mal forms, which is not unique, in a similar fashion
are available in the literature, i.e., [12–14]. But, the
change of independent variable given in (12) is used
here.

Procedure for comparison of the general
(JWKB)1 solution with the general exact solution
of our IVP here can be achieved as follows: Eq. (13)
can be re-written in two variable; ρ and c, where ρ
represents the changed coordinates (rather than x as
explained above), and c (without loss of generality)
represents the classical turning point of f(c, ρ)
satisfying f(c, ρ) = 0 to give:

∂2

∂ρ2
y(c, ρ) + f(c, ρ)y(ρ, c) = 0 (17a)

where

f(c, ρ) = k2(c, ρ) =
ec−ρ − 1

4
,−∞ < ρ <∞ (17b)

whose initial values via Prop. (1) can now be used in
the form3:

y(c, ρ)

∣∣∣∣
ρ=d2

= α2(c);
∂y(c, ρ)

∂ρ

∣∣∣∣
ρ=d2

= β2(c) (18)

So, the general exact and (JWKB)1 solutions of the
normal form IVP in (17a)-(17b) with (18) takes the
desired forms as in the solutions of previous standard
form IVP in (10) and (11):

y(c, ρ) = c1(c)y1(c, ρ) + c2(c)y2(c, ρ),−∞ < ρ <∞
(19a)

where

y1 = J1(c, ρ) and y2 = Y1(c, ρ) (19b)

3Notation: In this work, we show the initial values in the orig-
inal (standard form) system (in x) by subscript 1 (d1, α1, β1), and
in the transformed (normal form) system (in ρ) by 2 (d2, α2, β2).
See also Eqn. (9) for comparison with (18).

and

ỹ(c, ρ) = c̃1(c)ỹ1(c, ρ) + c̃2(c)ỹ2(c, ρ),−∞ < ρ <∞
(20)

In this work, results of the transformed (normal
form) representation in (c, ρ) for the associated IVP
is being analyzed graphically by means of the semi-
classical analysis only. Pure semiclassical asymptotic
matching rules (without interfering the physical na-
ture of the system) proposed here are expected to give
accurate results in the corresponding (sub)domains for
both representations. We study only the normal form
representation here.

3 Calculations in The Normal Form
3.1 Exact and (JWKB)1 Solutions of the

(BDE)1 in the Normal Form
There are some important points in the choice of the
initial values in this comparison based IVP method
and it will soon be shown that the initial values in (18)
can safely be chosen as:

d2 = 0 ; α2(c) = 0 ; β2(c) = 1 (21)

These important points can be summarized as follows:
i) Numerical value of d2 (=constant) chosen in

(18) should not correspond to the classical turning
points of the associated normal form differential equa-
tion (where f(c, ρ)|ρ=d2= 0 in the TISE in Eqn.
(17a)) at which the (JWKB)1 method typically fails.

ii) Similarly, since (JWKB)1 fails also in the
CIR, d2 should not be chosen in the CIR, neither.

iii) Numerical values of either α2(c) or β2(c) cho-
sen in (18) should not diverge to infinity for all c in the
domain of f(c, ρ).

iv) Either α2(c) or β2(c) in (18) can be chosen as
constant functions provided that solutions of the IVP
are in the forms of (19a) and (20). Note that initial
values in (18) are theoretically defined to be c depen-
dent functions (as a consequence of the calculations
via Prop. 1), however, we can choose them as con-
stant functions as a specific case of this generalization
(as we do here by (21)), which is not in contradiction
with the function theories.

One can simply show that the general exact solu-
tion of the (BDE)1 in the transformed normal form
in (17a)-(17b) can be written by

y(c, ρ) = c1(c)J1(e
c−ρ
2 ) + c2(c)Y1(e

c−ρ
2 ),−∞ < ρ <∞

(22)
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and applications of the initial values in (18) give:{
y(c, d2) = c1(c)y1(c, d2) + c2(c)y2(c, d2) = α2(c)
[∂ρy(c, ρ)]ρ=d2 = [c1(c)∂ρy1(c, ρ) + c2(c)∂ρy2]ρ=d2 = β2(c)

(23)
whose solutions for the c dependent coefficients via
the applications of the initial values in (21) give:

(24a)c1(c) =
α2(c)

∂

∂ρ
y2(c, ρ)

∣∣
ρ=d2 − β2(c)y2(c, d2)

4(c, d2)

∣∣∣∣∣
d2 = 0

α2(c) = 0
β2(c) = 1


=

−4e−c/2Y1(ec/2)
[Y2(ec/2)− Y0(ec/2)]J1(ec/2) + [J0(ec/2)− J2(ec/2)]Y1(ec/2)

and
(24b)c2(c)

=
−α2(c)

∂
∂ρ
y1(c, ρ)

∣∣
ρ=d2 − β2(c)y1(c, d2)

4(c, d2)

∣∣∣∣∣
d2 = 0
α2(c) = 0
β2(c) = 1


=

4e−c/2J1(ec/2)

[Y2(ec/2)− Y0(ec/2)]J1(ec/2) + [J0(ec/2)− J2(ec/2)]Y1(ec/2)

where the discriminant 4(c, d2) (the Wronskian de-
terminant) is defined by

4(c, d2) =

∣∣∣∣ y1(c, d2) y2(c, d2)
∂
∂ρy1(c, ρ) |ρ=d2 ∂

∂ρy2(c, ρ) |ρ=d2

∣∣∣∣
(25)

As to the general (JWKB)1 solutions, Let us first see
how well the (JWKB)1 applicability criteria given in
(6) is satisfied via function g(c, ρ). Following inequal-
ity should hold if the (JWKB)1 method is applicable
with a good-enough accuracy for a given k(c, ρ) as in
our case with (17b) here [2, 3]:

0 ≤ g(c, ρ) =∣∣∣∣ 1

2k3(c, ρ)

∂2k(c, ρ)

∂ρ2
− 3

4k4(c, ρ)
[
∂k(c, ρ)

∂ρ
]2
∣∣∣∣ << 1

(26)

In other words, one can not expect to have accurate
(JWKB)1 solutions in the region(s) where the in-
equality condition (26) does not hold (since the poten-
tial in the TISE gets sharper and higher order JWKB
approximation is required, [1–3]). Calculation of
g(c, ρ) in (26) for the (BDE)1 with (17b) gives:

0 ≤ g(c, ρ) =
1

4
eRe(ρ+c)

∣∣∣∣4eρ + ec

eρ − ec

∣∣∣∣ << 1 (27)

whose graph with the graph of f(c, ρ) for some c val-
ues are given in Fig. 1, from which we see that; clas-
sical turning point where f(c, ρ) = 0 is at ρt = c,
and the CIR where f(c, ρ) < 0 lies on the right-hand-
side of this turning point (similarly, the CAR where
f(c, ρ) > 0 lies on the left-hand-side of it). So, we

know in advance from (3)-(4) that we should make the
asymptotic matching (modification) in the CIR (since
located at the RHS of the turning point (ρt = c)) as
follows [1, 2]:

ym.(c, ρ)→ lim
ρ→∞

y(c, ρ) = 0 (28a)

ỹm.(c, ρ)→ lim
ρ→∞

ỹ(c, ρ) = 0 (28b)

Moreover, a narrow subregion not obeying (27) for
each c value in the domain can not be expected to give
accurate results by the (JWKB)1 method since lying
just about the turning points (as a typical property of
the (JWKB)1 method, as mentioned above). Analy-
sis of such regions in need of higher order JWKB ap-
proximation ((JWKB)N>1) are beyond the scope of
our study here. The width of this narrow sub-region

-5 0 5 10 15
-0.5

0.0

0.5

1.0

1.5

Ρ

f=k
2Hc,ΡL for c=0,1,2

Hg=1L

-5 0 5 10
-1

0

1

2

3

4

5

Ρ

gHc,ΡL for c=0,1,2

0 1 2 3 4 5
-1

0
1
2
3
4
5
6

x

f=k
2@c,ΡHxLD, for c=0,1,2

Hg=1L

0 1 2 3 4 5
-1

0

1

2

3

4

5

x

g@c,ΡHxLD for c=0,1,2

Figure 1: Graph of f and g functions for some c values
(solid-red curve: c = 0, dotted-green: c = 1, dashed-
blue: c = 2).

can be found from the solution of g(c, ρ) in (27) for
real ρ and c values as follows:

ρ ∈ (c− 0.968889, c+ 1.17808) (29a)

and the remaining wide region:

−∞ < ρ << (c−0.968889)∪ (c+1.17808) << ρ <∞
(29b)

is our main concern for a good-enough (JWKB)1
general solution here.

In the (JWKB)1 calculations, the entire do-
main can be considered as a unification of two neigh-
boring regions (CAR-CIR) and if we start with the
CAR located at the left-hand-side of the turning point
and connect it to the CIR by using the conventional
(JWKB)1 connection formulas given in [1–3] in
the reverse direction, we find the same formulas for
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yL(c, ρ) and yR(c, ρ) as in [2, see example 1] (But in
(c, ρ) here rather than (c, x)) to give:

ỹ(c, ρ) =

{
ỹL (c, ρ), for −∞ < ρ ≤ c
ỹR (c, ρ), for c ≤ ρ <∞ (30)

where

ỹL(c, ρ) =
A(c)√
k(c, ρ)

sin[η(c, ρ) + α(c)] (31a)

and

yR(c, ρ) =
A(c)

2
√
κ(c, ρ)

cos [α(c)− π/4] e[−ζ(c,ρ)] (31b)

+
A(c)√
κ(c, ρ)

sin [α(c)− π/4] e[ζ(c,ρ)]

But the constituents (functions: η and ζ) in (31a)-
(31b) here rather reads:

η(c, ρ) =
∫ c
ρ k(c, ρ)dρ =

√
ec−ρ − 1

+ i[ρ−c2 + ln(
√

1− ec−ρ) + 1], ρ < c

ζ(c, ρ) =
∫ ρ
c κ(c, ρ)dρ = − c

2 −
√

1− ec−ρ
+ ln[eρ/2 +

√
eρ − ec], c < ρ

(32a)
(where k and κ are in usual meanings: κ2 = −k2)

and the c dependent coefficients can be found from
the applications of the initial values given in (21) as
follows:

ỹ(c, d2) = yL(c, d2) = α2(c)

∂ρỹ(c, ρ)

∣∣∣∣
ρ=d2

= ∂ρyL(c, ρ)

∣∣∣∣
ρ=d2

= β2(c)


∣∣∣∣∣ d2 = 0

α2(c) = 0
β2(c) = 1


(32b)

⇒

{
A(c) = −

√
2

(ec−1)1/4 (for 0 < c∞)

α(c) = ic
2 −
√
ec − 1− i ln(1 +

√
1− ec),0 < c <∞

(32c)
Note that ỹ(c, d2) here in (32b) corresponds to

yL(c, d2) according to (30) since the initial values are
chosen at ρ = d2 which is in the CAR: −∞ < d2 =
0 < c. General (JWKB)1 solution in the other form
given in (20), which is very important in our analysis,
can similarly be written as follows [1, 2]:

ỹ1(c, ρ) =


2√
k(c,ρ)

sin[η(c, ρ) + π/4],−∞ < ρ ≤ c
1√
κ(c,ρ)

exp[−ζ(c, ρ)] , c ≤ ρ <∞

ỹ2(c, ρ) =


1√
k(c,ρ)

sin[−η(c, ρ) + π/4] ,−∞ < ρ ≤ c
1√
κ(c,ρ)

exp[ζ(c, ρ)] , c ≤ ρ <∞

(33)

where η(c, ρ) and ζ(c, ρ) are given in (32a), and ap-
plications of the initial values in (18) give:


ỹ(c, d2) = c̃1(c)ỹ1(c, d2) + c̃2(c)ỹ2(c, d2) = α2(c)

[∂ρỹ(c, ρ)]ρ=d2 =

[
c̃1(c)∂ρỹ1(c, ρ)

+ c̃2(c)∂ρỹ2(c, ρ)

]
ρ=d2

= β2(c)

(34)
whose solutions for the c dependent coefficients via
the applications of the initial values in (21) give:

(35a)c̃1(c)

=
α2(c)∂ρỹ2(c, ρ) |ρ=d2 − β2(c)ỹ2(c, d2)

4̃(c, d2)

∣∣∣∣∣ d2 = 0
α2(c) = 0
β2(c) = 1


= −

cos
[
±i c2 +

√
ec − 1∓ i ln(1 +

√
1− ec) + π

4

]
√

2(ec − 1)1/4

and

(35b)c̃2(c)

=
−α2(c)∂ρỹ1(c, ρ) |ρ=d2 − β2(c)ỹ1(c, d2)

4̃(c, d2)

∣∣∣∣∣ d2 = 0
α2(c) = 0
β2(c) = 1


=

√
2 sin

[
±i c2 +

√
ec − 1∓ i ln(1 +

√
1− ec) + π

4

]
(ec − 1)1/4

where the discriminant 4̃(c, d) (the Wronskian deter-
minant) is similarly defined by

4̃(c, d2) =

∣∣∣∣ ỹ1(c, d2) ỹ2(c, d2)
∂
∂ρ ỹ1(c, ρ) |ρ=d2 ∂

∂ρ ỹ2(c, ρ) |ρ=d2

∣∣∣∣
(36)

The graphs of the general exact and (JWKB)1
solutions shown on the same graph (left column) and
their difference (right column) in the transformed nor-
mal form (in ρ) for some c values are given in Fig. 2.

Remark 4 Note that choosing either α2 or β2 zero
as we did here in (21) obviously simplifies the calcu-
lations of the coefficients in the general (JWKB)1
solutions (see Eq.s (35a)-(35b)).

3.2 Asymptotic Matching of the (BDE)1 in
the Normal Form

We can see from Fig. 2 that, (JWKB)1 solutions are
consistent with the exact solutions in the CAR where
−∞ < ρ < c, but asymptotically are not (as ρ in-
creases in the CIR where c < ρ < ∞) as expected.
Now, the question is whether we can see this with-
out either interfering the exact results or consulting
the present asymptotic matching rules given in (3)-(4)
(and hence, (28b) here), and under what conditions

Mathematical Applications in Modern Science

ISBN: 978-1-61804-258-3 27



-4 -2 0 2 4

0

2

4

6

8

10

12

yHc=1.,ΡL

2 4 6 8 10
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

DyHc=1.,ΡL

-4 -2 0 2 4

0

1

2

3

4

5

yHc=2.,ΡL

4 6 8 10 12
0

2

4

6

8

10

12

DyHc=2.,ΡL

15 20 25 30

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

yHc=20.,ΡL

25 30 35 40 45
0.0

0.5

1.0

1.5

DyHc=20.,ΡL

32 34 36 38 40 42 44
-0.0004

-0.0003

-0.0002

-0.0001

0.0000

yHc=40.,ΡL

45 50 55 60 65 70 75

-10

-8

-6

-4

-2

0

DyHc=40.,ΡL

Figure 2: Graphs of the general exact and (JWKB)1
solutions of the (BDE)1 around the turning points
(left column) and their difference (=errors) in the CIR
(right column) in (c, ρ) for some c values.

they can be asymptotically-matched (in other words,
what the asymptotic matching rule is).

From the JWKB theories we know that the formal
expression of the (JWKB)N approximation written
in (5) takes the form:

ỹN (c, ρ) = exp

[
1

δ

N∑
n=0

δnSn(c, ρ)

]
, (δ → 0) (37)

where the first three of them can be written in (c, ρ) as
follows [1, 2]:

S0(c, ρ) = ±
∫ √

κ2(c, ρ)dρ =: ±A0(c, ρ) =

{
S01(c, ρ) = −A0(c, ρ)
S02(c, ρ) = A0(c, ρ)

(38a)

S1(c, ρ) = −
1

4
lnκ2(c, ρ) =: A1(c, ρ) =

{
S11(c, ρ) = A1(c, ρ)
S12(c, ρ) = A1(c, ρ)

(38b)

S2(c, ρ) = ±
∫ {

∂2
[
κ2(c, ρ)

]
/∂ρ2

8κ3(c, ρ)
−

5∂
[
κ2(c, ρ)

]
/∂ρ

32κ5(c, ρ)

}
dρ

(38c)

=: ±A2(c, ρ) =

{
S21(c, ρ) = −A2(c, ρ)
S22(c, ρ) = A2(c, ρ)

where κ2 = −k2 as in the usual meaning. Here in
Sij , the first indice i = 0, 1, 2 represents the first
three JWKB expansion terms, and the second indice
j(= 1, 2) represents two different sets due to the two-
valuedness of these expansion terms as in [2]. For the

(JWKB)1 approximation, only the first two terms
(n = 0 and up to N = 1 only) in (37) is used to give
the well-known (JWKB)1 formula in (c, ρ) as:

ỹ1(c, ρ) = exp[S01(c,ρ)
δ + S11(c, ρ)]

ỹ2(c, ρ) = exp[S02(c,ρ)
δ + S12(c, ρ)]

}
, δ → 0

(39)
which is equivalent with (33). As discussed above, ac-
cording to (28b), the (JWKB)1 solution in the CIR
requires a cancellation of either ỹ1 or ỹ2 in Eq. (20)
for the subdomain where the (JWKB)1 applicability
criterion holds. Note that both exact solution in (22)
and (JWKB)1 solution in (33) involves asymptoti-
cally diverging exponential terms in the CIR. As a re-
sult, this modification can fulfill the physical require-
ment, according to which the corresponding quan-
tum mechanical system does not allow any asymptot-
ically diverging term in the CIR (in both exact and
(JWKB)1 solution) [1–3].

Semiclassically, a successful (accurate w.r. to
the exact solution) (JWKB)1 solution of the TISE
should have asymptotically descending (JWKB)1
expansion terms with indices n = 0 and n = 1 and
they should be bounded by the next term with indice
n = 2 (which is not involved in the (JWKB)1 solu-
tion, though) [1,2]. These requirements can be written
by considering δ →= 1 to give [2]:

1 << δS2 < S1 < S0/δ , δ →= 1 (40)

Due to the two-valuedness, we can write the follow-
ing proposition to determine which term (ỹ1 or ỹ2) ex-
hibits the asymptotic requirements:

Proposition 5 In order to be an accurate (JWKB)1
solution (and hence, in order to be a properly asymp-
totically matched (JWKB)1 solution), the general
JWKB expansion terms should satisfy the following
inequalities:

1 << S̃21(c, ρ or ρ(x)) < S̃11(c, ρ or ρ(x)) < S̃01(c, ρ or ρ(x)) (41a)

1 << S̃22(c, ρ or ρ(x)) < S̃12(c, ρ or ρ(x)) < S̃02(c, ρ or ρ(x)) (41b)

where the definition of S̃ij in [2] can be generalized
(so as to involve also the transformed representation
of our model (BDE)1 under study) as follows:

S̃ij(c, ρ or ρ(x)) =

{
|Sij(c, ρ or ρ(x))| , if Sij(c, ρ or ρ(x)) ∈ C
Sij(c, ρ or ρ(x)) , if Sij(c, ρ or ρ(x)) ∈ R

(42)

Proof: Expansion terms in a specific problem (de-
pending on the corresponding f(c, ρ or ρ(x)) in
(17a)) may give real or complex Sij(c, ρ or ρ(x)) ele-
ments in various (sub)regions within the domain. So,
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requirements given in (41a) and (41b), which are the
natural consequence of (40) exhibiting a successful
comparison according to their two-valuedness, makes
the proof complete. ut

Corollary 6 The expansion term(s) in the (JWKB)1
solutions (S01, S02, S11, and S12 = S11) in (39)
(building (33) for the (BDE)1), whose associated
S̃ij(c, ρ or ρ(x)) elements determined from (42) do
not obey (41a)-(41b) should be cancelled for success-
ful asymptotic modification.

Inequalities in (41a)-(41b) and the definition in
(42) can freely be used in both representations inde-
pendently and what we have for the transformed coor-
dinates in (c, ρ), which is also our main concern here,
becomes:

S̃ij(c, ρ) =

{
|Sij(c, ρ)| ,ρ < c ∵ Sij(c, ρ) ∈ C in the CAR
Sij(c, ρ),c < ρ ∵ Sij(c, ρ) ∈ R in the CIR

(43)
because from (38a)-(38b)-(38c) we have:

S01(c, ρ) = −S02(c, ρ) =

−
√
1− ec−ρ [−2

√
eρ − ec + ρeρ/2 + 2eρ/2ln(1 + e−ρ/2

√
eρ − ec)]

2
√
eρ − ec

(44a)

S11(c, ρ) = S12(c, ρ) = −
1

4
ln(

1− ec−ρ

4
) (44b)

S21(c, ρ) = −S22(c, ρ) =
−6ec − 4eρ

48
√
1− ec−ρ(eρ − ec)

(44c)

from which we see that Sij(c, ρ) ∈
C in the CAR (where ρ < c) and Sij(c, ρ) ∈
R in the CIR (where c < ρ)). In order to make
the comparison given in (41a)-(41b), we determine
whether the elements are real or complex similar
to [2]. So, the general expression (also including the
SLP case in [2]) for the asymptotic matching can
be written by (41a)-(41b)-(42) as the generalized
asymptotic matching rule. If both (41a) and (41b)
hold (we obviously see that this happens in the
CAR), then the general (JWKB)1 solution involves
both (JWKB)1 complementary functions (ỹ1 and
ỹ2). But, if any of them does not hold (we again
obviously see that this happens in the CIR), then
the related complementary (JWKB)1 function
not obeying in that region (either ỹ1 or ỹ2) should
cancel in the general (JWKB)1 solution in that
region (including also the SLP case in [2]). Note that
(39) with (38a)-(38b)-(38c) has an implication that
Si1 (and hence S̃i1) contributes to ỹ1 and Si2 (and
hence S̃i2) contributes to ỹ2. So, the non-obedient
Si1 terms require a cancellation of ỹ1 and similarly,
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Figure 3: Graphs of S̃i,j=1 (left column) and S̃i,j=2

(right column) (where i = 0, 1, 2) in (c, ρ) for some
specific c values (solid curves: for i = 0, dotted
curves: for i = 1 , and dashed curves: for i = 2).

non-obedient Si2 terms require a cancellation of ỹ2
in the related subdomains.

Graphs of the S̃i1(c, ρ) and S̃i2(c, ρ) for some c
values are given in Fig. 3. Comparing with the graph
of g(c, ρ) given in Fig. 1, we can see that (JWKB)1
solutions should be in consistence with the exact so-
lutions except for the non-obedient narrow regions
given by (29a). We can also see that both (41a) and
(41b) holds for the CAR whereas the CIR does not
hold for both and hence needs a cancellation in the
non-obedient S̃i1 term (left column graphs) in this re-
gion (c < ρ < ∞). This is the most remarkable con-
sequence of our pure (JWKB)1 analysis via Fig. 3
without interfering either the exact solutions or phys-
ical nature of the corresponding quantum mechanical
system.

As a result, the necessary modifications according
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to our pure semiclassical analyses for the asymptotic
matching of the (BDE)1 in the transformed normal
form representation should be as follows:

(i) Modification of the general exact solution in (22)
(which will be used to compare with the modi-
fied (JWKB)1 solutions):

y(m.)(c, ρ) =

{
y,−∞ < ρ ≤ c (CAR)

c1(c)J1(e
c−ρ
2 ),c ≤ ρ <∞ (CIR)

(45)
Note that both exact and (JWKB)1 solutions
in (22) and (31b) of (30) (or (33) of (20)) have
common form of exponentially increasing terms
in the CIR: c < ρ <∞, where a cancellation ac-
cording to (41a)-(41b)-(42) is required for both
exact and JWKB solutions (See also (47a) below
for comparison).

(ii) Modification of the general (JWKB)1 solution
in (30):

ỹ(m.)(c, ρ) =

{
ỹL , for −∞ < ρ ≤ c (CAR)

ỹ
(m.)
R , for c ≤ ρ <∞ (CIR)

(46a)
where

ỹ
(m.)
R (c, ρ) =

A(c)

2
√
κ(c, ρ)

cos [α(c)− π/4]Exp [−ζ(c, ρ)]

(46b)

(iii) Modification of the general (JWKB)1 solution
in the other form (see Eq. (20) via (33)):

ỹ(m.)(c, ρ) = c̃1(c)ỹ1(c, ρ) + c̃2(c)ỹ
(m.)
2 (c, ρ)

(47a)
where

ỹ
(m.)
2 (c, ρ) =

{
1√
k(c,ρ)

sin[−η(c, ρ) + π/4] ,−∞ < ρ ≤ c (CAR)

0 , c ≤ ρ <∞ (CIR)
(47b)

The superscript ”(m.)” shows successfully asymptoti-
cally matched solutions here. In Fig. 3 we have non-
obedient S̃i1 functions, requiring a cancellation of
Si1 which contributes to ỹ1 (exhibiting exponentially
increasing behavior) in the CIR. So, these asymp-
totic modifications are the results of our generalized
asymptotic matching rules suggested here in (41a)-
(41b)-(42), which is a semiclassical establishment of
the existing asymptotic matching rules in (28a)-(28b)
(or (3)-(4)). So, they can be used as an alternative,
more general, and pure semiclassical (without inter-
fering either exact solutions or physical nature of the
system) asymptotic modification rule. Graphs of the

anomalies for the unmodified and modified system for
some c values are given in Fig. 4 for comparison. It is
clear that after the modification, the anomalies in the
CIR have been removed successfully for the subdo-
main where (JWKB)1 applicability criterion holds
according to (29b) as has been aimed by the asymp-
totic modification process.
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Figure 4: Errors in the unmodified (left column) and
modified system (right column) in (c, ρ) for some c
values.

4 Conclusion
In this work the (BDE)1 has been chosen as a math-
ematical model to be studied by a pure semiclassical
analysis (without interfering the physical nature of the
system) since there exists subregions that (JWKB)1
applicability criteria both holds and fails in some sub-
regions of both CAR&CIR. Hereby presented gen-
eralized asymptotic matching rules regarding the S̃ij
matrix elements obtained from the (JWKB)N ex-
pansion terms show that, the general (JWKB)1
solution of the (BDE)1 for carefully chosen ini-
tial values needs asymptotic matching in the trans-
formed (normal form) representation in the CIR where
the (JWKB)1 applicability criterion holds. More-
over, there is no need for asymptotic matching in
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the CAR where the (JWKB)1 applicability crite-
ria holds. These results, obtained by our pure semi-
classical analysis, are consistent with the present con-
ventional asymptotic matching rules given in (3)-(4)
via [1,2], which is a natural consequence of the phys-
ical nature of the related quantum mechanical system
(normalizability requirement of quantum mechanical
wave functions). The generalized asymptotic match-
ing rules suggested in (41a)-(41b) with the general-
ized definition of S̃ij in (42) are results of our pure
semiclassical analyses where physical nature of the
system is not interfered.

The main idea here is the semiclassical require-
ment that (JWKB)N expansion terms should be
asymptotically decreasing as the term indice increases
and bounded by the (N + 1)th indiced term as stated
in [1, 2]. Two valuedness of the (JWKB)N expan-
sion terms as given in (38a)-(38b)-(38c) enables def-
initions of two different sets (corresponding to two
complementary functions as in (39)) according to (42)
for them so that the semiclassical requirements for
the asymptotic matching can be tested for these two
sets accordingly. Eqn. (39) shows that Si1 (hence
S̃i1 in our comparison function) contributes to ỹ1 and,
similarly, Si2 (hence S̃i2 in our comparison func-
tion) contributes to ỹ2. So, any violation of S̃i1 in
(41a) requires a cancellation of ỹ1, and any viola-
tion of S̃i2 in (41b) requires a cancellation of ỹ2 in
the related non-obedient (sub)domain provided that
the (JWKB)1 applicability criterion holds. More-
over, our alternative analyses enable a correct deter-
mination of which complementary function (solution)
and where in the semiclassically solvable domain to
cancel. So, the asymptotic matching rules in (41a)-
(41b)-(42) obtained by our pure semiclassical anal-
yses here without interfering physical (quantum me-
chanical) nature of the system seem to be an alter-
native (and also more general) equivalent asymptotic
matching rules besides the present conventional rules
given in (3)-(4) via [1, 2].
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