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Preface 
 

 
Nature has enormous power and intelligence behind its common daily appearance, and it is generous. The 

development of human society relies on natural resources in every area (both material and spiritual). We 

learn in it and from it, virtually as part of it. Nature-inspired systems and methods have a long history in 

human science and technology. For example, in the area of computer science, the recent well-known ones 

include the artificial neural network, genetic algorithm and swarm intelligence, which solve hard problems 

by imitating mechanisms in nature. Nature-inspired methods are also being quickly developed and applied 

in other areas. In this book, we just try to pick up a drop from the sea of nature’s intelligence, and apply it in 

a specific area. We hope that it may inspire the readers’ interest of nature’s intelligence when exploring in 

their own areas of science and technology. 

Traditional image processing methods usually take images as data sets or mathematical functions. In our 

idea of nature-inspired methods, images are more like the imitation of certain natural entities (such as 

electric charges, currents, etc.) simulated in computer. The evolutions of such virtual entities can be 

simulated according to corresponding natural laws and the simulation result can be studied for possible 

utilization in practical image processing tasks. Nowadays, nature-inspired methods in image processing 

have attracted more and more attention and research efforts. Physics and biology are the two main sources 

from which most of such methods have derived. Related work has achieved promising results in practical 

tasks, which indicate that it is a direction potentially leading to breakthroughs of new image analysis 

techniques. Methods inspired by physical electro-magnetic field make up a branch of this field, which have 

been successfully applied in the practical applications including: recognition of human ear, face and gait; 

extraction of corner, edge, and shape skeleton in images. The existing methods inspired by electro-magnetic 

theory generally belong to two categories: analysis of the virtual field generated by the image (such as the 

“force field transform”) and deforming a shape or curve under the virtual force field generated by the image 

(such as the “active counter model”).  

The beginning of the research introduced in this book was in 2006, after we read a paper about “force field 

energy functionals for image feature extraction” (David J. Hurley, Mark S. Nixon, John N. Carter, 2002). 

This paper inspired our strong interest of natural analogies in image processing. Since then, we have been 

exploring in the area of nature-inspired image analysis for years and have published a series of papers about 

our original methods and results. These methods are mainly inspired by the theory of electro-magnetic field, 

which reveal the structure properties of the image by electro-magnetics inspired transforms. In these 

transforms, the formulas in electro-magnetic theory are adjusted to more generalized forms in order to suit 

practical image analysis tasks, and some novel viewpoints which take the image as a virtual field are 

presented. Several types of methods have been proposed from different aspects of field theory (vector field, 

scalar potential field, and field source distribution), which indicates that the physics inspired virtual field is 

a novel way of designing new effective image transforms.  

Nature-inspired methodology itself means continuous exploration in the rich resource of the intelligence 

shown by nature. Therefore, this book does not mean the final conclusion of the authors’ on-going work. 

Further promising results in both theory and practice are expected and we hope our research attempts shown 

in the book may inspire new ideas of others, which will surely be much more valuable than the book itself. 
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1  Review 
 

In the development of digital image processing methods, the analogy of natural systems has become 

an important way of inspiring new effective algorithms. Nature-inspired methodology for image 

processing has attracted lots of research interest and efforts. Currently, this multidisciplinary research 

topic covers several important science fields including physics, biology, etc. Moreover, it has 

gradually been forming a new branch in image processing with continuously increasing research work 

on it.  

Nature-inspired algorithms process the image by imitating the mechanism of some nature system, 

in which the image is taken as part of the system and the processing result is produced by computer 

simulation of the system. Therefore, the advantages of many natural laws suitable for processing tasks 

can be exploited in such simulation, which may bring more satisfactory processing results. Physics 

and biology are the two main scientific fields related to nature-inspired algorithms in image 

processing. For example, the physical laws that have been exploited in image processing include: 

electro-statics, magneto-statics, gravity, water flow, heat flow, light ray propagation, fire propagation, 

water-filling and water shed, anisotropic diffusion, deforming structure, etc. On the other hand, the 

biological systems that have been imitated in image processing include: ant colony, fish school, social 

spider, and even bacterial foraging, bacteriorhodopsin, etc. The book first gives a literature review 

about the nature-inspired methodology in image processing in the following section. 

 

1.1 Literature review 
 

Physics-inspired methods form a main branch of nature-inspired approaches. There are considerable 

researchers keeping continuous work on physics-inspired methods in image processing. The group of 

Professor Mark S. Nixon has developed new ways to extract features based on notional use of 

physical paradigms, including the analogies of gravitational force, water flow and heat
[1]

. David J. 

Hurley, Mark S. Nixon and John N. Carter developed a novel force field transformation for image 

feature extraction in which the image is treated as an array of Gaussian attractors that act as the source 

of a force field
[2,3,4]

. The novel force field transformation and potential well extraction technique lead 

to a compact characteristic vector offering immunity to initialization, rotation, scale, and noise. Their 

method has been successfully applied in biometrics for identification. Xin U. Liu and Mark S. Nixon 

presented a new general framework for shape extraction based on the paradigm of water flow, which 

embodied the fluidity of water and hence can detect complex shapes
[5,6,7,8]

. The method has been 

applied medical image segmentation such as the detection of vessel boundaries in retinal images. 

Alastair H. Cummings recreated the water flow method and extending it to use two new forces - 

surface tension and viscosity, which was successfully applied in feature extraction
[9]

. Cem Direkoglu 

and Mark S. Nixon introduced a novel evolution-based segmentation algorithm by using the heat flow 

analogy, to gain practical advantage in shape extraction and image segmentation
[10,11,12,13]

. In Cem 

Direkoglu’ thesis, he investigated the physical heat flow analogy both for low-level and high-level 

feature extraction, which was applied in moving-edge detection, shape extraction and silhouette object 

feature extraction. Alastair H. Cummings, Mark S. Nixon and John N. Carter presented a novel ear 

enrolment technique using the image ray transform, based upon an analogy to light rays
[14]

. Alastair H. 

Cummings, et al also proposed a transform using an analogy to light rays for the detection of circular 

and tubular features
[15]

. 

Other researchers have also proposed physics-inspired methods for image processing with various 

points of view. The electro-static field has attracted much attention in this direction. Andrei C. Jalba, 

et al proposed a physically motivated deformable model for shape recovery and segmentation
[16]

. The 

model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and 

is based on a simulation of charged particles moving in an electrostatic field. Kenong Wu and Martin 

D. Levine proposed an approach to 3D part segmentation by simulating the electrical charge density 
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over the object surface and locating surface points which exhibit local charge density minima
[17]

. 

Andrei C. Jalba and Jos B. T. M. Roerdink also proposed a geometrically adaptive method for surface 

reconstruction from noisy and sparse point clouds based on generalized Coulomb potentials
[18]

. N. 

Ahuja and J. Chuang used a potential field model for efficient derivation of the medial axis transform 

of a 2D polygonal region
[19]

. Jen-Hi Chuang, et al also generalized the potential-based skeletonization 

approach for 2D medial axis transform (MAT) to three dimensions
[20]

. Liu Qing, et al proposed an 

algorithm for image resolution enhancement based on the balance principle of static electric field, 

where the interpolation function is adjusted automatically by the electrical potential differences of the 

adjoining pixels and its energy zone to self-adaptively magnify the image
[21]

. Magneto-static field has 

also been imitated in image feature extraction. Bin Luo, A. D. J. Cross and E. R. Hancock proposed a 

new feature representation based on a magneto-static analogy, in which a vector potential was 

computed by appealing to an analogy in which the Canny edge-map is regarded as an elementary 

current density
[22]

. 

Besides the electro-static and magneto-static fields, other physical laws have also been exploited 

in image processing including: heat equation, anisotropic diffusion, fire propagation, fluid dynamics, 

physical particles, water-filling and watershed. Benjamin B. Kimia and Kaleem Siddiqi proposed a 

geometric smoothing method based on local curvature for shapes and images, which imitated the heat 

equation and anisotropic diffusion
[23]

. Xinhua Ji and Jufu Feng proposed a novel thinning algorithm 

based on a time-reversed heat conduction model, in which the image is viewed as a thermal conductor 

and the thinning task is then considered as an inverse process of heat conduction
[24]

. Siddharth Manay 

and Anthony Yezzi utilized an anisotropic diffusion model, which named the anti-geometric heat flow, 

for adaptive threshold of bimodal images and for segmentation of more general grayscale images
[25]

. 

Blum H. proposed the grassfire transform, in which growth from a boundary generates a description 

of an object that is centered on the space it includes
[26]

. The method simulated the process of “setting 

fire” to the borders of an image region to yield descriptors such as the region’s skeleton or medial axis. 

Chwen-Jye Sze, et al proposed a discrete image flux conduction equation based on the concept of heat 

conduction theory, which was effectively applied to the selective image smoothing problem
[27]

. M. 

Bertalmio, et al introduced a class of automated methods for digital inpainting, which is inspired by 

classical fluid dynamics to propagate isophote lines continuously from the exterior into the region to 

be inpainted
[28]

. Zhao Yi proposed a novel image registration technique based on the physical 

behavior of particles
[29]

. Xiang Sean Zhou, et al presented a new approach named “Water-Filling 

Algorithm” for image feature extraction, which was a simulation of “flooding of connected canal 

systems (connected edges)”
[30]

. Another important method is the watershed algorithm. H. Digabel and 

C. Lantuejoul introduced the watershed transformation as a morphological tool
[31]

. Beucher S. and 

Lantuejoul C. used the watershed method in contour detection
[32]

. Vincent L. and Soille P. introduced 

an efficient and completely new implementation of watersheds
[33]

. 

Biology is another important source where novel processing methods have been derived from. 

Much of the research work has especially been carried out to exploit the biological swarms to derive 

novel image processing algorithms, such as the ant colony, fish school, social spider and bacteria. The 

artificial ant colony is a hot topic in this area. Chialvo D. R. and Millonas M. M. investigated via 

analysis and numerical simulation the formation of trails and networks in a collection of artificial ants, 

which was compared with the neural processes associated with the construction of cognitive maps in 

the hippocampus
[34]

. Vitorino Ramos and Filipe Almeida presented an extended model to deal with 

digital image habitats of artificial ants, which has potential application in pattern recognition
[35]

. 

Xiaodong Zhuang and Nikos E. Mastorakis applied artificial ant colony in image processing for 

feature extraction with the proposed perceptual graph
[36]

. S. Ali Etemad and Tony White presented a 

technique inspired by swarm methodologies such as ant colony algorithms for processing simple and 

complicated images
[37]

. Peng Huang, et al presented a novel segmentation algorithm based on the 

artificial ant colonies
[38]

. Piergiorgio Cerello, et al presented the Channeler Ant Model (CAM) based 

on the natural ant capabilities of dealing with 3-D environments through self-organization and 
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emergent behaviours, which was already in use for the automated detection of nodules in lung 

Computed Tomographies
[39]

. Yan Chen-yang, et al presented an artificial ant colony model for digital 

image edge detection base on the model which was first introduced by D．R．Chialvo et al, and later 

extend by V．Ramos et al
[40]

. Yudong Zhang and Lenan Wu proposed a novel method based on the 

artificial bee colony and the Rossler attractor for the estimation of human face pose in single 

images
[41]

. Alirezae Rezaee applied the ant colony system for edge detections, in which the edge of 

images can be considered as food for ants
[42]

. Huizhi Cao, et al presented a segmentation algorithm, 

which uses a biologically inspired paradigm known as artificial ant colonies
[43]

. Chad George and 

James Wolfer presented a hybrid algorithm inspired by ant colony and particle swarm technology to 

count an inventory of tubular steel bar stock from digital images
[44]

. 

The artificial ant colony has also been studied for artistic creation. A group led by Monmarche 

appears to be the first to actually use the term “ant painting” to describe the abstract images made by 

virtual ants that roam over a toroidal canvas
[45]

. In Gary Greenfield’s paper, the author strived to show 

how designing ways to make ant paintings becomes an artistic pursuit
[46]

. 

The study of bacteria has been exploited in image processing. Sambarta Dasgupta, et al presented 

an algorithm for the automatic detection of circular shapes from complicated and noisy images, which 

is based on a swarm-intelligence technique named the Bacterial Foraging Optimization (BFO)
[47]

. Om 

Prakash Verma, et al proposed a new approach for edge detection using a combination of bacterial 

foraging algorithm (BFA) and probabilistic derivative technique
[48]

. Jianhua Yang and Guangyu Wang 

employed the differential response of the bacteriorhodopsin film to fabricate a 2D ON-center ganglion 

cell receptive field, which was characterized as a zero-cross filtering and was successfully used to 

detect the edge of an image
[49]

. Liu Dan, et al proposed an Artificial Bacilli Model for curve extraction 

in images based on real bacillus and Artificial Life theory
[50]

. 

Other biological swarm systems have also been studied for possible use in image processing. Chu 

Xiao-Li, et al proposed a method of image edge detection based on artificial fish swarm algorithm 

(AFSA) with chaos differential evolution algorithm (CDEA)
[51]

．Hao He and Yanqiu Chen used 

artificial life for image segmentation in their paper, where each pixel was associated with a life and 

evolved until the equilibrium was reached
[52]

. Christine Bourjot, et al presented an approach to region 

detection inspired by social spiders, which is based on a behavioral model determined by the 

simulation of collective weaving
[53,54]

. Jeff Jones, et al studied the interactions between simple agents 

and their image environment, which was then applied in image processing
[55]

. Charles E. White II, et 

al studied a swarm-based algorithm for color image segmentation
[56]

. W. Fledelius and B. H. Mayoh 

proposed a method for applying swarm theory to medical image analysis, in which nature serves as 

the inspiration for the swarms with agents consisting of termites, bloodhounds and children playing
[57]

.  

 

1.2 Overview of the book 
 

In electro-static field and magneto-static field, the field and its source are two indivisible parts of a 

physical system. The field is derived from the source, and it naturally reflects the characters of the 

source distribution. On the other hand, the source may be mathematically inverted from the field. 

Therefore, the field and its source can be regarded as two domains of a special transform, and either of 

them can represent the characters of the other. 

Images can be regarded as a kind of two-dimensional physical distribution (for the still images) or 

three-dimensional distribution (for the video image sequences). Image transform is the basic technique 

in image analysis, which finds a clearer and more convenient representation in the transform domain 

for better analyses. The natural transforms implied in the theory of physical electro-magnetic field just 

satisfy the need of the transform and feature extraction in image analysis. Moreover, the mathematical 

forms of electro-magnetic formulas have a unique advantage of the balance between local and global 

analysis, which is needed in many practical tasks. 
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In recent years, there have been increasing research efforts in nature inspired methods for image 

analysis. Promising results have been obtained in edge detection, corner detection, shape 

skeletonization, ear recognition, etc. Existing research focuses on scalar potential field, but the work 

on vector field transform is rare. The direct application of the formulas of physical fields is common, 

but there is much less work of adjusting and altering the forms of physical formulas to suit practical 

applications better. Moreover, most of the existing work in this area takes the image as the source and 

produces its virtual field, but the inverse transform from the image as a field to its virtual source is not 

investigated in previous research work. In this book, the authors try to widen the research of physical 

field inspired methods in image analysis by presenting several electro-magnetism inspired methods of 

vector field, relative field, and source-reverse transforms. 

This book is based on the authors’ original work in the area of physics-inspired methods for image 

analysis, which provide a new kind of natural representation of image structure imitating the electro-

magnetic field. In this book, three virtual vector field transforms (diffusing vector field, curling vector 

field, compressing vector field) are presented based on the electro-static or magneto-static analogy. A 

scalar virtual potential field (relative potential field) is also proposed for image analysis. Besides, two 

different virtual source-reverse methods (potential source reverse, curling source reverse) are 

proposed imitating the physical fields derived from the static charges and static current distribution. 

The edge vector field is presented, and the virtual magnetic field generate by it is also investigated. In 

the above work, the basic properties of the virtual fields are analyzed and experimentally investigated, 

and their applications in image analysis are also studied by experiments. The experimental results 

indicate the impressive research value of electro-magnetism inspired methods in image analysis. 

There is also a novel idea underlying several virtual field methods in the book, which is named the 

“relative” field. It is an extension of the original definition of the physical fields by introducing the 

pixel difference into the definition. The authors’ original work has proved the effectiveness of the 

“relative” field idea in the relative potential field, the diffusing vector field, the curling vector field, 

and the compressing vector field.  

The organization of the book is as following: 

In Chapter 2, several electro-statics inspired methods are presented, including the relative potential 

field, diffusing vector field, and the compressing vector field. The potential source-reverse inspired by 

electro-statics is also discussed in this chapter. 

In Chapter 3, the magneto-statics inspired methods are discussed, including the virtual edge 

current and the curling vector field. The curling source-reverse for grayscale images is also studied in 

this chapter. 

In Chapter 4, the extension of the “relative field” methods from single image processing to image 

sequence analysis is discussed. The extension of the 2D relative potential field to 3D relative potential 

for image sequences is studied as a case study.  

In Chapter 5, the extension of the “relative field” methods from grayscale image processing to 

color image is discussed. The extension of the grayscale relative potential to color relative potential is 

investigated as a case study.  

Chapter 6 is the summary of the book, where the authors would like to discuss some interesting 

topics about the methods in the book, and also some possible future work. 
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2  Electro-Statics Inspired Methods 
 

Image transform is an important way for feature extraction and analysis
[58-63]

. Most currently applied 

transforms change the signal form between the time or space domain and the parameter domain (or 

transform domain), such as the mathematically reversible transforms including Fourier transform 

(transform between the time or space domain and the frequency domain) and the Wavelet transform 

(transform between the time or space domain and the time-scale or space-scale domain)
[64-68]

. Novel 

image transform has become an important branch of image processing development
[59-63]

.  

In recent years, physics-inspired methodology has attracted more and more interest of researchers, 

which exhibits promising ability of effective feature extraction and analysis
[3,17,19,22,69-74]

. The 

fundamental principle underlying the methods inspired by physical fields is the transform from one 

form of the field to another, so that the feature of interest can be revealed
[3,4,69,73,74]

. The distribution of 

the field is determined by the field source distribution. Therefore, the field can reflect the structure 

feature of the source. Based on the imitation of the physical field, the digital images can be taken as 

virtual field source, and the field generated by the image also represents the image’s structure feature, 

which can provide a novel way of image transform and analysis. 

The physical electro-static field is an irrotational field (i.e. the curl of the field intensity is zero). 

The electro-static potential and field intensity have some unique characteristics which may be 

exploited in image transform and analysis. In this chapter, several novel methods of image field 

transform are proposed, which are inspired by three different aspects of physical electro-static field. 

These aspects include electro-static potential, electro-static force, and the divergence of the electro-

static force as its field source. In these methods, the mathematical form of electro-static field is 

extended to a definition of “relative field” for image analysis, which introduces the measurement of 

pixel difference into the virtual field definition. 

 

2.1 The relative potential field inspired by physical electro-static field 
 

In physics, the electro-static potential field is determined by the source (i.e. the charge distribution)
[75-

78]
. Therefore, the potential field can reflect some characteristics of the source. This relationship 

between the field and its source can be exploited in image transform, in which the image is regarded 

as the source (i.e. the pixels are regarded as discrete charges) and the virtual field generated by the 

source may reveal important features of the image. The attraction of the methods inspired by physical 

field is the possibility of a natural representation of image structure or image components without 

artificially set parameters such as the thresholds in image segmentation.  

In this section, a scalar field transform for digital images is presented inspired by the physical 

electro-static potential. First, the definition of physical electro-static potential is reviewed. The 

formula of the physical electro-static potential generated by a charge q is as following
[75-78]

: 

 

r

q
V ⋅=

πε4

1
                                                                (2-1) 

 

where V is the electro-static potential at a space point. q is the charge quantity. r is the distance 

between the charge and the space point. ε  is a physical constant. 

For the charge distribution ρ  in the space, the potential field generated by ρ  is given as 

following
[75-78]

: 

 

 

1

4 V

d
V

r

ρ τ
πε

⋅= ∫                                                            (2-2) 
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where V is the electro-static potential at a space point. The integral in Equation (2-2) is for the whole 

region where the charge distribution ρ  exists. 

Many image processing techniques involves local operations in the image (i.e. local image 

features are extracted and analyzed)
[79-81]

. Local image features usually have the form of a binary 

function h(x,y) defined on the two-dimensional image plane. On the other hand, the analysis of the 

image also requires consideration of each image point’s neighbouring area in order to get practically 

useful results. For example, in some self-adaptive segmentation methods, local features are extracted 

and then the segmentation threshold for each point is determined adaptively according to its 

neighbouring area. It is indicated that both local and global analyses are needed in image 

processing
[82-87]

. 

Generally speaking, neighbouring points have stronger relevance than remote points in an image, 

i.e. the closer the distance, the stronger the relevance. In many image processing tasks, it is necessary 

to consider the balance between the strong local relevance of closely adjacent points in a small local 

area, and the weaker relevance of remote points in a large “background” area. A mathematical model 

is needed for the representation of the above local-global relevance between image points. 

Equation (2-2) indicates that the potential of a charge q on a space point (i.e. the impact of q on 

that point) is in direct proportion to the reciprocal of the distance r. The mathematical form of the 

distance reciprocal in Equation (2-2) can inspire the representation of the local-global relevance 

between image points. For a point p in the space, the near charge distribution in the small local area 

has greater impact on p’s potential than remote charge distribution. On the other hand, no matter how 

far the distance is, remote charge distribution still has relatively weak impact on p’s potential. 

Moreover, the accumulation of the weak impacts of wide-range remote charge distribution can not be 

neglected. The above characteristic of the distance reciprocal form in Equation (2-2) is quite suitable 

for the requirement of image analysis that both local and global relevance between image points 

should be considered. 

 

2.1.1 The relative potential field of gray-scale images 

    

The electro-static potential has a suitable mathematical form to model the local-global relevance of 

image points. In this section, a general form of virtual potential field is proposed with the electro-static 

analogy. For image analysis, not only the distance between two image points but also the relationship 

between their gray-scale should be considered. Therefore, a general continuous form of gray-scale 

image virtual potential field is proposed as: 

 

( , ) ( , )

( ( , ), ( , ))
( , )k

c k

a b x ya b

f g a b g x y
V x y A da db

r →

= ⋅ ⋅∫ ∫                                       (2-3) 

 

where Vc
k
(x,y) is the continuous image potential value on point (x,y). A is a predefined constant value. 

g is the gray-scale value of image points. f is a function defined according to specific image 

processing tasks, which represents the relationship between the gray-scale values of point (x,y) and 

(a,b). r is the distance between (x,y) and (a,b). k is a constant that affect the reciprocal’s decreasing 

rate with the increasing distance r. The double integral in Equation (2-3) is on the two-dimensional 

image plane. For a specific processing task, the function f and the constants A, k should be pre-defined 

according to the specific processing task. 

For digital images, the general discrete form of image virtual potential field is proposed as the 

discrete form of Equation (2-3): 
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where Vd
k
(x,y) is the discrete image potential on point (x,y). A is a predefined constant value. H and W 

are the height and width of the digital image respectively. g is the gray-scale value of image points. f 

is a function defined according to specific image processing tasks, which represents the relationship 

between the gray-scale values of point (x,y) and (i,j). r is the distance between (x,y) and (i,j). k is a 

constant that affect the reciprocal’s decreasing rate with the increasing distance r. 

For some important image processing tasks such as segmentation and edge detection, the 

difference between pixel gray-scale values are the factor of major consideration. In this section the 

relative potential is proposed for gray-scale images based on the general form of discrete image 

potential, where the function f(g(i,j), g(x,y)) is specialized as the difference between the gray-scale 

values of the two image points (x,y) and (i,j): 

 
1 1
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where ),( yxV
k

R
 is the relative potential of the digital image on point (x,y). A is a predefined constant 

value. H and W are the height and width of the digital image respectively. g is the gray-scale value of 

image points. r is the distance between (x,y) and (i,j). k is a constant that affect the reciprocal’s 

decreasing rate with the increasing distance r. 

Compared with the mathematic form of the electro-static potential, the proposed relative potential 

has two major differences. One is the replacement of the discrete charge with the gray-scale difference, 

which can make the relative potential represents the difference of one image point between others. 

The other is the k-th power of the distance r. Thus the adjustment of k can change the decreasing rate 

of the relevance between image points with the increasing distance r. 

 

2.1.2 The property of the relative potential field 

 

In Equation (2-5), the relevance between two image points with distance r is represented 

quantitatively by the reciprocal of r
k
. The value of relative potential is virtually the weighted sum of 

the gray-scale difference between the image point on (x,y) and all other points, and the weight is the 

factor of relevance, i.e. the reciprocal of r
k
. To investigate the properties of the relative potential field, 

experiments are carried out for a series of simple test images with the size of 128 × 128. When 

computing the relative potential values, the constant k in Equation (2-5) is pre-defined as k=1. Fig. 2-1 

To Fig. 2-3 show the results for some typical test images. 

Fig. 2-1(a) to Fig. 2-3(a) are the original test images. Fig. 2-1(b) to Fig. 2-3(b) are the relative 

potential value distributions of the corresponding test images, where larger gray-scale represents 

larger relative potential. Fig. 2-1(c) to Fig. 2-3(c) record the sign of each relative potential value, 

where white points represent positive values and black points represent negative values. The results 

shown in Fig. 2-1(c) to Fig. 2-3(c) indicate that the sign of the relative potential values will reverse 

across the boundary of two adjacent regions, which may be exploited in the segmentation of different 

regions in the image. 
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(a) The image Test1                               (b) The relative potential                         (c) The sign of each relative 

value distributions                                   potential value 

 

Fig. 2-1 The relative potential field of image Test1 

 

 

                                       
(a) The image Test2                               (b) The relative potential                         (c) The sign of each relative 

value distributions                                   potential value 

 

Fig. 2-2 The relative potential field of image Test2 

 

 

                                       
(a) The image Test3                               (b) The relative potential                         (c) The sign of each relative 

value distributions                                   potential value 

 

Fig. 2-3 The relative potential field of image Test3 

 

 

According to the definition of the virtual relative potential in Equation (2-5), the relative potential 

value of a point p is mainly affected by its local neighboring area. The local neighboring area consists 

of two classes of points. One class has those in the same region of p (i.e. with homogeneous gray-

scale of p), and the other has those in the different region. For simple test images, the gray-scale 

difference in the same region is zero. Thus the relative potential of p is mainly affected by the gray-

scale difference between p’s region and its adjacent regions. Suppose A and B are two adjacent 

regions shown in Fig. 2-4. pa and pb are two border points at different border sides. pa is in region A 

and pb is in region B. ga and gb are the gray-scale values of region A and B respectively. According to 

the above discussion, the sign of pa ’s relative potential is determined by gb - ga, while the sign of pb ’s 

relative potential is determined by ga - gb. Thus the signs of pa and pb are opposite. This is why the 

sign of the relative potential will reverse across the region border. This property of the relative 

potential field can be exploited in image analysis. 
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Fig. 2-4 pa and pb on different sides of the region border 

 

 

On the other hand, the experimental results of some other test images indicate that the sign reverse 

of relative potential is not only across region borders but also possible within a region. Fig. 2-5 shows 

such a case, where the sign reverse occurs in the middle region of the three in the image. This is 

because within a region the near points in the neighbouring area have the same gray-scale, and the 

accumulation of weak affects from wide range of remote image points will have effect on the relative 

potential value. Thus sign reverse may occur within some region. Therefore, it is indicated by the 

experimental results that the sign of relative potential will reverse across the region borders, and there 

is also possible sign reverse within a region.  

 

 

                                       
(a) The image Test4                               (b) The relative potential                         (c) The sign of each relative 

value distributions                                   potential value 

 

Fig. 2-5 The relative potential of image Test4 

 

 

2.1.3 Image segmentation based on the relative potential field 

 

In the experimental results of the test images, it is shown that the sign of relative potential values are 

opposite in the two different adjacent regions. This can provide the basis of region division in images. 

In this section, a method of image region division in the relative potential field is proposed as 

following: 

Step1: Calculate the relative potential field for the gray-scale image; 

Step2: Obtain the sign distribution of the relative potential field; 

Step3: Group the adjacent points with the same sign of relative potential into connected regions. In the 

region grouping process, the adjacent pixels of the 4-connection (i.e. the upper, lower, left and 

right pixels) for an image point p is investigated. If any of the four adjacent pixels has the 

same sign of relative potential as p, it is grouped into the region which p belongs to. The 

obtained connected regions are the result of region segmentation for the image. 

The obtained set of connected regions is the result of region division for the gray-scale image. 

Fig. 2-6 to Fig. 2-8 are the region division results according to Fig. 2-1(c) to Fig. 2-3(c), where 

different regions are represented by different gray-scale values.  

 

 

 

Electro-Statics Inspired Methods

9



 

 

                                       
Fig. 2-6 The region segmentation             Fig. 2-7 The region segmentation            Fig. 2-8 The region segmentation 

result according to Fig. 2-1(c)                   result according to Fig. 2-2(c)                  result according to Fig. 2-3(c) 

                            

Real world images consist of much more complex region components than the simple test images. 

To investigate the effect of the above region division method on real world images, experiments are 

carried out for a series of typical real world images. The experimental results are shown in Fig. 2-9 to 

Fig. 2-12. 

 
(a) The broadcaster image 

 

                         
(b) The visualization of the           (c) The visualization of the            (d) The visualization of the 

relative potential field with k=1     relative potential field with k=2     relative potential field with k=3 

 

                         
(e) The sign distribution of           (f) The sign distribution of            (g) The sign distribution of  

the relative potential in (b)            the relative potential in (c)            the relative potential in (d) 

 

                         
(h) The region division                  (i) The region division                   (j) The region division 

result for (e)                                   result for (f)                                    result for (g) 

 

Fig. 2-9 The relative potential field and region division results for the broadcaster image 
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(a) The house image 

 

                         
(b) The visualization of the           (c) The visualization of the            (d) The visualization of the 

relative potential field with k=1     relative potential field with k=2     relative potential field with k=3 

 

                         
(e) The sign distribution of           (f) The sign distribution of            (g) The sign distribution of  

the relative potential in (b)            the relative potential in (c)            the relative potential in (d) 

 

                         
(h) The region division                  (i) The region division                   (j) The region division 

result for (e)                                   result for (f)                                    result for (g) 

 

Fig. 2-10 The relative potential field and region division results for the house image 

 

 

 

 

 
(a) The peppers image 
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(b) The visualization of the           (c) The visualization of the            (d) The visualization of the 

relative potential field with k=1     relative potential field with k=2     relative potential field with k=3 

 

                         
(e) The sign distribution of           (f) The sign distribution of            (g) The sign distribution of  

the relative potential in (b)            the relative potential in (c)            the relative potential in (d) 

 

                         
(h) The region division                  (i) The region division                   (j) The region division 

result for (e)                                   result for (f)                                    result for (g) 

 

Fig. 2-11 The relative potential field and region division results for the peppers image 

 

 

 

 

 
(a) The cameraman image 

 

                         
(b) The visualization of the           (c) The visualization of the            (d) The visualization of the 

relative potential field with k=1     relative potential field with k=2     relative potential field with k=3 
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(e) The sign distribution of           (f) The sign distribution of            (g) The sign distribution of  

the relative potential in (b)            the relative potential in (c)            the relative potential in (d) 

 

                         
(h) The region division                  (i) The region division                   (j) The region division 

result for (e)                                   result for (f)                                    result for (g) 

 

Fig. 2-12 The relative potential field and region division results for the cameraman image 

    

 

Fig. 2-9(a) to Fig. 2-12(a) show the original images of the broadcaster, house, peppers and 

cameraman respectively. In the experiments, to investigate the influence of constant k (i.e. the 

relevance decreasing rate with increasing distance r) on image region division, relative potential field 

is calculated with k=1, 2 and 3 respectively. In the experiments, the results of relative potential field 

are visualized as gray-scale pictures. Fig. 2-9(b) to Fig. 2-12(b) show the results of relative potential 

field visualization with k=1 in Equation (2-5), where larger gray-scale values correspond to larger 

relative potential values. Fig. 2-9(c) to Fig. 2-12(c) show the results of relative potential field 

visualization with k=2 in Equation (2-5). Fig. 2-9(d) to Fig. 2-12(d) show the results of relative 

potential field visualization with k=3 in Equation (2-5). 

To investigate the sign distribution of the relative potential field, the sign of relative potential on 

each point is recorded in the experiment. Fig. 2-9(e) to Fig. 2-12(e) show the sign distribution of the 

relative potential in Fig. 2-9(b) to Fig. 2-12(b) respectively, where white points represent positive 

values and black points represent negative values. Fig. 2-9(f) to Fig. 2-12(f) show the sign distribution 

of the relative potential in Fig. 2-9(c) to Fig. 2-12(c) respectively. Fig. 2-9(g) to Fig. 2-12(g) show the 

sign distribution of the relative potential in Fig. 2-9(d) to Fig. 2-12(d) respectively. 

The region division is carried out based on the sign distribution of the relative potential field. Fig. 

2-9(h) to Fig. 2-12(h) show the region division results for Fig. 2-9(e) to Fig. 2-12(e) respectively, 

where different regions are represented by different gray-scale values. Fig. 2-9(i) to Fig. 2-12(i) show 

the region division results for Fig. 2-9(f) to Fig. 2-12(f) respectively. Fig. 2-9(j) to Fig. 2-12(j) show 

the region division results for Fig. 2-9(g) to Fig. 2-12(g) respectively. The region division results 

show that for real world images the region division method may obtain large amount of region 

elements of the image. 

Table 2-1 shows the region numbers obtained by the region division method for the real world 

images with the constant k=1, 2, and 3 respectively. Table 2-1 indicates that larger value of k can 

obtain more detailed region division result, because larger value of k causes faster decreasing rate of 

the relevance between image points with the increasing distance r. 
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Table 2-1 The number of regions obtained with different value of k 

The number of regions obtained by the region division based 

on the sign distribution of the relative potential field  

k=1 k=2 k=3 

broadcaster image 19 39 659 

house image 85 268 946 

peppers image 72 122 371 

cameraman image 161 298 795 

 

The region division results of real world images consist of large amount of region elements due to 

their complexity. To obtain practically useful segmentation result, a region merging method is 

proposed for the region division results of real world images based on the gray-scale similarity of 

adjacent regions. First, an expected number of remaining regions is given (usually by trail). Then the 

following steps are carried out to merge regions until the expected region number is reached: 

Step1: For each region in the image, calculate its average gray-scale value. 

Step2: Find the pair of neighboring regions with the least difference of the average gray-scale, and 

merge them into one region. 

Step3: If current region number is larger than the expected region number, return to Step1; otherwise, 

end the merging process. 

The region merging results for the real world images are shown in Fig. 2-13 to Fig. 2-16, where 

different regions are represented by different gray-scale. Fig. 2-13(a) to Fig. 2-16(a) show the merging 

results of Fig. 2-9(h) to Fig. 2-12(h) respectively. Fig. 2-13(b) to Fig. 2-16(b) show the merging 

results of Fig. 2-9(i) to Fig. 2-12(i) respectively. Fig. 2-13(c) to Fig. 2-16(c) show the merging results 

of Fig. 2-9(j) to Fig. 2-12(j) respectively. The merging results indicate that larger value of k makes 

more detailed region division, and correspondingly the merging results can be more accurate. 
 

                         
(a) The merging result                   (b) The merging result                  (c) The merging result 

 of Fig. 2-9(h)                                  of Fig. 2-9(i)                                 of Fig. 2-9(j) 

 

Fig. 2-13 The region merging results for the broadcaster image 

 

 

                         
(a) The merging result                   (b) The merging result                  (c) The merging result 

 of Fig. 2-10(h)                                of Fig. 2-10(i)                               of Fig. 2-10(j) 

 

Fig. 2-14 The region merging results for the house image 
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(a) The merging result                   (b) The merging result                  (c) The merging result 

 of Fig. 2-11(h)                               of Fig. 2-11(i)                                of Fig. 2-11(j) 

 

Fig. 2-15 The region merging results for the peppers image 

 

                         
(a) The merging result                   (b) The merging result                  (c) The merging result 

 of Fig. 2-12(h)                                of Fig. 2-12(i)                               of Fig. 2-12(j) 

 

Fig. 2-16 The region merging results for the cameraman image 

 

Based on the above discussions, in this section a novel image segmentation method is proposed 

with the relative potential field. The procedure of the segmentation is as following: 

Step1: Calculate the relative potential field for the gray-scale image; 

Step2: Carry out the region division based on the sign distribution of the relative potential field; 

Step3: Merge the region division result to a pre-defined number of regions. 

The experimental results for some other real-world images are shown in Fig. 2-17 to Fig. 2-19, 

including the image of boat, heart and pills. In the segmentation experiment, the value of k is pre-

defined as 3. The experimental results have proved the effectiveness of the proposed segmentation 

method. 

The mathematical form of the physical electro-static potential provides a suitable model for the 

representation of the local-global relevance between image points. In this section, the relative 

potential field is proposed with the electro-static analogy. The image structure information can be 

represented by the region components obtained in the region-division of the relative potential field. 

The experimental results indicate that the sign distribution of the relative potential field can serve as 

the basis for image region division, based on which an image segmentation method is proposed. As a 

typical “relative field” method in this book, the relative potential method will be extended for image 

sequence processing and color image processing in Chapter 4 and Chapter 5. 

 

                                      
(a) the boat image                                                              (b) the sign distribution of the relative potential 
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(c) the original region division result has 622 regions      (d) the region merging result (60 regions) 

 

Fig. 2-17 The segmentation result for the boat image 

 

 

                         
(a) the heart image                                                                (b) the sign distribution of the relative potential 

 

                         
(c) the original region division result has 1207 regions       (d) the region merging result (70 regions) 

 

Fig. 2-18 The segmentation result for the heart image 

 

 

        
(a) the pills image                                                                 (b) the sign distribution of the relative potential 
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(c) the original region division result has 762 regions           (d) the region merging result (150 regions) 

 
Fig. 2-19 The segmentation result for the pills image 

 

2.2 Vector field methods Inspired by electro-static field 
 

Besides the scalar field of the electro-static potential, the vector field of field intensity (or the force 

field) is another basic form of the physical electro-static field. In physics, the force of two charges q1 

and q2 is given as following
[75-78]

: 
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where 12F
�

 is the force of q1 on q2, 12r
�

 is the vector from q1 to q2, r12 is the length of 12r
�

, πε4  is an item 

of constant. Just as the electro-static potential, the definition of electro-static force can be exploited in 

field transform of images. In the study of image transform, vector field transformation is an attracting 

methodology, in which both vector length and vector direction can be exploited for feature extraction 

and analysis. Electro-static analogy has become a useful way for designing vector field transform of 

images. The force field method imitating Equation (2-6) has been proposed and applied in ear 

recognition by other researchers. In this book, the mathematical form of Equation (2-6) is extended to 

a more general definition of vector field transform for images. If two image points are regarded as two 

charged particles, the force vector generated by one point on the other can be defined. Of course, such 

definition of vector transform between two image points must be reasonable and proper in order to 

reflect certain image features and thus has potential applications. 

In the static electric field, the magnitude of the field force is determined by the quantity of the two 

electric charges, and also by their distance. The direction of the field force is determined by the 

relative position of the two electric charges. Imitating the mathematical form of Equation (2-6), a 

general form of the vector from point (i,j) to point (x,y) is defined as following: 
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where f(g(i,j),g(x,y)) is a function of the gray-scale or other image properties on the two points (i,j) 

and (x,y). ),(),( yxjir →
�

 is the radius vector from (i,j) to (x,y). In different image processing tasks, the 

function f should be defined according to particular requirements of the problem. Therefore, the vector 

field transform of the image on point (x,y) is defined as the accumulation of the vectors from all the 

other points to (x,y): 
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where H and W are the height and width of the image respectively. Different definitions of the 

function f(g(i,j),g(x,y)) produce different transform results. In this section, two vector field transforms 

are presented based on the general form of Equation (2-8) 

 

2.2.1 The diffusing vector field of gray-scale images 

 

In physics, a charged area with certain distribution of charge generates its electric field within and 

outside the area. In this section, a novel vector transform of gray-scale image is proposed based on an 

electro-static analogy, in which the image is regarded as a charged area. In the proposed transform, the 

form of the field force is extended by introducing the gray-scale difference between the related image 

points, which has the form of “relative field”. With such transform definition, it is proved by the 

following analysis that in the generated field the vectors in a homogeneous area diffuse towards the 

outside of that area. Therefore, the generated field is named the “diffusing vector field”. 

 

2.2.1.1 The repulsion vector between image points 
 

The form of electronic force formula has some characteristics as follows: 

(1) The formula has the power of distance r as one of the denominator. The larger the distance 

between two charged particles, the smaller the force. In images, this causes a kind of local feature 

extraction. One image point has strong effect on the points nearby, but has little effect on distant 

points. 

(2) The force between two charged particles is related to the electric quantity of both charged 

particles. In images, the effect of one image point on the other point can also be defined with 

relation to the intensities (i.e. gray-scale values) of the two image points. Thus certain image 

features may be extracted by the vector field transform. 

In this section, the vector generated by one image point g(i,j) on another position (x,y) is defined 

with direct relation to the reciprocal of the intensity difference of the two image points. The definition 

is proposed to generate repulsion vector between neighboring points in homogeneous areas. The 

repulsion vector is defined as following: 
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where V
�

is the vector generated by image point (i,j) on position (x,y), g represents the intensity of 

image points, ),(),( yxjir →
�

 is the vector from  (i,j) to (x,y), ),(),( yxjir →  is the length of ),(),( yxjir →
�

, ε  is a pre-

defined small positive value which guarantees that the above definition is still valid when g(i,j) is 

equal to g(x,y),  A is a pre-defined item of constant. According to the above definition, the two 

components of V
�

 are as following: 
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where Vx and Vy are the two components on the direction of x-coordinate and y-coordinate 

respectively.  

 

2.2.1.2 The diffusing vector field of images 
 

Based on the repulsion vector, the vector field transform on each image point (x,y) can be defined for 

the whole image by summing up the vectors produced by all image points. The vector generated by 

the whole image on point (x,y) is defined as following: 
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where ),( yxV
�

 is the vector produced by the transform on position (x,y), W and H are the width and 

height of the image respectively. According to the above definition, the two components of ),( yxV
�

 are 

as following: 
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where Vx(x,y) and Vy(x,y) are the components on the direction of x-coordinate and y-coordinate 

respectively. 

Because the effect of an image point on another decreases quickly with the increase of distance, 

the vector on any image point is determined by two major factors: the strong effect of a few 

neighboring points, and the accumulated effect of large amount of distant points. In the definition of 

the diffusing vector field, the smaller the gray-scale difference the relatively larger the vector length. 

Therefore, a diffusing vector field will appear in each homogeneous area because the strong 

“repulsion” between similar image points. On the other hand, at the boundary of two different areas, 

the vectors field at one side of the boundary will be in opposite directions of those at the other side. 

To investigate the property of the proposed transform, a group of simple test images are 

transformed to the diffusing vector field. The algorithm is implemented by programming in C 

language. The results of some typical test images are shown as following. Three of the test images are 

shown in Fig. 2-20, Fig. 2-23 and Fig. 2-26. These images are of size 32× 32. For a clear view, they 

are also shown 4 times of original size. Fig. 2-21, Fig. 2-24 and Fig. 2-27 show the length of each 

vector in the transformed field respectively, where larger gray-scale values correspond to larger vector 

length. The results are also shown 4 times of original size for a clear view. The direction of each 

vector in the transformed field is digitalized into 8 discrete directions for further processing. Fig. 2-22, 

Fig. 2-25 and Fig. 2-28 show the direction of the transformed field for each test image. 
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Fig. 2-20 The first image test1 (the original image, and 4 times of original size on the right) 

 

 
Fig. 2-21 The vector length in the transformed field of test1 (the original image; 4 times of original size on the right) 

 

 
Fig. 2-22 The direction of each vector in the transformed field of test1 

 

 
Fig. 2-23 The second image test2 (the original image on the left, and 4 times of original size on the right) 

 

 
Fig. 2-24 The vector length in the transformed field of test2 (the original image; 4 times of original size on the right) 
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Fig. 2-25 The direction of each vector in the transformed field of test2 

 

 
Fig. 2-26 The third image test3 (the original image on the left, and 4 times of original size on the right) 

 

 
Fig. 2-27 The vector length in the transformed field of test3 (the original image; 4 times of original size on the right) 

 

 
Fig. 2-28 The direction of each vector in the transformed field of test3 

 

The image test1 is an image of monotonous gray-scale, i.e. the whole image is a homogeneous 

area. In the transformed field of test1, it is obvious that the whole field is diffusing from the center of 

the image towards the outside. There is an ellipse area in image test2. In image test3, there are an 

ellipse area and a rectangle area. In their transformed fields, the fields in the homogeneous areas are 

diffusing outward from the center of each area. On the boundaries of the areas, it is obvious that the 

vectors at one side of the boundary line have opposite directions of those on the other side. The 

experimental results of the test images indicates that the proposed transform produce diffusing vector 
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field within the homogeneous areas, but generates vectors of opposite directions at the two opposite 

sides along the area boundary. 

 

2.2.1.3 The primitive area in the diffusing vector field 
 

The experimental results of the test images indicate that in the homogeneous area a diffusing vector 

field will be produced, and the diffusing field ends at the boundary of the homogeneous area because 

the vectors outside have opposite directions of those within the area along the boundary. Therefore, 

homogeneous areas in the image can be represented by areas with consistent diffusing vectors in the 

transformed field. Each diffusing vector area corresponds to an area of homogeneous image points. 

The area of consistent diffusing vectors extracted from the transformed field is given the name 

“primitive area”, which can be regarded as an elementary component of an image because it is 

regarded as homogeneous in the transform process.  

According to the definition, the image test1 is a whole primitive area, while the image test3 has at 

least two primitive areas: the ellipse, the rectangle and the background area. All the primitive areas 

can be extracted from the diffusing vector field, which can be exploited in further image analysis. The 

primitive area in the diffusing vector field forms the basis of the proposed image segmentation method. 

In following sections, the method of extracting primitive areas are presented and implemented on test 

images. 

 

2.2.1.4 Diffusing centers in the primitive area 
 

In each primitive area, the vector field diffuses from the center towards the outside, thus the area 

center becomes the source of the diffusing field. Therefore, the area centers are the begin points to 

extract primitive areas. Here the source of the diffusing field is defined as the diffusing center. 

According to the experimental results of the test images, the definition of the diffusing center is given 

as following: for a square area consists of four image points, if none of the vectors on these points has 

component of inward direction into the area, the square area is part of a diffusing center. Fig. 2-29 

shows the allowed vector directions on each point in a diffusing center. 

 
Fig. 2-29 The allowed vector directions in diffusing center 

 

In Fig. 2-22, Fig. 2-25 and Fig. 2-28, according to the above definition the diffusing centers can be 

found, which are shown in Fig. 2-30, Fig. 2-31 and Fig. 2-32. The source points in the diffusing 

centers are indicated in gray.  

 
Fig. 2-30 The diffusing centers in Fig. 2-22 
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Fig. 2-31 The diffusing centers in Fig. 2-25 

 

 
Fig. 2-32 The diffusing centers in Fig. 2-28 

 

The image test1 is a homogeneous area, therefore there is only one diffusing center found in Fig. 

2-30. There is an area of ellipse in the image test2, and the diffusing center of the ellipse can be found 

in Fig. 2-31. Moreover, there are also four other diffusing centers found in the background area. The 

image test3 has an ellipse and a rectangle. Correspondingly, in Fig. 2-32 there is one diffusing center 

for the ellipse, one for the rectangle, and five for the background area. It is indicated that in a large 

and irregular area there may be more than one diffusing center found, such as the background area. 
 

2.2.1.5 Primitive area extraction by the area-expanding method 
 

The primitive areas are the basic elements in the diffusing vector field, which is a kind of 

representation of the image structure. According to the above analysis and experimental results, in a 

primitive area the vectors diffusing outwards from the diffusing center (i.e. the area center). Moreover, 

the diffusing vectors in the primitive area end at the area boundary where opposite vectors at the 

outside are encountered. Therefore, the primitive area can be extracted by expanding outwards from 

the diffusing center along the directions of the diffusing vectors. The proposed area-expanding method 

to extract the primitive area is as follows: 

step1: Calculate the diffusing vector field of the image, and each image point now has a vector on it 

(the vector is discretized into 8 directions). 

step2: Get the diffusing center points in the diffusing vector field according to the definition in section 

2.2.1.4. 

step3: Assign each diffusing center a unique area label (here a unique area number is given to the 

points in each diffusing center, while the points not in the diffusing center are left unlabeled). 
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step4: Then a process of area-expanding in the diffusing vector field is implemented to extract the 

primitive areas.  

For each labeled point in the image, select five of its eight neighboring points that are nearest to its 

vector’s direction. For each of the five selected neighboring points, if it is unlabeled and its vector is 

not opposite to the labeled point’s vector (i.e. the area boundary is not reached), it is labeled the same 

area number of the labeled point. On the other hand, if the neighboring point has been labeled with 

another area number, a principle of least gray-scale difference is applied to decide which of the two 

areas the point should belong to. The difference between its gray-scale and either area’s average gray-

scale is calculated. The point will belong to the area with less gray-scale difference. By this way, the 

primitive area can expand by iteration until the area boundary is reached. 

The above process is repeated until the areas all stop expanding (i.e. no more unlabeled point can be 

given a new area number). 

step5: If there are still unlabeled points when the expanding of the areas stops, the principle of least 

gray-scale difference is applied to assign each unlabeled point an area number.  

For each unlabeled point, calculate the difference between its gray-scale and the average gray-scale of 

its neighboring areas. Then this unlabeled point is merged into the neighboring area that is of the least 

difference. 

The primitive areas are extracted for the test images according to the proposed area-expanding 

method based on the diffusing vector fields. Some of the experimental results are shown in Fig. 2-33, 

Fig. 2-34 and Fig. 2-35. In these three figures, the original images and the results of primitive areas 

extraction are shown. The results are also shown 4 times of original size for a clear view. In these 

figures, different primitive areas are distinguished from each other by different gray-scale values.  

 

 

 
Fig. 2-33 The result of primitive area extraction for test1 

 

 

The image test1 is a homogeneous area. Therefore the primitive area extracted in test1 is only one 

complete area (i.e. the image itself).  

 

 

 
Fig. 2-34 The result of primitive area extraction for test2 

 

 

The image test2 contains an ellipse, and 3 primitive areas are obtained. The ellipse is extracted as 

one primitive area, and there are 2 other primitive areas extracted in the background area of test2.  
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Fig. 2-35 The result of primitive area extraction for test3 

 

 

The image test3 contains an ellipse and a rectangle, and 5 primitive areas are obtained. The ellipse 

and rectangle in ellipse and rectangle are extracted as two primitive areas, and there are 3 other 

primitive areas extracted in the background area of test3. 

The experimental results for the test images show that the object areas can be extracted as 

primitive areas such as the ellipse in test2 and the ellipse and rectangle in test3. On the other hand, the 

number of primitive areas may be less than the number of diffusing center extracted. This is because 

two or more diffusing center may merge into one area in step4 in the proposed area-expanding method.  
 

2.2.1.6 Gray-scale image segmentation based on the primitive area extraction 
 

Compared with the test images, practical images obtained in the real world are more complex and 

contains much more objects. The boundaries between areas in these images are not as clear and 

distinguishable as in the test images. In the experiments, the primitive areas are also extracted for the 

pepper image, the cameraman image and the house image. These images are of the size 128× 128. The 

experimental results show that there are a large number of primitive areas extracted from the practical 

images. There are 341 primitive areas in the pepper image, 305 in the cameraman image and 263 in 

the house image. This is because the complexity of these real world images.  

The primitive area serves as a kind of representation of image structure. To implement meaningful 

image segmentation, area merging must be done to get more practically useful result. An area merging 

method is proposed to combine primitive areas based on the least gray-scale difference principle. First 

an expected number of remaining areas after merging is given. Then the following steps are carried 

out to merge areas until the expected area number is reached: 

step1: For each area in the image, calculate its average gray-scale. 

step2: Find the pair of neighboring areas with least average gray-scale difference, and merge them 

into one area. 

step3: If current area number is larger than the final area number, return to step1; otherwise, end the 

merging process. 

The original image of the pepper image, the cameraman image and the house image are shown in 

Fig. 2-36, Fig. 2-38 and Fig. 2-40. The result of merging primitive area is shown in Fig. 2-37, Fig. 2-

39 and Fig. 2-41 respectively, where different areas are distinguished from each other by different 

gray-scale values. Fig. 2-37 shows the result of merging 341 primitive areas into 20 areas for the 

peppers image. Fig. 2-39 shows the result of merging 305 primitive areas into 12 areas for the 

cameraman image. Fig. 2-41 shows the result of merging 263 primitive areas into 20 areas. The 

experimental results indicate that the primitive area merging method can effectively implement image 

segmentation, and the main objects in the images can be successfully extracted by the proposed 

method. 
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Fig. 2-36 The image of peppers for the                  Fig. 2-37 The primitive area merging result 

peppers image (20 areas remained) 

 

                             
Fig. 2-38 The image of cameraman for the           Fig. 2-39 The primitive area merging result 

cameraman image (12 areas remained) 

 

                             
Fig. 2-40 The image of house for the                     Fig. 2-41 The primitive area merging result 

house image (20 areas remained) 

 

Based on the previous sections, here a novel image segmentation method based on the diffusing 

vector field is proposed as following: 

step1: Calculate the diffusing vector field of the image; 

step2: Get the diffusing center points; 

step3: Extract the primitive areas; 

step4: Merge the primitive areas according to the requirement of final are number. 

Fig. 2-42 to Fig. 2-47 show the experimental results for some other real-world images, including 

the image of locomotive, heart and a satellite image.  

In the diffusing vector field of images, homogeneous areas are expressed as the areas with a vector 

group diffusing outwards from the center. By finding the area center and expanding the area from the 

center, primitive areas can be extracted. Image segmentation can be implemented by merging the 

primitive areas. The effectiveness of the method has been indicated by the experimental results. 
 

                                      
Fig. 2-42 The image of locomotive                                    Fig. 2-43 The segmentation result for the 

 locomotive image (20 areas remained) 
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Fig. 2-44 The medical image of heart              Fig. 2-45 The segmentation result for the  

heart image (50 areas remained) 

 

     
Fig. 2-46 The image of a satellite image                         Fig. 2-47 The segmentation result for the image of 

 the satellite image (100 areas remained) 

 

2.2.2 The compressing vector field of gray-scale images 

 

In this section, another image vector transform named “compressing vector field” is studied by re-

define the function f(g(i,j),g(x,y)) in Equation (2-8). Compared with the diffusing vector field, the 

analysis and experimental results of the “compressing vector field” indicate that different definitions 

of the function f(g(i,j),g(x,y)) can produce different transform results and processing effects for images. 

 

2.2.2.1 The definition of the compressing vector field 
 

For gray-scale image segmentation, the gray-scale difference between points is small within a 

homogeneous region, while the gray-scale difference is relatively large between points of two 

different regions. This is the basis of segmentation by gray-scale difference. To reflect gray-scale 

difference,  f(g(i,j),g(x,y)) in Equation (2-7) is defined as the gray-scale difference between (x,y) and 

(i,j): 
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The above vector has the form of repulsive force between image points, and it contains the 

information of gray-scale difference and relative position between the two points. The x and y 
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components of the vector are as following: 
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Based on the definition of the vector in Equation (2-15), the compressing vector field transform on 

point (x,y) is defined as the accumulation of the vectors from all the other points to (x,y): 
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The x and y components are as following: 
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The repulsive vectors within a homogeneous region are relatively small because the gray-scale 

similarity between the points in that region. On the other hand, the repulsive vectors from the points 

outside that region to those within it are relatively large. Therefore, for any point in a homogeneous 

region, the diffusing tendency caused by the repulsive vector within the region is surpassed by the 

compression tendency caused by the repulsive vector from outside the region. Thus for each 

homogeneous region, a compressing vector field will be formed within it, which has the tendency to 

make the region shrink to its center. In another word, if a point in the region moves following the 

vectors’ direction, it will finally reach the region center; if all points move in such a way, the region 

will finally shrink into its center points. This is the reason for the name “compressing vector field”. 

And it is also the basis of region extraction in the compressing vector field. 
 

2.2.2.2 Additional border force for compressing vector field in border regions 
 

According to Equation (2-17), the vectors in the regions that are adjacent to the image border will 

have the diffusing tendency outward the image because there is no vector source outside the image 

border. In order to form a compressing vector region in those adjacent to the image border, additional 

border force is added, which generates repulsive vector from the image border to the image points: 
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where A is a pre-defined constant, Db is the single border line surrounding the image. Therefore, the 

vector field transform for region extraction is proposed as following: 
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To investigate the properties of the compressing vector field with border force, experiments are 

carried out for a group of test images with the size 3232 × . Some of the experimental results are 

shown from Fig. 2-48 to Fig. 2-62, including the original images and the magnitude and direction 

distribution of the vector field. In this section, the vector direction is discretized into eight directions. 

Test1 is a homogeneous region as a whole. Fig. 2-49 shows the magnitude distribution of the vector 

field with border force. Fig. 2-50 shows the direction distribution, in which the border force will 

generate a vector field that makes each image point gather to the image’s center position. 

 

 
Fig. 2-48 The first image Test1 (the original image on the left, and 4 times of original size on the right) 

 

 

 
Fig. 2-49 The vector length in the compressing vector field of Test1 with border force (4 times of original size on the right) 

 

 

 
Fig. 2-50 The direction of each vector in the compressing vector field of Test1 with border force 

 

 

In the experimental results of image Test2, Test3 and Test4, the direction distributions of the 

vector field without the border force are also given for comparison. Fig. 2-54, Fig. 2-58 and Fig. 2-62 

show the direction distribution without the border force, while Fig. 2-53, Fig. 2-57 and Fig. 2-61 show 

the results with the border force. The comparison indicate the necessity of the additional border force, 

which makes all the homogeneous regions contain a corresponding compressing vector field 

regardless of their positions in the image. The compressing vectors in each homogeneous region are 

the basis for region segmentation. 
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Fig. 2-51 The second image Test2 (the original image on the left, and 4 times of original size on the right) 

 

 

 
Fig. 2-52 The vector length in the compressing vector field of Test2 with border force (4 times of original size on the right) 

 

 

 
Fig. 2-53 The direction of each vector in the compressing vector field of Test2 with border force 

 

 

 
Fig. 2-54 The direction of each vector in the compressing vector field of Test2 without border force 
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Fig. 2-55 The third image Test3 (the original image on the left, and 4 times of original size on the right) 

 

 

 
Fig. 2-56 The vector length in the compressing vector field of Test3 with border force (4 times of original size on the right) 

 

 

 
Fig. 2-57 The direction of each vector in the compressing vector field of Test3 with border force 

 

 

 
Fig. 2-58 The direction of each vector in the compressing vector field of Test3 without border force 
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Fig. 2-59 The fourth image Test4 (the original image on the left, and 4 times of original size on the right) 

 

 
Fig. 2-60 The vector length in the compressing vector field of Test4 with border force (4 times of original size on the right) 

 

 
Fig. 2-61 The direction of each vector in the compressing vector field of Test4 with border force 

 

 
Fig. 2-62 The direction of each vector in the compressing vector field of Test4 without border force 

 

2.2.2.3 The extraction of region center points 
 

The experimental results of the test images show that the compressing vectors within a homogeneous 

region have an overall tendency of shrinking to the region center. Therefore, if each point moves 

according to the vectors’ directions, the homogeneous region will shrink to its center points. Thus 

different regions can be separated and extracted by region-shrinking. Therefore, the extraction of 
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center points is the first step of region extraction in the compressing vector field. The experimental 

results show that the center point has a unique character about its vector direction. If pc is a center 

point and its vector points to pn, pc’s vector direction is opposite to pn’s vector direction. This is the 

basis of center point extraction in the vector field. Fig. 2-63 shows the cases in which two vectors are 

of the opposite direction (supposing that A’s vector has the angle of zero, and it points to B): 
 

 
Fig. 2-63 The opposite vector directions on point A and B 

 

If the vector of point A has the angle α , and B is the next point on A’s vector direction. The 

rotating direction can also be determined according to the angle between the two vectors on A and B 

as the above cases. 

The center points are extracted for the test images. The experimental results are shown in Fig. 2-64 

to Fig. 2-67. The center points are shown in the direction distribution of the vector field. The results 

indicate that there may be more than one group of center points in a homogeneous region (especially 

in large regions). This may cause the decomposition of a large region into smaller sub-regions in the 

region-shrinking process, which makes region-merging a necessary post-processing step. 

 

                       
Fig. 2-64 The region center points extracted for Test1           Fig. 2-65 The region center points extracted for Test2 
 

                       
Fig. 2-66 The region center points extracted for Test3           Fig. 2-67 The region center points extracted for Test4 
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2.2.2.4 The extraction of primitive regions 
 

In the above experiments, the center points can be extracted and each group of center points 

corresponds to a single region in the vector field. Such regions can be taken as a kind of elements of 

the image, and are named the primitive regions (or primitive areas). Therefore, the primitive regions 

can be extracted with the center points in the compressing vector field. This process is proposed as 

following: 

Step1: Gather adjacent center points into groups. Two neighboring center points are of the same group. 

Assign each group of center points a unique group number. Different group numbers represent 

different regions. Initially, those non-center points do not have a group number. 

Step2: For each point pi that does not have a group number, decide which group it should belong to. 

Take pi as the starting point, and move to pi’s next point according to pi’s vector direction. Keep on 

the movement for the next point according to the vector field, until the next point has a group number 

n. Then pi is assigned the same group number n. Because the directions of the vectors within a 

homogeneous region have the tendency of shrinking to the region center, Step2 is virtually a process 

of region extraction by region-shrinking. 

After all the image points have been assigned a group number, the region extraction is completed. 

The primitive region extraction is carried out for the test images, and the experimental results are 

shown form Fig. 2-68 to Fig. 2-71. The experimental results show that the primitive regions can be 

effectively extracted by region-shrinking. Moreover, a large homogeneous region in the image may be 

decomposed into several primitive regions, such as the background region in Fig. 2-70 and Fig. 2-71. 

 

                                 
Fig. 2-68 The primitive regions extracted for Test1                    Fig. 2-69 The primitive regions extracted for Test2 

 

                                 
Fig. 2-70 The primitive regions extracted for Test3                    Fig. 2-71 The primitive regions extracted for Test4 

 

2.2.2.5 Gray-scale image segmentation in the compressing vector field 
 

The analysis and experimental results show that a large homogeneous region may be divided into 

more than one primitive region. On the other hand, the real world images are much more complex 

than the test images. Therefore, the real world images may have much more center points. The 

primitive region extraction is also carried out for a group of real world images with the size of 

128 × 128. In the experiment results, there are 75 primitive regions in the cameraman image, 64 

primitive regions in the house image, and 146 primitive regions in the heart image. To get meaningful 

segmentation result, the region-merging step is proposed according to a criterion of least difference of 

average gray-scale. First, an expected number of remaining regions after merging is given. Then the 

following steps are carried out to merge regions until the expected region number is reached: 
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Step1: For each region in the image, calculate its average gray-scale value; 

Step2: Find the pair of neighboring regions with the least difference of average gray-scale, and merge 

them into one region; 

Step3: If the current number of regions is larger than the expected value, return to Step1; otherwise, 

end the merging process. 

Based on the above sections, a method of image segmentation in the compressing vector field is 

proposed as following: 

Step1: Calculate the image’s compressing vector field; 

Step2: Extract the center points; 

Step3: Gather the neighboring center points into corresponding groups, and each group is assigned a 

group number; 

Step4: Extract the primitive regions in the compressing vector field with a manner of region-shrinking; 

Step5: Merge neighboring primitive regions according to the criterion of least difference of average 

gray-scale, and obtain the segmentation result with a pre-defined number of remaining regions. 

The proposed segmentation method is applied to a group of real world images. The results of the 

cameraman image, the house image, and the heart image are shown in Fig. 2-72 to Fig. 2-74. The 

segmentation result of the cameraman image with 28 regions remained is shown in Fig. 2-72. The 

segmentation result of the house image with 30 regions remained is shown in Fig. 2-73. Fig. 2-74 

shows the segmentation result of the heart image with 50 regions remained after merging. In the 

results, different regions are differentiated from each other by different gray-scale values. 

 

        
Fig. 2-72 The cameraman image and the segmentation result with 28 regions 

 

        
Fig. 2-73 The house image and the segmentation result with 30 regions 

 

         
Fig. 2-74 The heart image and the segmentation result with 50 regions 
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The experimental results of the test images and the real world images show that the compressing 

vector field can represent the image structure feature, based on which effective image segmentation 

can be implemented. 

 

2.3 Electro-statics inspired source reversing for gray-scale images 
 

In physics, the field is determined by the source distribution
[75-78]

. This is the fundamental idea 

underlying the virtual field methods, which also guarantees the effectiveness of such methods. Most 

of the current research focuses on the virtual field generated by the image, in which the image is just 

taken as the field source
[3,19,22,69-73]

. Because the source and the field are two inseparable aspects of a 

physical system, the source can also serve as a compact representation of the field. In this book, to 

obtain novel representation and features of images, a novel image transform named “source-reverse” 

transform is studied by taking the image as the electro-static potential field in order to reverse the 

virtual source. Based on the relationship between the field and the source in physics, the virtual source 

by the source-reverse transform can serve as a novel representation of the image for further processing 

tasks. 

 

2.3.1 The relationship between the electro-static field and the field source 

 

In physics, the electric field intensity is virtually the inverted gradient vector of the potential 
[75-78]

: 
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E  means the electric field intensity at a space point; V is the potential; ∇  is the Hamiltonian 

operator as following: 
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where 
→
i ,

→
j  and 

→
k  are three base vectors in the 3D space. 

Therefore, the electro-static field can be represented by either of the two equivalent forms: the 

form of vector field (i.e. the electric field intensity) and the form of scalar field (i.e. the electric 

potential). The electro-static field distribution is determined by the field source, i.e. the distribution of 

the charge distribution. On the other hand, the source can be reversed from the field, which is well 

known as the Gaussian law in differential form
[75-78]

: 

 

0

 
ε
ρ=⋅∇=

→→
EEdiv                                                         (2-23) 

where div means the divergence; ρ  is the charge density at the same space point of 
→
E , i.e. the 

distribution of the source; 0ε  is the physical constant of the vacuum permittivity. Therefore, the 

source distribution can be obtained by the following: 

 

))((0 Vgraddiv⋅−= ερ                                                      (2-24) 

 

where div and grad mean the divergence and gradient operation respectively. The above equation can 

be regarded as the reverse process from field to source. Because the source determines the distribution 

of the field, the distribution of the source can serve as a compact representation of the field, and 

Chapter 2

36



 

37 

contains the field’s interior structure information. Therefore, in this section a novel image transform is 

proposed by imitating Equation (2-24) for image structure representation and analysis. 

 

2.3.2 The source-reverse transform for digital images 

 

One of the ultimate goals of intelligent computer vision systems is automatic recognition of the 

objects in the scene. Generally speaking, different objects occupy different regions in the image. 

Therefore, besides the image itself, an efficient representation of image structure is important for 

further analysis and recognition. In this section, a novel image transform is presented based on the 

relationship between the field and the source, which takes the image as the field and reverse the source 

distribution. The properties of the source reverse transform are investigated experimentally and can be 

applied in further analysis and processing. 

The Gauss’s law in the electro-static field is for a continuous field in the space. However, the 

digital image is discrete on the 2D plane. Therefore, discrete operator should be used to obtain the 

gradient and divergence of the digital image as a potential field. Imitating the field source reverse in 

electro-static field, the source-reverse transform for an image g(x,y) is as following: 

 

( , ) (  ( ( , )))d dF x y div grad g x y= −                                             (2-25) 

 

where F(x,y) is the virtual field source obtained by the transform; divd and gradd are the discrete 

operators to get the estimation of the divergence and the gradient respectively. It is notable that the 

domain of F(x,y) is still the two dimensional plane where the image is defined. Therefore, the spatial 

properties of F(x,y) may have direct relationship with the image structure. 

According to Equation (2-25), the source-reverse transform for an image includes two steps as 

following: 

Step1: Estimate the virtual field intensity ),( yxE
→

 for each image point: 

( , )  ( ( , ))dE x y grad g x y
→

=                                                  (2-26) 

 

The operator gradd can get the two components of the discrete gradient on the x and y coordinates. To 

obtain the gradient vector, the two partial derivatives of g(x,y) should be estimated. In this section, the 

Sobel operator is used to estimate the two partial derivatives, i.e. the components of gradient, which is 

shown in Fig. 2-75. 

 

                 
The template to estimate the                 The template to estimate the 

component on x-coordinate                  component on y-coordinate 
 

Fig. 2-75 The two templates of Sobel operator to estimate the gradient 

According to the above two image templates, the components of ),( yxE
→

 are estimated as following: 

 

Ex(x,y)=[g(x+1,y-1)- g (x-1,y-1)]+2[g (x+1,y)- g (x-1,y)]+[ g (x+1,y+1)- g (x-1,y+1)]      (2-27) 

 

Ey(x,y)=[g(x-1,y-1)- g (x-1,y+1)]+2[g (x,y-1)- g (x,y+1)]+[ g (x+1,y-1)- g (x+1,y+1)]      (2-28) 
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where Ex(x,y) and Ey(x,y) are the two components of the estimated virtual field intensity. 

 

Step2: Estimate the divergence of the virtual field intensity for each image point as the virtual field 

source: 

)),((),( yxEdivyxF d

→
−=                                                     (2-29) 

 

For continuous vector field on the two dimensional plane, the divergence is defined as following: 

y

E
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yx
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→
                                                       (2-30) 

 

where Ex and Ey are the two components of the vector field. 

Based on Equation (2-29), the estimation of the divergence of a discrete vector field should also use 

the discrete operator divd, where the two partial derivatives in Equation (2-30) are still estimated by 

the Sobel operator as in Step1. 

By the above two steps, the virtual source reverse can be implemented for a digital image which is 

taken as a potential field, and the virtual source is estimated as the result of the proposed image 

transform. 

 

2.3.3 The virtual field source as the representation of image structure 

 

To investigate the spatial property of the proposed source-reverse transform, experiments are carried 

out for a group of test images and also a group of images in real world. The principle to select proper 

images in the experiment is that the experimental results for simple test images may distinctly show 

the basic characteristics of the source-reverse transform, while the transform results for images in real 

world with much more complexity will reveal possible and promising applications of the method. 

In the experiments, the value of the source on each point is recorded. The results indicate that 

there are both positive and negative values in the source. To reveal the property of the source, the 

source values F(x,y), their absolute values | F(x,y) | and the sign of each value sgn(F(x,y)) are 

visualized in the form of gray-scale images. An example is shown in Fig. 2-76, which is one of the 

simple test images. Fig. 2-77 shows the absolute value distribution of the source, where larger gray-

scale corresponds to larger absolute value. Fig. 2-78 shows the sign of the value on each point, where 

the white points represent positive values, the black points represent the negative values and the gray 

points represent the zero value. The values of F(x,y) is shown by Fig. 2-79 (not absolute values but 

values with sign), where the larger the gray-scale the larger the value. 

 

                                                                       
Fig. 2-76 One test image                                                                        Fig. 2-77 The distribution of the absolute values of the source 

                           

                                                                       
Fig. 2-78 The sign of the value on each point in the field source         Fig. 2-79 The value of each point in the field source 
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Fig. 2-78 shows that there are both regions of positive values and regions of negative values in the 

virtual field source. Fig. 2-80 and Fig. 2-81 show the borders of the positive regions and negative 

regions respectively, where the white points represent the border points. The experimental results 

show that for test images with simple objects, the borders of positive and negative regions correspond 

to the counters of the objects. 

 

                                                                       
Fig. 2-80 The borders of the positive regions                                       Fig. 2-81 The borders of the negative regions 

 

In the experimental results for simple test images, Fig. 2-78 shows that the source values in a 

homogeneous region are zero. Fig. 2-77, Fig. 2-78 and Fig. 2-79 show that the non-zero values in the 

virtual field source concentrate near the region borders. In another word, the energy in the virtual 

source concentrates on the borders of the homogeneous regions. This is similar to the energy 

concentration of the Fourier transform where the energy in the frequency domain concentrates in the 

area of low frequency. Moreover, Fig. 2-78 indicates that the source values on different sides of a 

region border are of different signs, which can be exploited in image structure representation and 

analysis. A group of experimental results for another test image is shown in Fig. 2-82 to Fig. 2-87, 

which also proves the above analysis. 

 

                                                                       
Fig. 2-82 Another test image                                                                 Fig. 2-83 The distribution of the absolute values of the source 

                                               

                                                                       
Fig. 2-84 The sign of the value on each point in the field source        Fig. 2-85 The value of each point in the field source 

 

                                                                       
Fig. 2-86 The borders of the positive regions                                        Fig. 2-87 The borders of the negative regions 

                                

In order to investigate the possible application of the source-reverse transform, experiments are 

also carried out for real world images. The experimental results are shown in Fig. 2-88 to Fig. 2-105 

for the broadcaster image, the brain image and the house image. The experimental results for real 

world images also indicate the property of energy concentration and sign reverse across the region 

border in the virtual field source, which inspires a method of region border detection in the following 

section. 
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Fig. 2-88 The image of the broadcaster                                                Fig. 2-89 The distribution of the absolute values of the source 

                                            

                                                           
Fig. 2-90 The sign of the value on each point in the field source        Fig. 2-91 The value of each point in the field source 

                    

                                                           
Fig. 2-92 The borders of the positive regions                                       Fig. 2-93 The borders of the negative regions 

 

                                                           
Fig. 2-94 A medical image of the brain                                                Fig. 2-95 The distribution of the absolute values of the source 

 

                                                            
Fig. 2-96 The sign of the value on each point in the field source         Fig. 2-97 The value of each point in the field source 

                 

                                                           
Fig. 2-98 The borders of the positive regions                                       Fig. 2-99 The borders of the negative regions 
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Fig. 2-100 The image of a house                                                          Fig. 2-101 The distribution of the absolute values of the source 

 

                                                           
Fig. 2-102 The sign of the value on each point in the field source      Fig. 2-103 The value of each point in the field source 

                 

 

                                                           
Fig. 2-104 The borders of the positive regions                                     Fig. 2-105 The borders of the negative regions                              

 

2.3.4 Region border detection based on the source-reverse transform 

 

In the above experimental results, the borders of the positive and negative regions show the detail for 

all the regions, while minor details may not be preferred in all real world applications. Because the 

energy of the virtual source mainly concentrates near the border of the regions, the minor details of 

region borders can be eliminated with a threshold of source values (i.e. source intensity) so that the 

main border of interest will be preserved for further analysis. Therefore, a region border detection 

method is proposed based on the virtual field source as following: 

Step1: Implement the source-reverse transform for the image; 

Step2: Detect the points where the sign of source values reverse, i.e. find the points with different sign 

from neighboring points; 

Step3: For the points detected in Step2, eliminate the points with less absolute value than the 

threshold. 

The border detection results for real world images are shown in Fig. 2-106 to Fig. 2-111. 

 

                                                           
Fig. 2-106 The region border detected based on Fig. 2-92                 Fig. 2-107 The region border detected based on Fig. 2-93 
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Fig. 2-108 The region border detected based on Fig. 2-98                 Fig. 2-109 The region border detected based on Fig. 2-99 

 

                                                           
Fig. 2-110 The region border detected based on Fig. 2-104               Fig. 2-111 The region border detected based on Fig. 2-105 

 

The experimental results indicate that the virtual source can be an efficient representation of image 

structure, based on which region border detection can be implemented. 

 

2.3.5 The opposite transform from the virtual source to the restored image 

 

For an image transform technique, whether it is reversible is one of the basic characteristics. Although 

the analysis can be carried out in the virtual source and its reversibility may not be considered for 

some applications, the opposite transform from the virtual source to the virtual potential field (i.e. the 

restored image) is discussed in this section. 

For continuous electro-static field, the continuous source can be obtained by source reverse as 

Equation (2-24). On the other hand, the continuous potential field can also be generated by the source 

as following
[75-78]

: 

 

∫=
r

dv
yxV
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0

ρ
πε

                                                  (2-31)  

 

where ρ  represents the charge density at a space point and r is the distance between that space point 

and (x,y). The integral in Equation (2-31) is carried out for the whole space where there is charge 

distribution. For continuous electro-static field, the transform defined by Equation (2-24) and (2-31) is 

reversible. 

However, for digital images, the opposite transform should be implemented in a discrete form, i.e. 

the integral operation in Equation (2-31) should be replaced by summation as following: 

 
1 1
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= ⋅∑∑                                             (2-32) 

 

where K is a positive constant; H and W are the height and width of the image respectively. g ’(x,y) is 

the virtual potential field obtained by the opposite transform (i.e. the restored image); F(i,j) is the 

virtual field source. 

Although the transform for continuous electro-static field is theoretically reversible, the discrete 

source-reverse transform includes operations of discretization which will introduce some errors in the 

transform process. Therefore, g ’(x,y) is an approximation of the original image g(x,y), and the source-
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reverse transform for digital images is not strictly reversible. The opposite transform is implemented 

for real world images. The experimental results for three of the real world images are shown in Fig. 2-

112 to Fig. 2-114. In each result, the left figure (a) shows the visualization of the original data of 

g ’(x,y), and the middle figure (b) shows the result of a contrast enhancement operation for g ’(x,y). 

The original image is shown in the right figure (c). The experimental results indicate that the quasi-

reversible transform of source-reverse can provide an approximation of the original image by the 

opposite transform, which may be exploited in lossy image compression. 

 

                                     
(a) Visualization of f ’(x,y)                   (b) Result of contrast enhancement         (c) The original image 

 
Fig. 2-112 The restored results and the original image of the peppers 

 

                                     
(a) Visualization of f ’(x,y)                   (b) Result of contrast enhancement         (c) The original image 

 
Fig. 2-113 The restored results and the original image of the house 

 

                                     
(a) Visualization of f ’(x,y)                   (b) Result of contrast enhancement         (c) The original image 

 
Fig. 2-114 The restored results and the original image of the boat 

 

2.3.6 Data reduction of the virtual field source  

 

The experimental results have indicated that the energy in the virtual field source concentrates near 

the border of the homogeneous regions, which may be exploited in lossy image compression. Because 

a large part of the values in the source are relatively small, experiments are carried out to investigate 

the effect of eliminating small source values on the restoration of the field (i.e. the image). 

The experimental results are shown in Fig. 2-115 to Fig. 2-117. In the experiments, the threshold 

to eliminate small values in the virtual source is determined by a certain percentage of the maximum 

of the absolute values. For each real world image, the results show the effect of assigning 1%, 5%, 

10% and 20% of the maximum absolute value to the threshold respectively. If the absolute value on a 

point is smaller than the threshold, that value is set to zero. Then the virtual potential field is restored 
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from the modified source where small source values are eliminated. The experiments show the 

different effect of eliminating small values in the source with increasing the threshold value. The 

original images are of the size 128×128. Therefore, the uncompressed virtual source has totally 16384 

values. The results indicate that the subjective visual perception of the restored image is still 

acceptable when a large part of the values in the virtual source is reduced. But when most of the small 

values are eliminated, the quality of the image is unacceptable for visual perception, which is shown 

in (c) and (d) of each group of results. The results indicate that the source-reverse transform may have 

potential application in lossy image compression. 

Based on the experimental results, future work will consider how to overcome the small error 

between the original and restored images caused by discretization in the transform process, so that the 

quality of the restored images will be improved. Further research will also investigate the detailed 

characteristics of the source-reverse transform together with its potential application in other image 

processing applications. 

 

                      
(a)                                               (b)                                              (c)                                               (d) 

(a) Result of restoration with the threshold defined as 1% of the maximum value; 3684 values eliminated 

(b) Result of restoration with the threshold defined as 5% of the maximum value; 8969 values eliminated 
(c) Result of restoration with the threshold defined as 10% of the maximum value; 11473 values eliminated  

(d) Result of restoration with the threshold defined as 20% of the maximum value; 13858 values eliminated  

Fig. 2-115 The effect of eliminating small source values on the restoration of the peppers image 

 

                      
(a)                                               (b)                                              (c)                                               (d) 

(a) Result of restoration with the threshold defined as 1% of the maximum value; 6870 values eliminated  

(b) Result of restoration with the threshold defined as 5% of the maximum value; 11347 values eliminated  

(c) Result of restoration with the threshold defined as 10% of the maximum value; 12688 values eliminated  
(d) Result of restoration with the threshold defined as 20% of the maximum value; 14356 values eliminated 

Fig. 2-116 The effect of eliminating small source values on the restoration of the house image 

 

                       
(a)                                               (b)                                              (c)                                               (d) 

(a) Result of restoration with the threshold defined as 1% of the maximum value; 3176 values eliminated  
(b) Result of restoration with the threshold defined as 5% of the maximum value; 7526 values eliminated  

(c) Result of restoration with the threshold defined as 10% of the maximum value; 9690 values eliminated  

(d) Result of restoration with the threshold defined as 20% of the maximum value; 12361 values eliminated  

Fig. 2-117 The effect of eliminating small source values on the restoration of the boat image 
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3 Magneto-Statics Inspired Methods 
 

The electro-magnetic field in physics has a complete theoretical description (a series of laws and 

theorems), from which novel ideas may be borrowed for image processing and analysis. Currently, 

most field-inspired methods in image processing are based on the electro-static field, while those 

imitating the magneto-static field are much less. However, the magneto-static field has different 

characteristics from the electro-static field. For example, the divergence of a magneto-static field is 

zero. It is promising to reveal novel image features by magneto-statics inspired methods.  

In this chapter, some novel image transforms are studied by taking the image as the magnetic field 

source. Moreover, in another proposed method the image is taken as the magneto-static field and its 

virtual curl source is studied. The study of magneto-statics inspired transforms shows unique 

transform results comparing to those inspired by electro-statics. 

 

3.1 The virtual edge current in gray-scale images 
 

The distinctive feature of physics-inspired methods for image analysis is a kind of natural description 

and representation of image structures, which may reveal novel image features for further analysis. 

The magnetic field generated by the stable current satisfies the Biot-Savart law
[75-78]

, and in this 

section its spatial property on the 2D plane is investigated. The possible application of the magneto-

static field’s spatial property to region border extraction is also studied. 

 

3.1.1 The spatial property of the magnetic field generated by stable currents 

 

3.1.1.1 The magnetic field of the current in a straight wire and its spatial property 
 

According to the electro-magnetic theory, the magnetic field generated by the stable current in an 

infinitely long straight wire is
[75-78]

: 

 

r

I
B

π
µ
2

0=                                                                  (3-1) 

 

where B is the magnitude of the magnetic induction at a space point, I is the intensity of the current, r 

is the distance of the space point to the straight line, 0µ  and π  are two constants. The diagram of the 

magnetic field generated by the straight line is shown in Fig. 3-1. 

 

 
Fig. 3-1 The magnetic field generated by the straight line 

 

In Fig. 3-1, the direction of the magnetic induction is determined by the right-hand rule: if the 

thumb of the right hand is pointed in the direction of the current, and the other four fingers assume a 

curved position, the magnetic field circling around the wire flows in the direction in which the other 

four fingers point
[75-78]

. The right-hand rule is shown in Fig. 3-2. 
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Fig. 3-2 The right-hand rule 

According to the right-hand rule, the direction distribution of 
→
B  can be determined on the plane 

where the wire lies. Fig. 3-3 shows the direction distribution of the magnetic field on the 2D plane 

where the straight wire lies. In Fig. 3-3 the cross represents the direction of going into the paper, and 

the dot represents the direction of coming out of the paper. From the viewpoint of geometry, the line 

divides the plane into two halves. The direction of the magnetic induction vectors in one half is just 

opposite to that in the other half. If the direction of I is given, based on the direction of 
→
B , it can be 

decided on which side of the wire the point lies. Therefore, from the viewpoint of image analysis, the 

direction of the magnetic field can serve as a feature indicating the relative position of a point with 

respect to the straight wire on the plane. 

 

 
Fig. 3-3 The direction distribution of the magnetic field generated by a straight wire on a plane 

 

3.1.1.2 The magnetic field of the current in a closed wire with arbitrary shape and its spatial 

property 
 

The straight line is just a special case of curves with arbitrary shapes, and the magnetic field generated 

by the straight wire is a special case of those generated by general wires. A more general description 

of the magnetic field is given by the Biot-Savart law
[75-78]

, where the source of the magnetic field is 

the current of arbitrary shapes which is composed of current elements. A current element 
→
dlI  is a 

vector representing a very small part of the whole current, whose magnitude is the arithmetic product 

of I and dl (the length of a small section of the wire). The current element has the same direction as 

the current flow at the same point. Thus the whole magnetic field is the accumulation of those 

generated by all the current elements. 

The magnetic field generated by a current element 
→
dlI  is as following

[75-78]
: 

3

0

4 r

rdlI
dB

→→
→ ×⋅=

π
µ

                                                        (3-2)  

where 
→

dB  is the magnetic induction vector at a space point, 
→
dlI  is the current element, r is the 

distance between the space point and the current element, 
→
r  is the vector from the current element to 

the space point, the operator ×  represents the cross product of the two vectors. The direction of the 

magnetic field also follows the right-hand rule. The magnetic field’s direction distribution on the 2D 
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plane where the current element lies is shown in Fig. 3-4. Similar to the case of straight wire, the 

direction of the magnetic field reverses when crossing the line on which the current element lies. 

 

 
Fig. 3-4 The magnetic field’s direction distribution of a current element on the 2D plane 

 

The magnetic field generated by the current in a wire of arbitrary shape is the accumulation of the 

fields generated by all the current elements on the wire, which is described by the Biot-Savart law
[75-

78]
: 

∫∫
→→

→→ ×⋅==
DD r

rdlI
dBB

3

0

4π
µ

                                                   (3-3) 

where 
→
B  is the magnetic induction vector at a space point generated by the whole current of arbitrary 

shape. D is the area where the current element exists. 
→

dB  is the magnetic field generated by each 

current element in D. 

Fig. 3-5 shows the case of a current element on a closed wire with arbitrary shape, and also its 

magnetic field in the small local neighboring area. The closed wire divides the plane into two parts: 

the inner region and the outer region of the curve. In the small local area of a current element, the 

magnetic field’s direction reverses when crossing the local section of the curve. From the viewpoint of 

image analysis, the reverse of the field’s direction in the local area indicates the existence of the 

region border (such as the curve in Fig. 3-5) Therefore, the reverse of the field direction can serve as a 

novel feature representing region borders in digital images, which may be exploited for further 

analysis. 

 

 
Fig. 3-5 The magnetic field distribution in the small local area of a current element on a closed wire 

 

3.1.2 The tangent edge vector for simple image regions 

 

The direction of the current in a wire is virtually the tangent direction of the curve at that point. On a 

discrete 2D plane, the discrete form of a current in a curving wire can be represented by a set of 

tangent vectors at each discrete point of the curve. In geometric theory, for simple regions (such as 

those in Fig. 3-5 and Fig. 3-6) the gradient vector on the region border is perpendicular to the border 
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curve. Since the direction of the curve at a point is represented by the tangent direction of the curve, 

the tangent vector can thus be estimated by the gradient vector in digital images. 

 

3.1.2.1 The definition of the tangent edge vector 
 

In this section, the tangent edge vector is proposed to represent the edge intensity and edge direction. 

The magnitude of a tangent edge vector 
→
T  is defined as the same of the gradient vector 

→
G  at that 

point, while its direction is perpendicular to the gradient vector: 

yx GT =                                                                  (3-4) 

xy GT −=                                                                (3-5) 

where Tx and Ty are the x and y components of 
→
T  respectively. Gx and Gy are the x and y components 

of 
→
G  respectively. Therefore, the magnitude of the tangent edge vector represents the edge intensity, 

and its direction represents that of the border curve. Fig. 3-6 shows the relationship between the 

gradient and tangent edge vector on the border of a simple region. Therefore, the tangent vector can be 

estimated by rotating the gradient vector clockwise with 90 degrees, which is shown in Fig. 3-6. 

 
Fig. 3-6 The relationship between the tangent edge vector and the gradient vector 

    
In this section, the Sobel operator is used to estimate the gradient vector in digital images. The two 

templates of the Sobel operator for gradient estimation are shown in Fig. 3-7. 

 

                           
The template to estimate the gradient                     The template to estimate the gradient 

component on x-coordinate                             component on y-coordinate 
 

Fig. 3-7 The two templates of the Sobel operator to estimate the gradient vector 

 
According to the Sobel operator, for digital image f(x,y), the two components of the gradient 

vector are estimated as following: 

 

 Gx(x,y)=[f(x+1,y-1)-f(x-1,y-1)]+2[f(x+1,y)-f(x-1,y)]+[f(x+1,y+1)-f(x-1,y+1)]                  (3-6) 

Gy(x,y)=-[f(x-1,y+1)-f(x-1,y-1)]-2[f(x,y+1)-f(x,y-1)]-[f(x+1,y+1)-f(x+1,y-1)]                  (3-7) 

 

where Gx(x,y) and Gy(x,y) are the two components of the gradient vector on the x and y direction 

respectively. Then the tangent edge vector can be estimated based on the gradient vector according to 

Equation (3-4) and (3-5). 
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3.1.2.2 The spatial property of the virtual magnetic field generated by the set of tangent edge 

vectors 
 

To investigate the properties of the tangent edge vector, experiments are carried out for a group of 

simple test images. The original images are shown in Fig. 3-8(a) to Fig. 3-12(a). The test images are 

of the size 32× 32, which contain simple image regions. To get a more clear view, the original images 

are shown in both original size and the size of 4 times larger. The tangent edge vectors are shown in 

Fig. 3-8(b) to Fig. 3-12(b), where the arrows indicate the directions of the tangent edge vectors and the 

dot indicates zero vectors. 

For the simple test images in the experiments, each region has homogeneous pixels of the same 

gray-scale. Therefore, the gradient vectors are zero except on the points near the region border. Thus 

the tangent edge vectors also gather near the border curve and forms a circulating current around the 

region. Therefore, the tangent edge vectors make up a virtual current of a discrete form in the image. 

Because the physical current elements are also along the tangent direction of the wire curve, the 

tangent edge vector is a natural analogy to the physical current element. The experimental results 

shown in Fig. 3-8(b) to Fig. 3-12(b) also indicate that the tangent edge vectors form a virtual current 

in a discrete form along the region border, which is later defined as the virtual edge current in the 

following section. 

To further investigate the tangent edge vector, the virtual magnetic field generated by the tangent 

edge vectors is calculated. Imitating the physical current element, the discrete virtual magnetic field 

generated by a tangent edge vector on point (i,j) is proposed as following: 

3

),(),(

),(),(
),(

),(
),(

yxji

yxji
ji

r

rjiT
yxB

→

→

→→
→ ×=                                              (3-8) 

where ),(),( yxB ji

→
 is the virtual magnetic induction on point (x , y) generated by ),( jiT

→
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→
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the tangent edge vector on point (i,j). ),(),( yxjir →

→
 is the vector from (i,j) to (x,y), and ),(),( yxjir →  is the 

distance between (i,j) and (x,y). 

Therefore, the virtual magnetic field generated by all the tangent edge vectors is defined as the 

accumulation of ),(),( yxB ji

→
: 
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≠ ≠ ≠ ≠
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where H and W represents the height and width of the digital image respectively. Because each 

tangent edge vector generates a magnetic field separating the image points on different sides of the 

local border section, the accumulation of such virtual magnetic fields generated by all the tangent edge 

vectors may separate the image points into two classes: those within the region and those outside the 

region. The experimental results of simulation are also shown in visible figures. The magnitude of 

each virtual magnetic field is shown in Fig. 3-8(c) to Fig. 3-12(c), where larger gray-scale values 

represent larger magnitude of ),( yxB
→

. The direction distribution of each virtual magnetic field is 

shown in Fig. 3-8(d) to Fig. 3-12(d), where the white points represent the direction of going into the 

paper, and the black points represent the direction of coming out of the paper. The results indicate that 

different adjacent regions have different directions of the virtual magnetic field, and the field direction 

reverses when crossing the region orders. Therefore, the direction distribution in the virtual magnetic 

field can serve as a promising feature for region border detection and image segmentation. 
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Fig. 3-8(a) The test1 image                              Fig. 3-8(b) The direction distribution of the 

(4 times of original size on the right)              tangent edge vectors 

 

 
Fig. 3-8(c) The magnitude distribution of the magnetic field generated by the set of tangent edge vectors (larger gray-scale 

values represent larger magnitude) 

 

 
Fig. 3-8(d) The direction distribution of the magnetic field generated by the set of tangent edge vectors (the white points 

represent the direction of going into the paper, and the black points represent the opposite) 

 

                 
Fig. 3-9(a) The test2 image                               Fig. 3-9(b) The direction distribution of 

(4 times of original size on the right)                the tangent edge vectors 

 

 
Fig. 3-9(c) The magnitude distribution of the magnetic field generated by the set of tangent edge vectors (larger gray-scale 

values represent larger magnitude) 
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Fig. 3-9(d) The direction distribution of the magnetic field generated by the set of tangent edge vectors (the white points 

represent the direction of going into the paper, and the black points represent the opposite) 

 

                 
Fig. 3-10(a) The test3 image                            Fig. 3-10(b) The direction distribution of 

(4 times of original size on the right)              the tangent edge vectors 

 

 
Fig. 3-10(c) The magnitude distribution of the magnetic field generated by the set of tangent edge vectors (larger gray-scale 

values represent larger magnitude) 

 

 
Fig. 3-10(d) The direction distribution of the magnetic field generated by the set of tangent edge vectors (the white points 

represent the direction of going into the paper, and the black points represent the opposite) 

 

                 
Fig. 3-11(a) The test4 image                             Fig. 3-11(b) The direction distribution of 

(4 times of original size on the right)                the tangent edge vectors 
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Fig. 3-11(c) The magnitude distribution of the magnetic field generated by the set of tangent edge vectors (larger gray-scale 

values represent larger magnitude) 

 

 
Fig. 3-11(d) The direction distribution of the magnetic field generated by the set of tangent edge vectors (the white points 

represent the direction of going into the paper, and the black points represent the opposite) 

 

                 
Fig. 3-12(a) The test5 image                            Fig. 3-12(b) The direction distribution of 

(4 times of original size on the right)              the tangent edge vectors 

 

 
Fig. 3-12(c) The magnitude distribution of the magnetic field generated by the set of tangent edge vectors (larger gray-scale 

values represent larger magnitude) 

 

 
Fig. 3-12(d) The direction distribution of the magnetic field generated by the set of tangent edge vectors (the white points 

represent the direction of going into the paper, and the black points represent the opposite) 

 

3.1.3 The virtual edge current in digital images 

 

The images captured in nature (such as photos, satellite images, etc.) have rich gray-scale levels and 

details, and are much more complex than the simple test images. The digital image can be regarded as 

a function f(x,y), whose arguments are the position (x,y) on the 2D plane, and the function value is the 

gray-scale of that image point. The isolines (contour lines) in the image f(x,y) indicate possible region 
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borders, and in mathematics the gradient vector is perpendicular to the isoline of f(x,y). Consequently, 

for complex natural images, the tangent edge vector represents the direction of the isoline, i.e. the 

direction of possible region border curve. On the other hand, since the magnitude of the tangent vector 

is the same as the gradient vector on that point, its magnitude also indicates the edge intensity at that 

point. Therefore, the definition of Equation (3-4) and (3-5) can also apply to complex natural images. 

For complex natural images, there may be rich gray-scale levels, and there is a tangent edge vector 

with some magnitude at each image point. All the tangent edge vectors make up a flow field, and the 

flow direction at each image point is just the same as that of the tangent edge vector. Therefore, all the 

tangent edge vectors in a digital image form a virtual current, where the tangent edge vector at each 

image point serves as the discrete current element. Such virtual current is defined as the virtual edge 

current, because all the tangent edge vectors are along the direction of the isoline curve (possible 

region borders) in the image. 

To investigate the properties of the virtual edge current, the virtual magnetic field generated by the 

virtual edge current is calculated. Experiments are carried out for a group of natural images. The 

original images are shown in Fig. 3-13(a) to Fig. 3-19(a). The results of the virtual magnetic field are 

visualized as gray-scale images. The magnitude of each virtual magnetic field is shown in Fig. 3-13(b) 

to Fig. 3-19(b), where larger gray-scale values represent larger magnitude of the virtual magnetic 

induction ),( yxB
→

. The direction distribution of each virtual magnetic field is shown in Fig. 3-13(c) to 

Fig. 3-19(c), where the white points represent the direction of going into the paper, and the black 

points represent the direction of coming out of the paper. The experimental results indicate that for 

natural images the direction of the virtual magnetic field reverses when crossing region borders. 

Therefore, the distribution of the virtual magnetic field can serve as the basis of border detection and 

region segmentation. 

 

 

                    
(a) The peppers image             (b) The magnitude distribution         (c) The directions distribution 

                                                             of the virtual magnetic field              of the virtual magnetic field 

generated by the edge current          generated by the edge current 

 
Fig. 3-13 The virtual magnetic field generated by the edge current for the peppers image 

 

 

                     
(a) The broadcaster image            (b) The magnitude distribution      (c) The directions distribution 

                                                                 of the virtual magnetic field             of the virtual magnetic field 

generated by the edge current          generated by the edge current 

 
Fig. 3-14 The virtual magnetic field generated by the edge current for the broadcaster image 
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 (a) The boat image               (b) The magnitude distribution        (c) The directions distribution 

                                                                                         of the virtual magnetic field           of the virtual magnetic field 
generated by the edge current         generated by the edge current 

 

Fig. 3-15 The virtual magnetic field generated by the edge current for the boat image 

 

 

                    
(a) The cameraman image            (b) The magnitude distribution       (c) The directions distribution 

                                                                                           of the virtual magnetic field          of the virtual magnetic field 
generated by the edge current         generated by the edge current 

 
Fig. 3-16 The virtual magnetic field generated by the edge current for the cameraman image 

 

 

                    
(a) The house image                (b) The magnitude distribution        (c) The directions distribution 

                                                                                           of the virtual magnetic field          of the virtual magnetic field 
generated by the edge current         generated by the edge current 

 

Fig. 3-17 The virtual magnetic field generated by the edge current for the house image 

 

 

                    
(a) The medical image of a brain      (b) The magnitude distribution        (c) The directions distribution 

                                                                                          of the virtual magnetic field          of the virtual magnetic field 
generated by the edge current         generated by the edge current 

 
Fig. 3-18 The virtual magnetic field generated by the edge current for the brain image 

 

Chapter 3

54



 

55 

 

 

             
(a) The medical image of a heart                  (b) The magnitude distribution of the virtual  

magnetic field generated by the edge current 

 

 
(c) The directions distribution of the virtual magnetic field generated by the edge current 

 
Fig. 3-19 The virtual magnetic field generated by the edge current for the heart image 

 

 

Because the magnitude of the tangent edge vector is the same as the gradient vector, in Equation 

(3-9) the 
→
T  vectors with large magnitudes have major affect on the formation of overall region 

borders, while those with small magnitudes can only have effect within adjacent local areas and affect 

the details of the local region borders. In Fig. 3-13(c) to Fig. 3-19(c), the experimental results indicate 

that the region borders can be detected according to the direction distribution of the virtual magnetic 

field generated by the virtual edge current. 

 

3.1.4 Image segmentation based on the virtual edge current 
 

In the experimental results for the test images, it is shown that the directions of the virtual magnetic 

field are opposite in two different adjacent regions. This provides a basis of region division in images. 

In this section, a method of image region division in the virtual magnetic field generated by the edge 

current is proposed as following: 

Step1: Calculate the tangent edge vectors to obtain the virtual edge current; 

Step2: Calculate the virtual magnetic field generated by the virtual edge current; 

Step3: Obtain the direction distribution of the virtual magnetic field; 

Step4: Group the adjacent points with the same direction of virtual magnetic field into connected 

regions. The obtained set of connected regions is the result of region division for the gray-scale image. 

Magneto-Statics Inspired Methods

55



 

56 

Real world images consist of more complex region components than simple test images. To 

investigate the effect of the above region division method on real world images, experiments are 

carried out for a group of real world images. The experimental results are shown from Fig. 3-20(b) to 

Fig. 3-26(b), which are the region division results of Fig. 3-13(c) to Fig. 3-19(c) respectively. In Fig. 

3-20(b) to Fig. 3-26(b), different regions are represented by different gray-scale values. The results 

indicate that for real world images the region division method may obtain large amount of regions in 

the image. The numbers of regions obtained for the real world images in the experiments are shown in 

Table 3-1. 

 
Table 3-1 The numbers of regions obtained for the real world images 

Image Number of regions 

peppers 87 

broadcaster 77 

boat 149 

cameraman 142 

house 117 

brain 131 

heart 342 

 

The region division results of real world images consist of large amount of regions due to the 

complexity of real world images. To obtain practically useful segmentation result, a region merging 

method is proposed based on the gray-scale similarity of adjacent regions. First, an expected number 

of remaining regions after merging is given (usually by trail). Then the following steps are carried out 

to merge regions until the expected region number is reached: 

 

Step1: For each region in the image, calculate its average gray-scale value. 

Step2: Find the pair of neighboring regions with the least difference of the average gray-scale, and 

merge them into one region. 

Step3: If current region number is larger than the expected region number, return to Step1; otherwise, 

end the merging process. 

The region merging results for the real world images are shown in Fig. 3-20(c) to Fig. 3-26(c), 

where different regions are represented by different gray-scale. Fig. 3-20(c) to Fig. 3-26(c) show the 

merging results for Fig. 3-20(b) to Fig. 3-26(b) respectively. 
 

 

 

 

                    
Fig. 3-20(a)                              Fig. 3-20(b) The region division      Fig. 3-20(c) The region merging result 
The peppers image              result based on Fig. 3-13(c)             for Fig. 3-20(b) (50 regions remained) 
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Fig. 3-21(a)                             Fig. 3-21(b) The region division       Fig. 3-21(c) The region merging result 

The broadcaster Image         result based on Fig. 3-14(c)              for Fig. 3-21(b) (20 regions remained) 
 

 

                     
Fig. 3-22(a)                            Fig. 3-22(b) The region division       Fig. 3-22(c) The region merging result 
The boat image                     result based on Fig. 3-15(c)               for Fig. 3-22(b) (80 regions remained) 
 

 

                     
Fig. 3-23(a)                              Fig. 3-23(b) The region division       Fig. 3-23(c) The region merging result 

The cameraman Image           result based on Fig. 3-16(c)               for Fig. 3-23(b) (20 regions remained) 
 

 

                     
Fig. 3-24(a)                            Fig. 3-24(b) The region division         Fig. 3-24(c) The region merging result 
The house image               result based on Fig. 3-17(c)                 for Fig. 3-24(b) (20 regions remained) 
 

 

                      
Fig. 3-25(a) The medical       Fig. 3-25(b) The region division        Fig. 3-25(c) The region merging result 

image of a brain                     result based on Fig. 3-18(c)                for Fig. 3-25(b) (40 regions remained) 
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Fig. 3-26(a) The medical image of a heart      Fig. 3-26(b) The region division result based on Fig. 3-19(c) 

 

 
Fig. 3-26(c) The region merging result for Fig. 3-26(b) (20 regions remained) 

 

Based on the above study, a novel image segmentation method is proposed with the virtual 

magnetic field generated by the virtual edge current: 

Step1: Calculate the tangent edge vectors in the image to form the virtual edge current; 

Step2: Calculate the virtual magnetic field generated by the virtual edge current; 

Step3: Carry out the region division based on the direction distribution of the virtual magnetic field; 

Step4: Merge the region division result to a pre-defined number of regions. 

The experimental results have proved the effectiveness of the proposed segmentation method. 

 

3.1.5 The influence of different edge intensity thresholds on border formation 
 

The gradient magnitude is the intensity of gray-scale changing, which is a natural measurement of the 

possibility of edge existence. It can be seen from Fig. 3-13(c) to Fig. 3-19(c) that the region borders 

can be determined by the direction distribution of the virtual magnetic field. In the experimental 

results, the whole field of ),( yxB
→

 is formed by the accumulation of all the tangent edge vectors with 

various magnitudes. Those tangent edge vectors with relatively large magnitudes have major affect on 

the formation of main region borders. Experiments have been carried out to investigate the effect of 

different vector magnitude on the formation of region borders. In the experiments, before the 

calculation of the virtual magnetic field, the tangent edge vectors with magnitudes less than a pre-

defined threshold are set to zero; then the virtual magnetic field is formed by the remained vectors 

with relatively larger magnitudes. In the experiments, the threshold is defined as a certain percent of 

the maximum magnitude of the tangent edge vectors. The experimental results for the broadcaster 

image are shown in Fig. 3-27(a) to Fig. 3-27(e).  Fig. 3-27(a) to Fig. 3-27(e) show the magnitude of 

the obtained virtual magnetic field, where larger gray-scale values represent larger magnitude of 
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),( yxB
→

.  Fig. 3-27(a) to Fig. 3-27(e) also show the direction distribution of the virtual magnetic field, 

where the white points represent the direction of going into the paper, and the black points represent 

the direction of coming out of the paper. The threshold values are set as 0%, 0.05%, 0.1%, 0.2% and 

0.5% of the maximum gradient magnitude in the image respectively. 

 

 

             
the magnitude distribution                    the direction distribution 

Fig. 3-27(a) The magnitude distribution and direction distribution of the magnetic field generated by the virtual edge current 

with 0% of the maximum vector length as the threshold 

 

 

             
the magnitude distribution                    the direction distribution 

Fig. 3-27(b) The magnitude distribution and direction distribution of the magnetic field generated by the virtual edge current 

with 0.05% of the maximum vector length as the threshold 

 

 

             
the magnitude distribution                    the direction distribution 

Fig. 3-27(c) The magnitude distribution and direction distribution of the magnetic field generated by the virtual edge current 

with 0.1% of the maximum vector length as the threshold 

 

 

             
the magnitude distribution                    the direction distribution 

Fig. 3-27(d) The magnitude distribution and direction distribution of the magnetic field generated by the virtual edge current 

with 0.2% of the maximum vector length as the threshold 
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the magnitude distribution                    the direction distribution 

Fig. 3-27(e) The magnitude distribution and direction distribution of the magnetic field generated by the virtual edge current 

with 0.5% of the maximum vector length as the threshold 

 

Fig. 3-27(a) and Fig. 3-27(b) indicate that the tangent edge vectors of small magnitudes have 

important effect on local region details, which generates many small region borders in the direction 

distribution. With the threshold value increasing, small region borders become less. Fig. 3-27(c) 

shows a nice balance of border accuracy and the degree of detail. When the threshold becomes too 

large, there is obvious lost of the border accuracy, which is indicated by Fig. 3-27(d) and Fig. 3-27(e). 

The magnitude threshold for the tangent edge vectors can be adjusted experimentally for different 

requirement of detail level. 

The direction distribution of the discrete magnetic field generated by the virtual edge current is 

experimentally proved to be a novel feature for border detection and region division, based on which 

image segmentation can be implemented in the virtual magnetic field. Further work will investigate 

the application of the virtual edge current in other image processing tasks. 

 

3.2 The curling vector field transform of gray-scale images 
 

The magnetic induction generated by an electric current element is defined by the Biot-Savart Law in 

Equation (3-2). In the physical magnetic field, the magnetic induction lines are close loops. The 

geometric shape of the magnetic induction lines are determined by the mathematical form of the 

vector field defined in Equation (3-2). In this section, the mathematical form of the magnetic field is 

imitated in a novel image vector transform, which is named the curling vector field.  

 

3.2.1 The definition of the curling vector 

 

If the image is taken as the field source, the vector field can be generated by the imitation of the 

magnetic field. Suppose there is an electric current element at each image point, which is at a right 

angle to the image plane. Then the virtual field source will generate a vector field on the image plane. 

Furthermore, in order to extract the image structure information, the intensity of the vector field at 

each point is determined by the gray-scale values of related image points. In this section, to reflect the 

gray-scale difference between the points in two different regions, the vector generated by point (i,j) at 

point (x,y) is related to the gray-scale difference between the two points: 
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⋅−=                                         (3-10) 

where 
→
V  is the vector generated by point (i,j) on the point (x,y). g(i,j) and g(x,y) are the gray-scale 

values of the two points. n0 is the unit vector at a right angle to the image plane. ),(),( yxjir →

→
 is the 

radius vector from (i,j) to (x,y). 

The two components of V on x and y directions are: 
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where θ  is the direction angle of the radius vector ),(),( yxjir →

→
. 

Therefore, if two image points are of the same gray-scale, the vector generated by one point on the 

other is a zero vector. Only if there is gray-scale difference between two image points, non-zero vector 

can be generated by one point on the other. According to the above definition, the vector generated by 

one point on another reflects the information of their gray-scale difference and their relative position 

(i.e. the relative distance and direction). 

 

3.2.2 The definition of the curling vector field transform 

 

Based on the definition of the curling vector, the curling vector field transform is proposed as follows. 

The transform of image g on the point (x,y) is defined as the sum of the curling vectors generated by 

all the other image points on (x,y): 
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where ),( yxV
→

 is the field vector on (x,y); W and H are the width and height of the image respectively. 

The two components of ),( yxV
→

 on x and y directions are: 
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According to the above definition, the curling vector field belongs to the kind of “relative field”, 

which introduces the pixel difference into the field definition. The magnetic induction lines are close 

curves in physical magnetic field. This feature also exits in the curling vector field defined above. The 

curling vector transform is implemented for a group of test images to investigate the properties of the 

vector field. The test images are of the size 3232 × . The experimental results show that the vectors 

inside each homogeneous region constitute a rotating whorl, which inspires the name of “curling 

vector field”. Three representative images of the test images and the corresponding experimental 

results are shown in Fig. 3-28 to Fig. 3-35. 

Test1 is a homogeneous area as a whole. Therefore, the vectors in the transformed field are all 

zero vectors. 
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Fig. 3-28 The first image test1 (the original image, and 4 times of original size on the right) 

 

 
Fig.29 The vector length in the curling vector field of test1 

(the original image; 4 times of original size on the right) 
 

Test2 contains a rectangle region. In the vector field of Test2, the vectors in the rectangle region 

rotate clockwise, but the vectors in the background region rotate anti-clockwise. 
 

 
Fig. 3-30 The second image test2 (the original image on the left, and 4 times of original size on the right) 

 

 
Fig. 3-31 The vector length in the curling vector field of test2 (the original image; 4 times of original size on the right) 

 

 
Fig. 3-32 The direction of each vector in the curling vector field of test2 
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There is a rectangle region and an ellipse region in Test3. In the vector field of Test3, the vectors 

in the rectangle region and the ellipse region rotate clockwise, but the vectors in the background 

region rotate anti-clockwise. The difference of rotating direction between the object regions and the 

background region is the base of segmentation in the curling vector field. 
 

 
Fig. 3-33 The third image test3 (the original image on the left, and 4 times of original size on the right) 

 

 

 
Fig. 3-34 The vector length in the curling vector field of test3 (the original image; 4 times of original size on the right) 

 

 

 
Fig. 3-35 The direction of each vector in the curling vector field of test3 

 

3.2.3 Image segmentation in the curling vector field 
 

3.2.3.1 The rotating direction and base points of rotating expansion 

 

The experiments and analysis about the curling vector field show that the vectors inside a 

homogeneous region have the overall appearance of a rotating whorl. Moreover, if one region contains 

another, the rotating directions of them are opposite. This feature is determined by the definition of the 

vector field in Equation (3-13). Based on the rotating feature of the vectors inside homogeneous 

regions, any homogeneous region can be extracted by a kind of rotating expansion in the region. In the 

process of rotating expansion, the points with definite rotating directions in a region are the starting 

points of the expansion. The region will be extracted by continuously expanding with a form of 

rotating movement according to the rotating direction of the starting points. In such rotating 
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movement, the paths of movement will progressively cover the whole region. Thus each 

homogeneous region can be extracted. 

Therefore, determining the rotating direction of each image point is the first step of region 

extraction in the curling vector field. In this section, three kinds of rotating status of an image point 

are given as following. First, the vector directions are discretized into eight directions. Suppose that 

the vector direction on point A has the angle of zero, and B is the next point on A’s vector direction. 

The rotating direction on A is defined according to the angle between the vectors on A and B. The 

clockwise rotating direction on point A is defined as the following two cases: 

 

 
Fig. 3-36 The clockwise rotating direction on point A 

 

The anti-clockwise rotating direction on point A is defined as the following two cases: 

 

 

 
Fig. 3-37 The anti-clockwise rotating direction on point A 

 

The uncertain rotating direction on point A is defined as the following four cases: 

 

 
Fig. 3-38 The uncertain rotating direction on point A 

 

If the vector on point A has the angle α , and B is the next point on A’s vector direction. The 

rotating direction can also be determined according to the angle between the two vectors on A and B 

as the above cases.  

Therefore, the image points can be divided into two classes: one with definite rotating direction 

and the other with uncertain rotating direction. Those with definite rotate directions are the starting 

points of rotating expansion, which are named the “base points” of rotating expansion. 

The base point extraction is carried out for the test images. The experimental results are shown in 

Fig. 3-39 to Fig. 3-42. In Fig. 3-39 and Fig. 3-42, the white points represent the anti-clockwise 

rotating direction, the black points represent the clockwise rotating direction, and the gray points 
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represent the uncertain ones. Because the vectors in the field of Test1 are zero, there is no base 

extracted. Fig. 3-39 and Fig. 3-41 show the base points of Test2 and Test3 respectively. For a clearer 

view, the base points extracted are also shown in the discrete direction distribution of the vector fields 

as Fig. 3-40 and Fig. 3-42. The results of base point extraction indicate that these points form a kind 

of image structure representation, and can be the starting points for region extraction. 

On the other hand, the results also indicate that there may be more than one group of base points 

in a single homogeneous region, especially in a large region of the image. This may cause the 

decomposition of a large region into smaller sub-regions in the region extraction process, and makes 

region-merging as a necessary post-processing step. 

 

             
Fig. 3-39 The base points extracted for Test2        Fig. 3-40 The base points for Test2 in the direction 

                                                         distribution of the vector field 
 

              
Fig. 3-41 The base points extracted for Test3         Fig. 3-42 The base points for Test3 in the direction 

                                                                                distribution of the vector field 

 

3.2.3.2 Primitive region extraction in the curling vector field 
 

In the region extraction process, each group of base points will expand to a corresponding region, 

which is named the “primitive region” (or “primitive area”). The primitive regions can be regarded as 

the elements of an image, which form a kind of representation of image structure. The primitive 

regions in the image can be extracted with a rotating expansion process in the curling vector field, 

which starts from the base points and expands according to their rotating directions. In the rotating 

expansion process, each group of base points will expand to a corresponding primitive region. Given 

the curling vector field and the base points extracted, the rotating expansion process is described as 

following: 

Step1: Gather the base points into groups. In each group, the base points are connected to each other. 

In another word, two neighboring base points are of the same group. Assign each group of base points 
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a group number. Initially, the image points with uncertain rotating direction do not belong to any 

group. 

Step2: For each image point with a group number, carry out the rotating expansion operation. If the 

current point pc belongs to a certain group, investigate the next point pn1 on pc’s vector direction, and 

also investigate the next point pn2 on pc’s rotating direction. If pn1 or pn2 does not belong to any group, 

add it to pc’s group, which is an occurrence of new classification. Step2 is repeated until no new 

classification happens. 

The results of primitive region extraction for the test images are shown in Fig. 3-43 and Fig. 3-44: 
 

                       
Fig. 3-43 The primitive regions extracted for Test2     Fig. 3-44 The primitive regions extracted for Test3 

 

In the experimental results of test2 and test3, the object regions are extracted completely (the 

rectangle in test2, and the rectangle and circle in test3). Moreover, the background areas in test2 and 

test3 are split into several sub-regions. Therefore, a region may be split into several sub-regions in the 

rotating expansion process, especially the background region or the large object regions in real world 

images. In order to obtain effective segmentation result, a region-merging step is needed. The method 

of real world image segmentation in the curling vector field is presented in the following section. 
 

3.2.3.3. Real world image segmentation based on the curling vector field 

 

Experiments are also carried out for real world images to extract primitive regions. The images are of 

the size 128×128. The experimental results of the broadcaster image, the peppers image, the house 

image and the brain image are shown as follows. The experimental results indicate that the number of 

primitive regions is large because of the complexity of real world images. There are 274 primitive 

regions for the broadcaster image, 628 for the pepper image, 398 for the house image, and 423 for the 

brain image.  

To obtain meaningful segmentation result, the region-merging step is proposed according to least 

gray-scale difference criterion. First, an expected number of remaining regions after merging is given. 

Then the following steps are carried out to merge regions until the expected region number is reached: 

Step1: For each region in the image, calculate its average gray-scale value; 

Step2: Find the pair of neighboring regions with the least difference of the average gray-scale, and 

merge them into one region; 

Step3: If current region number is larger than the expected region number, return to Step1; otherwise, 

end the merging process; 

Based on the above sections, a method of image segmentation in the curling vector field transform 

is proposed as following: 

Step1: Implement the curling vector field transform on the gray-scale image; 

Step2: Judge the rotating direction of each image point, and extract the base points in the curling 

vector field; 

Step3: Gather the neighboring base points into corresponding group, and each group is assigned a 

group number; 

Step4: Extract the primitive regions by the rotating expansion, which starts from the base points; 

Step5: Merge neighboring primitive regions according to the least average gray-scale difference 

criterion, and obtain the segmentation result with a pre-defined number of remaining regions. 
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The proposed segmentation method is applied to a group of real world images. The results of the 

broadcaster image, the pepper image, the house image and the brain image are shown in Fig. 3-45 to 

Fig. 3-52. Fig. 3-45, Fig. 3-47, Fig. 3-49 and Fig. 3-51 are the original images. Fig. 3-46 is the 

segmentation result of the broadcaster image with 20 regions remained after merging. Fig. 3-48 is the 

segmentation result of the pepper image with 40 regions remained after merging. Fig. 3-50 is the 

segmentation result of the house image with 50 regions remained after merging. Fig. 3-52 is the 

segmentation result of the brain image with 60 regions remained after merging. In Fig. 3-46, Fig. 3-48, 

Fig. 3-50 and Fig. 3-52, different regions are differentiated from each other by different gray-scale 

values.  

The curling vector field has the unique feature that inside each homogeneous region the vectors 

have a rotating whorl pattern, which is a kind of image structure representation. This feature of the 

curling vector field is exploited in image segmentation. Experimental results indicate that image 

segmentation can be effectively implemented in the curling vector field. Further research will 

investigate other properties of the curling vector transform, and its application in other image 

processing tasks will also be studied. 

 

 

                      
Fig. 3-45 The broadcaster image                     Fig. 3-46 Segmentation result of the broadcaster image 

(20 regions remained after merging) 

 

 

                      
Fig. 3-47 The pepper image                             Fig. 3-48 Segmentation result of the pepper image 

(40 regions remained after merging) 

 

 

                       
Fig. 3-49 The house image                                Fig. 3-50 Segmentation result of the house image 

(50 regions remained after merging) 
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Fig. 3-51 The brain image                                Fig. 3-52 Segmentation result of the brain image 

(60 regions remained after merging) 
 

3.3 The curl source reversing for digital images 
 

The magneto-static field has some unique characteristics different from the electro-static field. The 

field of magnetic induction has its curl as the field source, while the electro-static intensity has its 

divergence as the field source. It is interesting and worthwhile to take the image as the magneto-static 

field and study its virtual source (i.e. its curl). In this section, the curl source reversing for gray-scale 

images is studied. According to the following analysis and experiments, it is quite interesting that the 

virtual curl source has close relationship with the image gradient field. 

 

3.3.1 The relationship between the magnetic field and its field source 

 

In physics, moving charges generate magnetic field in the space. Thus the moving charges (i.e. the 

current) can be conceptually regarded as the source of the magnetic field. On the other hand, if the 

magnetic field is known, the field source of current density can be reversed according to the Ampere’s 

law in differential form
[75-78]

: 
→→

⋅=×∇ JB 0µ                                                            (3-16) 

where 
→
B  is the magnetic induction; 

→
J  is the current density (i.e. the field source distribution); 0µ  is 

the permeability constant; ∇  is the Hamiltonian operator: 
→→→
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                                                   (3-17) 

The operator ×  means the cross product of two vectors. The operation of ×∇  obtains the curl of the 

vector field 
→
B , i.e. the source distribution 

→
J  has direct relationship to the curl of 

→
B . Therefore, the 

reverse from the magnetic field to the source is as following: 

0µ

→
→ ×∇= B
J                                                              (3-18) 

 

Because the source reflects underlying structural feature of the field, a transform from the image to the 

virtual curl source is proposed for image structure representation in the next section. 

 

3.3.2 The virtual curl source reversing 
 

In physics, the field is determined by the source distribution. Therefore, the field source can be a 

compact representation of the field. It may reveal structural characteristics of the field, which can be 

exploited in image transform and analysis. In this section, a novel image transform is presented 

imitating the source reverse of the magnetic field. Because the source distribution of magnetic field is 

its curl, the transform is named the “curl source reverse”. 
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The image f(x,y) itself is a scalar distribution in the 2-D domain. To get the virtual curl source of 

the image, each image pixel is represented by a vector ),( yxI
→

, which comes outward from the 2-D 

plane. Moreover, the vector representing a pixel is at a right angle to the 2-D plane, and its magnitude 

is defined as the gray-scale value of that pixel:  
→→

⋅= kyxfyxI ),(),(                                                      (3-19) 

With such definition, the image f(x,y) is represented by the vertical vector field 
→
I . A simple example 

of the vector field representing a small image area of the size 3×3 is shown in Fig. 3-53. 

 

                       
     (a) The small image                                    (b) The vertical vector field representing the small image of (a) 

 
Fig. 3-53 A simple example of the vector field representing a small image 

 

The curl source reverse is proposed as the reverse from the vertical field 
→
I  (as virtual magnetic 

induction) to the virtual current density distribution (named as the virtual “curl source”) imitating 

Equation (3-18). To achieve the curl source reverse, replace 
→
B  in Equation (3-18) with 

→
I :  
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where 
→
C  is the virtual curl source; 

→
i , 

→
j  and 

→
k  are the three unit vectors on the x, y and z coordinates 

respectively. 

It is notable that the components of 
→
I  on the x-coordinate and y-coordinate are both zero because 

it is defined as a vertical vector field. If Equation (3-19) and (3-20) are combined, the curl source 

reverse is given as following: 
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According to Equation (3-21), the result of curl source reverse is a vector field ),( yxC
→

 defined on the 

same 2D plane as the image itself. 

Magneto-Statics Inspired Methods

69



 

70 

Because f(x,y) is a digital image, the two partial derivatives in Equation (3-21) should be estimated 

by discrete operators. In this section, the Sobel operator is used for the estimation. The two templates 

for partial derivative estimation are shown in Fig. 3-54. 
 

                              
The template to estimate the derivative on x-coordinate            The template to estimate the derivative on y-coordinate 

 

Fig. 3-54 The two templates of Sobel operator to estimate the gradient vector 

 

According to the Sobel operator, for the digital image f(x,y), the two components of the virtual curl 

source are estimated as following: 
 

       Cx(x,y)=[f(x-1,y+1)-f(x-1,y-1)]+2[f(x,y+1)-f(x,y-1)]+[f(x+1,y+1)-f(x+1,y-1)]                                 

   Cy(x,y)=-[f(x+1,y-1)-f(x-1,y-1)]-2[f(x+1,y)-f(x-1,y)]-[f(x+1,y+1)-f(x-1,y+1)]                       (3-22) 

 

Equation (3-22) defines the operation of curl source reverse for digital images. The virtual curl 

source for an image is defined as a discrete vector field on the image plane, whose x and y components 

are defined in Equation (3-22). The properties of the virtual curl source are investigated 

experimentally in the next section. 
 

3.3.3 The spatial properties of the virtual curl source for digital images 
 

Equation (3-21) indicates that for a vector in the virtual curl source, its component on the x-coordinate 

is the partial derivative of f(x,y) with respect to y, and its component on the y-coordinate is the 

negative partial derivative with respect to x. On the other hand, it is well known that the gradient 
→
G  of 

a field f(x,y) also has the two partial derivatives as its components: 
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It is indicated by Equation (3-21) and (3-23) that the virtual source obtained by the curl source 

reversing has direct relationship with the gradient field: 
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xy
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−=

=
                                                     (3-24) 

 

Therefore, on any point in the image, the vector in the virtual source has the same magnitude of 

the gradient vector on that point, but their directions are different. According to Equation (3-24), the 

vector of C is obtained by two steps: reflect the vector of G across the line with the slope of 1.0, 

followed by another reflection across the x-axis. In fact, it can be easily proved that the vector of C is 

perpendicular to the vector of G because the two vectors of C and G are orthogonal. The relationship 

between a vector in the curl source and its corresponding gradient vector is shown in Fig. 3-55. 

Because the gradient is always taken as the feature of edges in the image, the virtual source obtained 

by the curl source reverse will also reflect structural feature of the image. 
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Fig. 3-55 The relationship between a vector in the curl source and its corresponding gradient vector 

 

 

Experiments are carried out for a group of test images to study the basic properties of the virtual 

curl source. The curl source reverse is implemented by programming in C language. The test images 

are of the size 32×32. The experimental results are shown in Fig. 3-56 to Fig. 3-60. The figures with 

the label (a) in Fig. 3-56 to Fig. 3-60 are the original test images. The figures with the label (b) in Fig. 

3-56 to Fig. 3-60 are the magnitude distributions of the virtual curl source. The figures with the label 

(c) in Fig. 3-56 to Fig. 3-60 are the direction distributions of the virtual curl source. 

 

 

 

 
(a) The image test1 (4 times of the original size on the right for a clear view) 

 

 

 
(b) The magnitude distribution of the virtual curl source of test1 

(4 times of the original size on the right for a clear view) 
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(c) The direction distribution of the virtual curl source of test1 

 
Fig. 3-56 The result of curl source reverse for test1 

 

 

 
(a) The image test2 (4 times of the original size on the right for a clear view) 

 

 
(b) The magnitude distribution of the virtual curl source of test2 

(4 times of the original size on the right for a clear view) 

 

 
(c) The direction distribution of the virtual curl source of test2 

 

Fig. 3-57 The result of curl source reverse for test2 
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(a) The image test3 (4 times of the original size on the right for a clear view) 

 

 
(b) The magnitude distribution of the virtual curl source of test3 

(4 times of the original size on the right for a clear view) 

 

 
(c) The direction distribution of the virtual curl source of test3 

 

Fig. 3-58 The result of curl source reverse for test3 

 

 
(a) The image test4 (4 times of the original size on the right for a clear view) 

 

 
(b) The magnitude distribution of the virtual curl source of test4 

(4 times of the original size on the right for a clear view) 
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(c) The direction distribution of the virtual curl source of test4 

 
Fig. 3-59 The result of curl source reverse for test4 

 

 
(a) The image test5 (4 times of the original size on the right for a clear view) 

 

 
(b) The magnitude distribution of the virtual curl source of test5 

(4 times of the original size on the right for a clear view) 
 

 
(c) The direction distribution of the virtual curl source of test5 

 
Fig. 3-60 The result of curl source reverse for test5 

 

The experimental results reveal the spatial properties of the virtual curl source. In the figures with 

the label (b) in Fig. 3-56 to Fig. 3-60, larger gray-scale values correspond to larger vector magnitudes. 
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The figures with the label (b) in Fig. 3-56 to Fig. 3-60 show that the energy (i.e. non-zero values) in 

the virtual curl source concentrates near the region borders, where there is more complex structure 

than the other parts of the image
[88,89]

. This is because each vector in the virtual curl source has the 

same magnitude as the gradient vector at the same point, but their directions are different. This 

property of energy concentration in the magnitude distribution of the virtual curl source may be 

exploited in data compression, which is similar to the energy concentration of the 2-D Fourier 

transform in the frequency domain 
[90-92]

.  

The direction distribution of the virtual curl source is shown in the figures with the label (c) in Fig. 

3-56 to Fig. 3-60. The direction angles of the vectors are visualized by discretizing the angles into 8 

discrete directions. The black dots in the figures with the label (c) in Fig. 3-56 to Fig. 3-60 indicate the 

positions of zero vectors. Experimental results indicate that the direction distribution of the virtual 

source has direct relationship with the image structure. In the figures with the label (c) in Fig. 3-56 to 

Fig. 3-60, the vectors in the virtual curl source have a rotating pattern as a whole, which rotate along 

the borders of the regions. For example, the curl vectors in Fig. 3-56(c) rotate anti-clockwise as a 

whole. On the other hand, the curl vectors in the source are zero within homogeneous regions.  

Moreover, the rotating direction of the curl vectors as a whole has direct relationship with the gray-

scale difference between adjacent regions. Experimental results indicate that when moving along the 

rotating direction indicated by the curl vectors, the region on the left hand has lower gray-scale than 

that on the right hand. Therefore, the spatial properties of the magnitude and direction distributions of 

the virtual curl source can be an effective representation of image structure, which may be exploited in 

further analysis. 
 

3.3.4 The opposite transform form the virtual curl source to the restored image 
 

It is an important characteristic of a transform whether it is reversible. For the curl source reverse, the 

opposite transform from the virtual curl source to the restored image is discussed in this section.  

In physics, the continuous magnetic field 
→
B  can be obtained from the distribution of the current 

density 
→
J , which is well known as the Biot-Savart Law

[75-78]
: 

∫
→→

→ ×=
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rJ
pB

3

0

4
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π
µ

                                                           (3-25) 

where )( pB
→

 is the magnetic induction at the point p; 
→
J  is the current density; 

→
r  is the vector from 

the current density to the point p. The integral in Equation (3-25) is for the whole source space where 

the current density exists.  

Imitating Equation (3-25), the restoration from the virtual source ),( yxC
→

 to the field ),(' yxI
→

 (i.e. 

the restored image) is proposed. Because the virtual source and the gradient field are related by 

Equation (3-24), the proposed restoration method can also be a method for estimating the image from 

its gradient field. 

Because ),( yxC
→

 is a vector field defined on a discrete 2-D plane, the restoration of the field 

),(' yxI
→

 should also use discrete operations, i.e. the integral in Equation (3-25) should be replaced by 

summation as following: 
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where K is a constant; H and W are the height and width of the image respectively; ),( jiC
→

 is the 

virtual curl source; ),(' yxI
→

 is the restored field whose magnitude distribution corresponds to the 

restored image; 
),(),( yxji

r →

→
 is the vector from (i,j) to (x,y). 

Because 
),(),( yxji

r →

→
 and ),( yxC

→
 are both 2D vector fields on the image plane, their components on 

z-coordinate are zero: 

0

0

=
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z

z
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C
                                                                 (3-27) 

Therefore, the cross product of ),( yxC
→

 and 
),(),( yxji

r →

→
 is as following: 
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where rx and ry are the two components of 
),(),( yxji

r →

→
 respectively. Combine Equation (3-26) and (3-28), 

the restoration of the field from the virtual curl source is given as following: 
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Because the virtual curl source is related to the gradient field of the image by Equation (3-24), the 

above restoration is also a way to estimate the original image from its gradient field with the virtual 

curl source as an intermediary. First, the gradient field can be transformed to ),( yxC
→

 according to 

Equation (3-24). Then the image can be estimated according to Equation (3-29). 

Experiments of image restoration from the virtual curl source are carried out for a group of real 

world images. The experimental results are shown in Fig. 3-61 to Fig. 3-66. The figures with the label 

(a) in Fig. 3-61 to Fig. 3-66 are the visualization of the original magnitude distribution of the restored 

),(' yxI
→

. The figures with the label (b) in Fig. 3-61 to Fig. 3-66 are the results after contrast 

enhancement of the original restored magnitudes. The figures with the label (c) in Fig. 3-61 to Fig. 3-

66 are the original images. 

 

 

                            
(a) Visualization of  I’(x,y)         (b) Result of contrast enhancement      (c) The original image of the boat 

 

Fig. 3-61 The result of opposite transform from the virtual curl source to the boat image 
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(a) Visualization of I’(x,y)         (b) Result of contrast enhancement     (c) The original image of the bridge 

 
Fig. 3-62 The result of opposite transform from the virtual curl source to the bridge image 

 

                            
(a) Visualization of I’(x,y)          (b) Result of contrast enhancement     (c) The original image of the house 

 

Fig. 3-63 The result of opposite transform from the virtual curl source to the house image 

 

                            
(a) Visualization of I’(x,y)        (b) Result of contrast enhancement     (c) The original image of the peppers 

 
Fig. 3-64 The result of opposite transform from the virtual curl source to the peppers image 

 

                                
(a) Visualization of I’(x,y)      (b) Result of contrast enhancement    (c) The original image of the cameraman 

 
Fig. 3-65 The result of opposite transform from the virtual curl source to the cameraman image 

 

                            
(a) Visualization of I’(x,y)      (b) Result of contrast enhancement    (c) The original image of the broadcaster 

 
Fig. 3-66 The result of opposite transform from the virtual curl source to the broadcaster image 
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The results indicate that the restored images can be the approximations of the original images for 

visual understanding, but there are differences between the restored and original images. Although the 

transform for continuous field defined by Equation (3-18) and (3-25) are reversible, the curl source 

reverse for digital images defined by Equation (3-22) and (3-29) includes operations of discretization, 

which introduces data errors into the restored results. Therefore, the proposed transform of curl source 

reverse is not strictly reversible, but the opposite transform from the virtual curl source to the image 

just provides relatively acceptable results for visual perception. 

Further research will investigate the application of the curl source reverse in other image 

processing applications. It will also be investigated to remove the data errors caused by discretization 

in the transform process so that the opposite transform from the virtual curl source to the image can 

have the quality similar to those strictly reversible transforms. 
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4 Relative Field Method on Image Sequence Processing 
 

Image sequence processing is one of the main research topics in digital image processing, which has 

significant value in theory and practice
[93-96]

. An image sequence can be regarded as a 3D signal 

g(x,y,t). The 3D signal of image sequence can have much more information than a single 2D image 

f(x,y). Many real-world applications are based on image sequence processing such as security 

monitoring, traffic surveillance, medical image sequence analysis, etc. For such practical tasks, the 

trend is advanced intelligent analysis which aims at accurate object recognition, human gesture 

recognition and even behavior recognition. The practical tasks continuously give new requirements of 

processing techniques, which has attracted lots of research interest and efforts. 

Recently, physics inspired methodology has attracted more and more research interest in image 

processing, which exhibits the ability of effective feature extraction and analysis
[3,17,19,22,69-74]

. Electro-

static field plays an important role in such methods
[3,19,70,74]

. The fundamental idea underlying the 

methods inspired by physical fields is the transform from one form of the field to another (i.e. from 

field source to its potential) so that the feature of interest can be revealed
[3,74]

. Some unique 

characteristics of the physical fields are exploited in such methods, which leads to impressively 

effective processing results. Preliminary results indicate the promising wide application of such 

methods in practical tasks.  

Currently, most physics-inspired methods concentrate on the processing of single 2D images. In 

previous Chapters of the book, the authors have studied a series of novel methods inspired by electro-

magnetics for single 2D image analysis. In this chapter, the physical field inspired methodology is 

extended to image sequence analysis based on the authors’ previous work. In fact, the relative 

potential and most vector field methods in Chapter 2 and 3 have some similarity in the definition of 

the virtual field, including the relative potential field, diffusing vector field, curling vector field and 

compressing vector field. All of them define the virtual field by introducing the measurement of pixel 

difference g(i,j)-g(x,y) into their definitions. Such virtual fields are named “relative field”, which are 

defined with the relative value of one pixel compared to another (i.e. g(i,j)-g(x,y)). In this chapter, the 

3D relative potential field is studied as a typical example of extending the “relative field” for 2D 

images to 3D image sequence analysis. Because the similarity in definition, other “relative field” 

methods in this book may be extended to their 3D forms in a similar way. 

The method described in this chapter is named three-dimensional relative potential, which exploits 

the relationship between the source and the potential in the physical electro-static field. The spatial 

property of the 3D relative potential is investigated by both theoretic analysis and experiments, which 

proves that the positive-negative sign distribution of the 3D relative potential value is a natural and 

convenient representation for 3D volume separation and segmentation. The segmented 3D volumes in 

the 3D relative potential field provide an effective object tracking method in image sequences, which 

can be used in further intelligent recognition. 

 

4.1 The 3D relative potential field of image sequences 
 

In the physical electro-static field, the potential is determined by the source (i.e. the charge 

distribution)
[75-78]

. Therefore, the potential field can reflect some characteristics of the source. This 

relationship between the field and its source can be exploited in image transform, in which the image 

is regarded as the source (i.e. the pixels are regarded as discrete charges) and the generated virtual 

field may reveal important features of the images. The attraction of physical field inspired methods is 

the possibility of a natural representation of image structure or components without artificially set 

parameters (such as thresholds in image segmentation). In this chapter, a general form of virtual 

potential field for 3D image sequence is proposed, which is inspired by the physical electro-static field. 
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4.1.1 The electro-static potential and its spatial property 

 

The formula of the physical electro-static potential generated by a charge q is
[75-78]

: 

 

r

q
V ⋅=

πε4

1
                                                               (4-1) 

 

where V is the electro-static potential at a space point. q is the charge quantity. r is the distance 

between the charge and the space point. ε  is a physical constant. 

For a charge distribution ρ  in the space, the potential generated by ρ  on point (x,y) is
[75-78]

: 
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where V is the electro-static potential at a space point. The integral in Equation (4-2) is for the 3D area 

where the charge distribution ρ  exists. 

Many image processing techniques involves local operations in the image, i.e. local image features 

are extracted and analyzed
[79-81]

. Local image features usually have the form of a function f(x,y,z) 

defined in the three-dimensional space of the image sequence. On the other hand, the analysis of the 

image also requires consideration of the neighbouring area of each image point in order to get 

practically useful results. Generally speaking, neighbouring points have stronger relevance than 

remote points, i.e. the closer the distance, the stronger the relevance. In many image processing tasks, 

it is necessary to consider the balance between the strong local relevance of close neighbouring points 

and a wide range of weaker relevance of remote points. Equation (4-2) indicates that the potential of a 

charge q on a space point (i.e. the impact of q on that point) is in direct proportion to the reciprocal of 

the distance r. The mathematical form of the distance reciprocal in Equation (4-2) inspires the 

representation of the local-global relevance between image points. For a point p in the space, the near 

charge distribution in the small local neighboring area has greater impact on p’s potential than remote 

charge distribution. On the other hand, no matter how far the distance is, remote charge distribution 

still has relatively weak impact on p’s potential. Moreover, the accumulation of the weak impacts of 

wide-range remote charge distribution can not be neglected. The above characteristic of the distance 

reciprocal form in Equation (4-2) is quite suitable for the requirement of image analysis that both local 

and global relevance between image points should be considered
[82-87]

. 

 

4.1.2 A general form of virtual potential field for images 

 

The electro-static potential has a suitable mathematical form to model the local-global relevance of 

image points. Here a general form of virtual image potential field is proposed with the electro-static 

analogy. For image analysis, not only the distance between two image points but also the relationship 

between their gray-scale should be considered. Therefore, a general continuous form of virtual 

potential field for image sequences is proposed as: 

 

( , , ) ( , , )

( ( , , ), ( , , ))
( , , )m

c m

a b c x y za b c

f g a b c g x y z
V x y z A da db dc

r →

= ⋅ ⋅ ⋅∫ ∫ ∫                                (4-3) 

 

where Vc
m
(x,y,z) is the continuous image potential value at point (x,y,z). (x,y,z) and (a,b,c) are 

coordinates in the 3D space. Here the 3D space corresponds to the image sequence, which includes the 

single image as a special 2D case. A is a predefined constant value. g is the gray-scale value of image 

points in the sequence (here gray-scale image sequences are considered). f is a function defined 
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according to specific image processing tasks, which represents the relationship between the gray-scale 

values of point (x,y,z) and (a,b,c). r is the distance between (x,y,z) and (a,b,c). m is a constant that 

affect the reciprocal’s decreasing rate with the increasing distance r. The multiple integral in Equation 

(4-3) is on the three-dimensional image space. For a specific processing task, the function f, the 

constants A and m should be pre-defined according to the specific processing purpose. 

For digital image sequences, the discrete form of the virtual potential field is presented as the 

discrete form of Equation (4-3): 
1 1 1

0 0 0 ( , , ) ( , , )
(  or  or )

( ( , , ), ( , , ))
( , , )

D H W
m

d m
k j i i j k x y z

k z j y i x

f g i j k g x y z
V x y z A

r

− − −

= = = →
≠ ≠ ≠

= ⋅ ∑∑∑                                     (4-4) 

 

where Vd
m
(x,y,z) is the discrete image potential on point (x,y,z). A is a predefined constant value. H 

and W are the height and width of the digital image respectively. D is the depth of the image sequence 

(i. e. the frame number), which may represent the temporal position in a video sequence, or the spatial 

position in a sequence of section scanning. g is the gray-scale value of image points. f is a function 

defined according to specific image processing tasks, which represents the relationship between the 

gray-scale values of point (x,y,z) and (i,j,k). r is the distance between (x,y,z) and (i,j,k). m is a constant 

that affect the reciprocal’s decreasing rate with the increasing distance r. Equation (4-4) imitates the 

form of the physical electro-static potential. It is defined in a flexible form, which extends the physical 

formula of (4-2) by introducing the function f and constant m adjustable for different processing tasks.  

 

4.1.3 The definition of 3D relative potential field 

 

For some important image processing tasks such as edge detection and segmentation, the difference 

between pixels (i.e. their gray-scale difference) is the factor of major consideration. In this chapter, the 

3D relative potential is proposed for gray-scale image sequences based on the general form of discrete 

image potential, where the function f(g(i,j,k), g(x,y,z)) in Equation (4-4) is specialized as the difference 

between the gray-scale values of the two points (x,y,z) and (i,j,k) in the sequence: 

 
1 1 1

0 0 0 ( , , ) ( , , )
(  or  or )

( , , ) ( , , )
( , , )

D H W
m

R m
k j i i j k x y z

k z j y i x

g i j k g x y z
V x y z A

r

− − −

= = = →
≠ ≠ ≠

−= ⋅ ∑∑∑                                       (4-5) 

 

where ( , , )m

RV x y z  is the discrete relative potential at the point (x,y,z). A is a predefined constant value. 

D, H and W are the depth, height and width of the image sequence respectively. g is the gray-scale 

value of the points in the sequence. r is the distance between (x,y,z) and (i,j,k). m is a constant that 

affect the reciprocal’s decreasing rate with the increasing distance r. Equation (4-5) is an extension of 

the definition in section 2.1.1. 

Compared with the mathematic form of the electro-static potential, the proposed relative potential 

has two major differences. One is the replacement of the charge with the gray-scale difference, which 

can make the relative potential represents the difference of one point between others in the sequence. 

This is the reason why the virtual potential is called “relative”. The other is the m-th power of the 

distance r. Thus the adjustment of the value m can change the decreasing rate of the relevance 

between image points with the increasing distance r according to the requirement of a specific task. 

 

4.2 The spatial characteristics of the 3D relative potential field 
 

In Equation (4-5), the relevance between two image points with distance r is represented 

quantitatively by the reciprocal of r
m
. The value of relative potential is virtually the weighted sum of 

Relative Field Method on Image Sequence Processing

81



 

82 

the gray-scale difference between the image point (x,y,z) and all other points, and the weight is the 

factor of relevance, i.e. the reciprocal of r
m
. 

According to the definition of the image relative potential in Equation (4-5), the relative potential 

value of a point p is mainly affected by its local neighboring area in the 3D space. The local 

neighboring area consists of two classes of points. One class is those in the same region of p (i.e. with 

similar gray-scale of p), the other is those in the different region. To investigate the properties of the 

relative potential field, experiments are carried out for a series of simple test image sequences. For 

these simple test image sequences, the gray-scale difference in the same region is zero. Thus the 

relative potential of p is mainly affected by the gray-scale difference between p’s region and its 

adjacent area. Suppose A and B are two adjacent areas shown in Fig. 4-1. pa and pb are two border 

points at different border sides. pa is in area A and pb is in area B. ga and gb are the gray-scale of area 

A and B respectively. According to the above discussion, the sign of pa ’s relative potential is 

determined by gb - ga, while the sign of pb ’s relative potential is determined by ga - gb. Thus the signs 

of pa and pb are opposite. Therefore, in the 3D relative potential field, the sign of the relative potential 

value will reverse across the border between adjacent 3D areas. In another word, the sign of the 

relative potential values in two different adjacent 3D bodies (or 3D volumes) is different. This spatial 

feature of the relative potential field can be exploited in image sequence analysis. 
 

 
Fig. 4-1 pa and pb on different sides of the area border 

 
In order to study the spatial property of the 3D relative potential field, experiments are carried out 

on a group of test image sequences. The simple test sequences used in this chapter are of the size 

160× 160 for each frame. Each sequence has 6 frames. The 3D relative potential field is calculated for 

each sequence. When computing the relative potential values, the constant m in Equation (4-5) is pre-

defined as m=3. Fig. 4-2 To Fig. 4-9 show the experimental results for some typical test sequences. 

The sequences in Fig. 4-2, 4-4 and 4-6 represent the typical movements of shifting, shrinking, dilating 

and deforming respectively. The forth sequence in Fig. 4-8 combines the shifting, rotating and 

deforming simultaneously. In the experiment, the sign distribution of the 3D relative potential field is 

recorded for each frame.  

In Fig. 4-2, there are three simple shapes (square, triangle and circle) and they move by shifting 

between the frames. Such test aims to investigate the relative potential distribution for sequences with 

objects of translational motion. 

 

 

     
(a) frame 1                                       (b) frame 2                                         (c) frame 3 
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(d) frame 4                                           (e) frame 5                                          (f) frame 6 

 

Fig. 4-2 The frames of the “shifting” sequence 

    

In Fig. 4-3, the sign distribution of the relative potential values are shown for the “shifting” 

sequence, where white points represent the positive sign and the black points represents the negative 

sign. It is indicated that the sign of the relative potential value will reverse across the border of two 

adjacent 3D bodies. 

                                        
(a) the sign distribution of the relative potential in frame 1            (b) the sign distribution of the relative potential in frame 2 

 

                                        
(c) the sign distribution of the relative potential in frame 3            (d) the sign distribution of the relative potential in frame 4 

 

                                        
(e) the sign distribution of the relative potential in frame 5           (f) the sign distribution of the relative potential in frame 6 

 
Fig. 4-3 The sign distribution of the 3D relative potential value on each frame of the “shifting” sequence 
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In Fig. 4-4, there are two simple shapes (square and circle). In the sequence the square gets smaller 

and smaller, while the circle gets larger and larger. Such test aims to investigate the relative potential 

distribution for sequences with objects of shrinking or dilating. 

 

 

     
(a) frame 1                                       (b) frame 2                                          (c) frame 3 

 

     
(d) frame 4                                         (e) frame 5                                          (f) frame 6 

 
Fig. 4-4 The frames of the “shrinking and dilating” sequence 

 

 

In Fig. 4-5, the sign distribution of the relative potential values are shown for the “shrinking and 

dilating” sequence, where white points represent the positive sign and the black points represents the 

negative sign. It is indicated that the sign of the relative potential value will reverse across the border 

of two adjacent 3D bodies. 

 

 

                                         
(a) the sign distribution of the relative potential in frame 1            (b) the sign distribution of the relative potential in frame 2 
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(c) the sign distribution of the relative potential in frame 3            (d) the sign distribution of the relative potential in frame 4 

 

                                         
(e) the sign distribution of the relative potential in frame 5           (f) the sign distribution of the relative potential in frame 6 

 
Fig. 4-5 The sign distribution of the 3D relative potential value on each frame of the “shrinking and dilating” sequence 

 

In Fig. 4-6, there are two simple shapes (square and circle). In the sequence, the square and the 

circle both change their shapes. The square is deformed to a rectangle and the circle to an ellipse. Such 

test aims to investigate the relative potential distribution for sequences with objects of deforming. 

 

     
(a) frame 1                                       (b) frame 2                                          (c) frame 3 

 

     
(d) frame 4                                         (e) frame 5                                          (f) frame 6 

 
Fig. 4-6 The frames of the “deforming” sequence 
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In Fig. 4-7, the sign distribution of the relative potential values are shown for the “deforming” 

sequence, where white points represent the positive sign and the black points represents the negative 

sign. It is indicated that the sign of the relative potential value will reverse across the border of two 

adjacent 3D bodies. 

 

 

                                         
(a) the sign distribution of the relative potential in frame 1            (b) the sign distribution of the relative potential in frame 2 

 

                                         
(c) the sign distribution of the relative potential in frame 3            (d) the sign distribution of the relative potential in frame 4 

 

                                         
(e) the sign distribution of the relative potential in frame 5           (f) the sign distribution of the relative potential in frame 6 

 
Fig. 4-7 The sign distribution of the 3D relative potential value on each frame of the “deforming” sequence 

 

 

In Fig. 4-8, there are three simple shapes (square, triangle and circle). They move by shifting, 

rotating and deforming. Such test is more complex in the motion of objects, which aims to investigate 

the relative potential distribution for sequences with objects of combinational motion. 
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(a) frame 1                                       (b) frame 2                                        (c) frame 3 

 

     
(d) frame 4                                          (e) frame 5                                       (f) frame 6 

 
Fig. 4-8 The frames of the “combinational motion” sequence 

 

In Fig. 4-9, the sign distribution of the relative potential values are shown for the sequence of 

“combinational motion”, where white points represent the positive sign and the black points 

represents the negative sign. It is indicated that the sign of the relative potential value will reverse 

across the border of two adjacent 3D bodies. 

 

                                        
(a) the sign distribution of the relative potential in frame 1            (b) the sign distribution of the relative potential in frame 2 

 

                                        
(c) the sign distribution of the relative potential in frame 3            (d) the sign distribution of the relative potential in frame 4 
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(e) the sign distribution of the relative potential in frame 5           (f) the sign distribution of the relative potential in frame 6 

 
Fig. 4-9 The sign distribution of the 3D relative potential value on each frame of the “combinational motion” sequence 

 

 

The above experimental results for simple test sequences indicate the importance and possible 

application of the sign distribution in the 3D relative potential field. Since the sign of the relative 

potential reverses across the border of adjacent object areas, it may serve as the feature of 3D border. 

This spatial feature can be exploited in the segmentation of 3D volumes for image sequences, which is 

proved by the following experiments in the next section. 

 

4.3 3D segmentation of image sequence in the relative potential field 
 

Based on the above analysis, 3D segmentation is implemented for the simple test sequences, which 

separates each connected 3D volumes with the same sign of relative potential from others. Since the 

sign of relative potential are opposite in the two different adjacent spatial areas, this can provide the 

basis of object segmentation and tracking in the image sequence. Based on the experimental results, a 

method of 3D body division in the relative potential field is proposed as following: 

Step1: Calculate the 3D relative potential field; 

Step2: Obtain the sign distribution of the relative potential field; 

Step3: Group the adjacent points with the same sign of relative potential into connected 3D bodies. In 

the grouping process, the adjacent points of 6-connection in the 3D space for a point p at (x,y,z) is 

investigated. The points of 6-connection for (x,y,z) include: (x+1,y,z), (x-1,y,z), (x,y+1,z), (x,y-1,z), 

(x,y,z+1) and (x,y,z-1). If any of the six adjacent points has the same sign of relative potential as p, it is 

grouped into the 3D region which p belongs to. The obtained connected 3D regions are the result of 

segmentation for the image sequence. 

The obtained set of connected regions is the result of 3D volume division for the gray-scale image 

sequence. Therefore, the 3D signal space of the sequence is segmented to several 3D bodies. Each 3D 

body is a connected 3D area in which the points have the same sign of relative potential value. 

 

4.3.1 The 3D segmentation results for the testing image sequences 

 

The segmentation results for some test image sequences are shown as following. Fig. 4-10 shows the 

3D segmentation result of the “shifting” sequence according to the sign distribution in Fig. 4-3, where 

different 3D bodies are represented by different gray-scale values for visualization. The segmented 3D 

bodies are shown as a series of sections in 2D form. In another word, each 2D section of the bodies on 

the corresponding frame plane is shown separately, and in each section the areas of different 3D 

bodies are of different gray-scale values. 
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(a) the segmentation result on the plane of frame 1                       (b) the segmentation result on the plane of frame 2 

 

                                        
(c) the segmentation result on the plane of frame 3                       (d) the segmentation result on the plane of frame 4 

 

                                        
(e) the segmentation result on the plane of frame 5                       (f) the segmentation result on the plane of frame 6 

                                 
Fig. 4-10 The sections of the segmented 3D bodies on each frame of the “shifting” sequence 

 

In order to show the segmentation results in a clearer way, the sections shown in Fig. 4-10 are 

overlaid together in Fig. 4-11, which can clearly show the movement of each object through the 

sequence. In Fig. 4-11, only the region borders in each section are shown, and the arrows show the 

moving direction of each object. 

 

 
Fig. 4-11 The overlaid result of the 2D sections in Fig. 4-10 
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Fig. 4-12 shows the 3D segmentation result for the “shrinking and dilating” sequence according to 

the sign distribution in Fig. 4-5, where different 3D bodies are represented by different gray-scale 

values for visualization. The segmented 3D bodies are shown as a series of sections in 2D form. In 

another word, each 2D section of the bodies on the corresponding frame plane is shown separately, 

and in each section the areas of different 3D bodies are of different gray-scale values. 

 

 

                                        
(a) the segmentation result on the plane of frame 1                       (b) the segmentation result on the plane of frame 2 

 

                                        
(c) the segmentation result on the plane of frame 3                       (d) the segmentation result on the plane of frame 4 

 

                                        
(e) the segmentation result on the plane of frame 5                       (f) the segmentation result on the plane of frame 6 

 
Fig. 4-12 The sections of the segmented 3D bodies on each frame of the “shrinking and dilating” sequence 

 

 

In order to show the segmentation results in a clearer way, the sections shown in Fig. 4-12 are 

overlaid together in Fig. 4-13, which can clearly show the movement of each object through the 

sequence. In Fig. 4-13, only the region borders in each section are shown, and the arrows indicate the 

shrinking or dilating of each object. 
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Fig. 4-13 The overlaid result of the 2D sections in Fig. 4-12 

 
Fig. 4-14 shows the 3D segmentation result for the “deforming” sequence according to the sign 

distribution in Fig. 4-7, where different 3D bodies are represented by different gray-scale values for 

visualization. The segmented 3D bodies are shown as a series of sections in 2D form. In another word, 

each 2D section of the bodies on the corresponding frame plane is shown separately, and in each 

section the areas of different 3D bodies are of different gray-scale values. 
 

                                        
(a) the segmentation result on the plane of frame 1                       (b) the segmentation result on the plane of frame 2 

 

                                         
(c) the segmentation result on the plane of frame 3                       (d) the segmentation result on the plane of frame 4 

 

                                        
(e) the segmentation result on the plane of frame 5                       (f) the segmentation result on the plane of frame 6 

 
Fig. 4-14 The sections of the segmented 3D bodies on each frame of the “deforming” sequence 
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In order to show the segmentation results in a clearer way, the sections shown in Fig. 4-14 are 

overlaid together in Fig. 4-15, which can clearly show the movement of each object through the 

sequence. In Fig. 4-15, only the region borders in each section are shown, and the arrows indicate the 

deforming of each object in the sequence. 

 

 

 
Fig. 4-15 The overlaid result of the 2D sections in Fig. 4-14 

 

 

Fig. 4-16 shows the 3D segmentation result for the sequence of “combinational motion” according 

to the sign distribution in Fig. 4-9, where different 3D bodies are represented by different gray-scale 

values for visualization. The segmented 3D bodies are shown as a series of sections in 2D form. In 

another word, each 2D section of the bodies on the corresponding frame plane is shown separately, 

and in each section the areas of different 3D bodies are of different gray-scale values. 

 

 

                                         
(a) the segmentation result on the plane of frame 1                       (b) the segmentation result on the plane of frame 2 

 

 

                                        
(c) the segmentation result on the plane of frame 3                       (d) the segmentation result on the plane of frame 4 
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(e) the segmentation result on the plane of frame 5                       (f) the segmentation result on the plane of frame 6 

 
Fig. 4-16 The sections of the segmented 3D bodies on each frame of the “combinational motion” sequence 

 

In order to show the segmentation results in a clearer way, the sections shown in Fig. 4-16 are 

overlaid together in Fig. 4-17, which can clearly show the movement of each object through the 

sequence. In Fig. 4-17, only the region borders in each section are shown, and the arrows show the 

moving direction of each object. 

 

 
Fig. 4-17 The overlaid result of the 2D sections in Fig. 4-16 

 

In the above experimental results, the regions of the simple objects are effectively separated from 

others in each single frame. Moreover, because the segmentation is implemented in the 3D space, the 

results are 3D bodies (or 3D volumes) in the space. Each 2D region segmented in a single frame is 

just a section of a corresponding 3D body. In another word, each segmented 3D body is formed by a 

corresponding object region which runs through the frame sequence (maybe with the movements of 

shifting, rotating or deforming). Therefore, the 3D segmentation result can provide a basis of object 

tracking for further analysis and recognition.  

 

4.3.2 The 3D segmentation results for the real-world image sequences 

 

To investigate the practical application of the above 3D segmentation method, experiments have also 

been carried out for real world image sequences. Real world image sequences are more complex than 

the test sequences. It is much more difficult to handle the real world images because of noise, shadow, 

sheltering between moving objects, etc. In this section, experiments are carried out on lots of real 

world sequences for several hot topics of research and application. These topics include: hand tracking 

and segmentation (for gesture recognition), face tracking and segmentation (for expression 

recognition), the tracking and segmentation of the speaker’s lip (for automatic lip reading by 

computers), moving person tracking and segmentation (for posture recognition and human behavior 

identification), vehicle tracking and segmentation (for vehicle type recognition), and medical 

sequence segmentation. Such experiments aim at the proving of the proposed method’s practical 

effectiveness, and also possible improvements of the method in practical use. Some of the sequences 
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used in the experiments are captured by the authors with a digital camera. The others are obtained 

from public image databases on the Internet. In the following discussion, some experiments are 

discussed, where the original sequences and the segmentation results are shown and analyzed. 

Fig. 4-18 is the sequence of a waving hand, which has the size 160 × 120 for each frame. In the 

experiment, the sign distribution of the relative potential in the 3D space is recorded. The result is 

shown in a 2D form in Fig. 4-19, where the sign distribution in each frame is shown separately. 

According to Fig. 4-19, the main area of the moving hand can be segmented as a connected region of 

the same sign of relative potential. Moreover, the tracking of the hand is also possible based on the 

segmentation result because in the result the hand area is a connected 3D area through the sequence. 

The segmentation result is shown in Fig. 4-20, where the 3D result is shown in a 2D form and 

different areas are represented by different gray-scale values.  
 

     
(a) frame 1                                       (b) frame 2                                          (c) frame 3 

  

     
(d) frame 4                                      (e) frame 5                                          (f ) frame 6 

 
Fig. 4-18 The video sequence of a waving hand 

 

     
(a) the sign distribution of the           (b) the sign distribution of the            (c) the sign distribution of the 

relative potential in frame 1              relative potential in frame 2                relative potential in frame 3 

 

     
(d) the sign distribution of the            (e) the sign distribution of the           (f) the sign distribution of the 

relative potential in frame 4               relative potential in frame 5              relative potential in frame 6 

 
Fig. 4-19 The sign distribution of the relative potential values for the “waving hand” video sequence 

Chapter 4

94



 

95 

 

 

     
(a) the segmentation result                (b) the segmentation result                  (c) the segmentation result 

on the plane of frame 1                    on the plane of frame 2                       on the plane of frame 3 

 

     
(d) the segmentation result                (e) the segmentation result                 (f) the segmentation result 

on the plane of frame 4                     on the plane of frame 5                      on the plane of frame 6 

 
Fig. 4-20 The segmentation results on the plane of each frame 

 

 

Fig. 4-21 is the result of extracting the hand area from each frame based on the 3D segmentation 

result. It is clear that the tracking of the hand can be implemented based on the result. In Fig. 4-22, the 

segmentation on each frame are put together to show the tracking of the hand motion in the sequence. 

Based on the segmentation result, further hand gesture recognition can be carried out. The behavior 

identification of the hand can also be studied based on the segmentation. 

 

     
(a) the section of the segmented         (b) the section of the segmented        (c) the section of the segmented 

3D volume on the plane of frame 1    3D volume on the plane of frame 2   3D volume on the plane of frame 3 

 

     
(d) the section of the segmented        (e) the section of the segmented         (f) the section of the segmented 

3D volume on the plane of frame 4    3D volume on the plane of frame 5   3D volume on the plane of frame 6 

 

Fig. 4-21 The segmented hand area on the plane of each frame 
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Fig. 4-22 The sequence of waving hand area segmented from the video 

 

Fig. 4-23 is the sequence of a clenching hand, which has the size 160 × 120 for each frame. In the 

experiment, the sign distribution of the relative potential in the 3D space is recorded. The result is 

shown in a 2D form in Fig. 4-24, where the sign distribution in each frame is shown separately. 

According to Fig. 4-24, the main area of the clenching hand can be segmented as a connected region 

of the same sign of relative potential value. Moreover, the tracking of the hand is also possible based 

on the segmentation result because in the result the hand area is a connected 3D area through the 

whole sequence. The segmentation result is shown in Fig. 4-25, where the 3D result is shown in a 2D 

form and different areas are represented by different gray-scale values. In Fig. 4-26, the segmentation 

on each frame are put together to show the tracking of the hand’s clenching process. Based on the 

segmentation result, further hand gesture recognition can be carried out. The behavior identification of 

the hand can also be studied based on the segmentation. 

 

 

     
(a) frame 1                                       (b) frame 2                                          (c) frame 3 

 

     
(d) frame 4                                      (e) frame 5                                          (f ) frame 6 

 
Fig. 4-23 The video sequence of a clenching hand 

 

 

     
(a) the sign distribution of the           (b) the sign distribution of the            (c) the sign distribution of the 

relative potential in frame 1              relative potential in frame 2                relative potential in frame 3 
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(d) the sign distribution of the            (e) the sign distribution of the           (f) the sign distribution of the 

relative potential in frame 4               relative potential in frame 5              relative potential in frame 6 

 
Fig. 4-24 The sign distribution of the relative potential values for the “clenching hand” video sequence 

 

     
(a) the segmentation result                (b) the segmentation result                  (c) the segmentation result 

on the plane of frame 1                    on the plane of frame 2                       on the plane of frame 3 

 

     
(d) the segmentation result                (e) the segmentation result                 (f) the segmentation result 

on the plane of frame 4                     on the plane of frame 5                      on the plane of frame 6 

 
Fig. 4-25 The segmentation results for the “clenching hand” video sequence 

 

 
Fig. 4-26 The sequence of clenching hand area segmented from the video 

 

Fig. 4-27 is the sequence of a grabbing hand, which has the size 160× 120 for each frame. In the 

experiment, the sign distribution of the relative potential in the 3D space is recorded. The result is 

shown in a 2D form in Fig. 4-28, where the sign distribution in each frame is shown separately. 

According to Fig. 4-28, the main area of the grabbing hand can be segmented as a connected region of 

the same sign of relative potential value. Moreover, the tracking of the hand is also possible based on 

the segmentation result because in the result the hand area is a connected 3D area through the whole 

sequence. The segmentation result is shown in Fig. 4-29, where the 3D result is shown in a 2D form 

and different areas are represented by different gray-scale values. In Fig. 4-30, the segmentation on 

each frame are put together to show the tracking of the hand’s grabbing process. Based on the 

segmentation result, further hand gesture recognition can be carried out. The behavior identification of 

the hand can also be studied based on the segmentation result. In this sequence, the influence of the 
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shadow within the hand area is obvious, while the outer counter of the hand can still be determined 

clearly. 

 

     
(a) frame 1                                       (b) frame 2                                          (c) frame 3 

 
Fig. 4-27 The video sequence of a grabbing hand 

 

     
(a) the sign distribution of the           (b) the sign distribution of the            (c) the sign distribution of the 

relative potential in frame 1              relative potential in frame 2                relative potential in frame 3 

 
Fig. 4-28 The sign distribution of the relative potential values for the    “grabbing hand” video sequence 

 

     
(a) the segmentation result                (b) the segmentation result                  (c) the segmentation result 

on the plane of frame 1                    on the plane of frame 2                       on the plane of frame 3 

 
Fig. 4-29 The segmentation results for the “grabbing hand” video sequence 

 

 
Fig. 4-30 The sequence of “grabbing hand” area segmented from the video 

 

Fig. 4-31 is the first sequence of a TV broadcaster, which has the size 176× 144 for each frame. In 

the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result is 

shown in a 2D form in Fig. 4-32, where the sign distribution in each frame is shown separately. 

According to Fig. 4-32, the main area of the broadcaster can be segmented as several connected 

regions, including the hair and face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-33, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic lip 
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reading, in Fig. 4-34 the segmentation of the lip on each frame are put together to show the tracking of 

the moving lip. In Fig. 4-34, the extraction of lips is shown in both the original size and 4 times of 

original size for a clear view. Based on the segmentation result, further recognition can be carried out. 

 

 

           
(a) frame 1                                                         (b) frame 2 

 

           
(c) frame 3                                                          (d) frame 4 

 
Fig. 4-31 The 1st video sequence of a broadcaster 

 

 

           
(a) the sign distribution of the                           (b) the sign distribution of the 

relative potential in frame 1                              relative potential in frame 2 

            
(c) the sign distribution of the                           (d) the sign distribution of the 

relative potential in frame 3                              relative potential in frame 4 

 
Fig. 4-32 The sign distribution of the relative potential values for the 1st “broadcaster” video sequence 
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(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                  (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 

 
Fig. 4-33 The segmentation results for the 1st “broadcaster” video sequence 

 

 

 
 

Fig. 4-34 The sequence of the moving lip segmented from the 1st “broadcaster” video sequence 

 

 

Fig. 4-35 is the second sequence of a TV broadcaster, which has the size 176× 144 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-36, where the sign distribution in each frame is shown separately. 

According to Fig. 4-36, the main area of the broadcaster can be segmented as several connected 

regions, including the hair and face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-37, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic lip 

reading, in Fig. 4-38 the segmentation of the lip on each frame are put together to s show the tracking 

of the moving lip. Based on the segmentation result, further recognition can be carried out. 
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(a) frame 1                                                         (b) frame 2 

 

           
(c) frame 3                                                         (d) frame 4 

 

           
(e) frame 5                                                         (f) frame 6 

 
Fig. 4-35 The 2nd video sequence of the broadcaster 

 

 

 

           
(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 
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(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

           
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 
Fig. 4-36 The sign distribution of the relative potential values for the 2nd “broadcaster” video sequence 

 
 
 

            
(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 

 

 

 

Chapter 4

102



 

103 

            
(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-37 The segmentation results for the 2nd “broadcaster” video sequence 

 

 
Fig. 4-38 The sequence of the moving lip segmented from the 2nd “broadcaster” video sequence 

 

Fig. 4-39 is the third sequence of a TV broadcaster, which has the size 176× 144 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-40, where the sign distribution in each frame is shown separately. 

According to Fig. 4-40, the main area of the broadcaster can be segmented as several connected 

regions, including the hair and face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-41, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic lip 

reading, in Fig. 4-42 the segmentation of the lip on each frame are put together to show the tracking of 

the moving lip. Based on the segmentation result, further recognition can be carried out. 

 

            
(a) frame 1                                                         (b) frame 2 

 

            
(c) frame 3                                                         (d) frame 4 
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(e) frame 5                                                         (f) frame 6 

 
Fig. 4-39 The 3rd video sequence of the broadcaster 

 

 

 

            
(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 

 

            
(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

            
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 
Fig. 4-40 The sign distribution of the relative potential values for the 3rd “broadcaster” video sequence 
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(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 

            
(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-41 The segmentation results for the 3rd “broadcaster” video sequence 

 

 

 
Fig. 4-42 The sequence of the moving lip segmented from the 3rd “broadcaster” video sequence 

 

 

Fig. 4-43 is the forth sequence of a TV broadcaster, which has the size 176× 144 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-44, where the sign distribution in each frame is shown separately. 

According to Fig. 4-44, the main area of the broadcaster can be segmented as several connected 

regions, including the hair and face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-45, where the 3D result is shown in a 2D form and different 
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areas are represented by different gray-scale values. Especially, for the application of automatic lip 

reading, in Fig. 4-46 the segmentation of the lip on each frame are put together to show the tracking of 

the moving lip. Based on the segmentation result, further recognition can be carried out. 

 

 

            
(a) frame 1                                                         (b) frame 2 

 

            
(c) frame 3                                                         (d) frame 4 

 

            
(e) frame 5                                                         (f) frame 6 

 
Fig. 4-43 The 4th video sequence of the broadcaster 

 

 

            
(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 
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(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

            
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 

Fig. 4-44 The sign distribution of the relative potential values for the 4th “broadcaster” video sequence 

 
 
 

            
(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 
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(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-45 The segmentation results for the 4th “broadcaster” video sequence 

 

 

 
Fig. 4-46 The sequence of the moving lip segmented from the 4th “broadcaster” video sequence 

 

 

Fig. 4-47 is the first sequence of another TV broadcaster, which has the size 176× 144 for each 

frame. In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The 

result is shown in a 2D form in Fig. 4-48, where the sign distribution in each frame is shown 

separately. According to Fig. 4-48, the main area of the broadcaster can be segmented as several 

connected regions including the face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-49, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic 

expression recognition, in Fig. 4-50 the segmentation of the face on each frame are put together to 

show the tracking of the face in the sequence. The segmentations of the lip in each frame are also put 

together in Fig. 4-51. Based on the segmentation results, further recognition can be carried out. 

 

 

 

            
(a) frame 1                                                         (b) frame 2 
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(c) frame 3                                                         (d) frame 4 

 

            
(e) frame 5                                                         (f) frame 6 

 

Fig. 4-47 The 1st video sequence of a TV presenter 

 

 

 

            
(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 

 

            
(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

 

 

 

 

Relative Field Method on Image Sequence Processing

109



 

110 

            
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 

Fig. 4-48 The sign distribution of the relative potential values for the 1st “TV presenter” video sequence 

 

 

 

            
(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 

 

            
(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-49 The segmentation results for the 1st “TV presenter” video sequence 
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Fig. 4-50 The sequence of the face (including eyebrows, eyes, nose and lip) segmented from the 1st video of the TV presenter 

 

 

 
Fig. 4-51 The sequence of the moving lip segmented from the 1st video of the TV presenter 

 

 

Fig. 4-52 is the second sequence of the TV broadcaster, which has the size 176× 144 for each 

frame. In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The 

result is shown in a 2D form in Fig. 4-53, where the sign distribution in each frame is shown 

separately. According to Fig. 4-53, the main area of the broadcaster can be segmented as several 

connected regions including the face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-54, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic 

expression recognition, in Fig. 4-55 the segmentation of the face on each frame are put together to 

show the tracking of the face in the sequence. The segmentations of the lip in each frame are also put 

together in Fig. 4-56. Based on the segmentation results, further recognition can be carried out. 

 

 

            
(a) frame 1                                                         (b) frame 2 

 

            
(c) frame 3                                                         (d) frame 4 
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(e) frame 5                                                         (f) frame 6 

 

Fig. 4-52 The 2nd video sequence of a TV presenter 

 

 

 

            
(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 

 

            
(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

            
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 

Fig. 4-53 The sign distribution of the relative potential values for the 2nd video sequence of a TV presenter 
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(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 

 

            
(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-54 The segmentation results for the 2nd video sequence of a TV presenter 

 

 

 

 
Fig. 4-55 The sequence of the face (including eyebrows, eyes, nose and lip) segmented from the 2nd video of the TV presenter 

 

 

 

 
Fig. 4-56 The sequence of the moving lip segmented from the 2nd video of the TV presenter 
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Fig. 4-57 is the third sequence of the TV broadcaster, which has the size 176× 144 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-58, where the sign distribution in each frame is shown separately. 

According to Fig. 4-58, the main area of the broadcaster can be segmented as several connected 

regions including the face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-59, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic 

expression recognition, in Fig. 4-60 the segmentation of the face on each frame are put together to 

show the tracking of the face in the sequence. The segmentations of the lip in each frame are also put 

together in Fig. 4-61. Based on the segmentation results, further recognition can be carried out. 

 

 

 

            
(a) frame 1                                                         (b) frame 2 

 

            
(c) frame 3                                                         (d) frame 4 

 

            
(e) frame 5                                                         (f) frame 6 

 

Fig. 4-57 The 3rd video sequence of a TV presenter 
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(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 

 

            
(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

            
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 

Fig. 4-58 The sign distribution of the relative potential values for the 3rd video of the TV presenter 

 

 

 

 

            
(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 
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(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 

 

            
(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-59 The segmentation results for the 3rd video of the TV presenter 

 

 

 
Fig. 4-60 The sequence of the face (including eyebrows, eyes, nose and lip) segmented from the 3rd video of the TV presenter 

 

 

 
Fig. 4-61 The sequence of the moving lip segmented from the 3rd video of the TV presenter 

 

 

Fig. 4-62 is the forth sequence of the TV broadcaster, which has the size 176× 144 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-63, where the sign distribution in each frame is shown separately. 

According to Fig. 4-63, the main area of the broadcaster can be segmented as several connected 

regions including the face. Moreover, the tracking of the face is also possible based on the 

segmentation result because the result includes connected 3D areas through the whole sequence. The 

segmentation result is shown in Fig. 4-64, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Especially, for the application of automatic 

expression recognition, in Fig. 4-65 the segmentation of the face on each frame are put together to 

show the tracking of the face in the sequence. The segmentations of the lip in each frame are also put 

together in Fig. 4-66. Based on the segmentation results, further recognition can be carried out. 
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(a) frame 1                                                         (b) frame 2 

 

            
(c) frame 3                                                         (d) frame 4 

 

            
(e) frame 5                                                         (f) frame 6 

 

Fig. 4-62 The video sequence of the 4th video of the TV presenter 

 

 

 

 

            
(a) the sign distribution of the                            (b) the sign distribution of the 

relative potential in frame 1                               relative potential in frame 2 
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(c) the sign distribution of the                            (d) the sign distribution of the 

relative potential in frame 3                               relative potential in frame 4 

 

            
(e) the sign distribution of the                            (f) the sign distribution of the 

relative potential in frame 5                              relative potential in frame 6 

 

Fig. 4-63 The sign distribution of the relative potential values for the 4th video of the TV presenter 

 

 

 

 

            
(a) the segmentation result                                  (b) the segmentation result 

on the plane of frame 1                                       on the plane of frame 2 

 

            
(c) the segmentation result                                 (d) the segmentation result 

on the plane of frame 3                                      on the plane of frame 4 
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(e) the segmentation result                                 (f) the segmentation result 

 on the plane of frame 5                                      on the plane of frame 6 

 
Fig. 4-64 The segmentation results for the 4th video of the TV presenter 

 

 

 
Fig. 4-65 The sequence of the face (including eyebrows, eyes, nose and lip) segmented from the 4th video of the TV presenter 

 

 

 
Fig. 4-66 The sequence of the moving lip segmented from the 4th video of the TV presenter 

 

 

Fig. 4-67 is the sequence of a person raising his arms, which has the size 160× 120 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-68, where the sign distribution in each frame is shown separately. 

According to Fig. 4-68, the main area of the person can be segmented as a connected region with the 

same sign of the relative potential value. Moreover, the tracking of the person’s action is also possible 

based on the segmentation result because the result includes connected 3D area of the person through 

the whole sequence. The segmentation result is shown in Fig. 4-69, where the 3D result is shown in a 

2D form and different areas are represented by different gray-scale values. For the application of 

automatic posture and behavior recognition, in Fig. 4-70 the segmentation of the person on each frame 

are put together to show the tracking of his action in the sequence. Based on the segmentation results, 

further recognition can be carried out. 

 

     
(a) frame 1                                        (b) frame 2                                         (c) frame 3 
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(d) frame 4                                        (e) frame 5 

 
Fig. 4-67 The video sequence of a person raising the arms 

 

     
(a) the sign distribution of the           (b) the sign distribution of the            (c) the sign distribution of the 

relative potential in frame 1              relative potential in frame 2               relative potential in frame 3 

 

   
(d) the sign distribution of the           (e) the sign distribution of the    

relative potential in frame 4              relative potential in frame 5      

 
Fig. 4-68 The sign distribution of the relative potential values for the “raising arms” video sequence 

 

     
(a) the segmentation result                (b) the segmentation result                 (c) the segmentation result 

on the plane of frame 1                     on the plane of frame 2                      on the plane of frame 3 

 

   
(d) the segmentation result                (e) the segmentation result     

on the plane of frame 4                     on the plane of frame 5         

 
Fig. 4-69 The segmentation results for the “raising arms” video sequence 
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Fig. 4-70 The sequence of the “raising arms” action segmented from the video 

 

Fig. 4-71 is the sequence of a running person, which has the size 160 × 120 for each frame. In the 

experiment, the sign distribution of the relative potential in the 3D space is recorded. The result is 

shown in a 2D form in Fig. 4-72, where the sign distribution in each frame is shown separately. 

According to Fig. 4-72, the main area of the person can be segmented as a connected region with the 

same sign of the relative potential value. Moreover, the tracking of the person’s action is also possible 

based on the segmentation result because the result includes connected 3D area of the person through 

the whole sequence. The segmentation result is shown in Fig. 4-73, where the 3D result is shown in a 

2D form and different areas are represented by different gray-scale values. For the application of 

automatic posture and behavior recognition, in Fig. 4-74 the segmentation of the person on each frame 

are put together to show the tracking of his action in the sequence. Based on the segmentation results, 

further recognition can be carried out. 

 

     
(a) frame 1                                       (b) frame 2                                          (c) frame 3 

 
Fig. 4-71 The video sequence of a running person 

 

     
(a) the sign distribution of the            (b) the sign distribution of the           (c) the sign distribution of the 

relative potential in frame 1              relative potential in frame 2               relative potential in frame 3 

 
Fig. 4-72 The sign distribution of the relative potential values for the “running” video sequence 

 

     
(a) the segmentation result                (b) the segmentation result                 (c) the segmentation result 

on the plane of frame 1                     on the plane of frame 2                       on the plane of frame 3 

 
Fig. 4-73 The segmentation results for the “running” video sequence 
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Fig. 4-74 The sequence of the running person segmented from the video 

 

Fig. 4-75 is a traffic sequence, which has the size 160× 120 for each frame. In the experiment, the 

sign distribution of the relative potential in the 3D space is recorded. The result is shown in a 2D form 

in Fig. 4-76, where the sign distribution in each frame is shown separately. According to Fig. 4-76, the 

main area of the car at the front can be segmented as a connected region with the same sign of the 

relative potential. The tracking of the front car is possible based on the segmentation result because 

the result includes connected 3D area of the car through the whole sequence. The segmentation result 

is shown in Fig. 4-77, where the 3D result is shown in a 2D form and different areas are represented 

by different gray-scale values. For the application of automatic car tracking, in Fig. 4-78 and Fig. 4-79 

the segmentations of the front car in each frame are put together to show the vertical and horizontal 

movement respectively. In Fig. 4-78, the vertical positions of the car in each frame are kept 

unchanged to show the vertical translation through the sequence. In Fig. 4-79, the horizontal positions 

of the car in each frame are kept unchanged to show the horizontal translation through the sequence. 

Then the movement of the car can be estimated for further analysis. 

 

 

              
(a) frame 1                                                    (b) frame 2 

 

              
(c) frame 3                                                     (d) frame 4 

 
Fig. 4-75 A traffic video sequence 

 

              
(a) the sign distribution of the                          (b) the sign distribution of the 

relative potential in frame 1                             relative potential in frame 2 
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 (c) the sign distribution of the                         (d) the sign distribution of the 

relative potential in frame 3                           relative potential in frame 4 

 
Fig. 4-76 The sign distribution of the relative potential values for the traffic video sequence 

 

 

 

              
(a) the segmentation result                              (b) the segmentation result 

on the plane of frame 1                                   on the plane of frame 2 

 

               
 (c) the segmentation result                              (d) the segmentation result 

on the plane of frame 3                                   on the plane of frame 4 

 
Fig. 4-77 The segmentation results for the traffic video sequence 

 

 

 

 
 

Fig. 4-78 The segmented car and the change of its vertical position in the image sequence 

 

 

 

 

Relative Field Method on Image Sequence Processing

123



 

124 

 

 
Fig. 4-79 The segmented car and the change of its horizontal position in the image sequence 

 

 

Fig. 4-80 shows two frames of a ping-pong sequence, which has the size 176× 120 for each frame. 

In the experiment, the sign distribution of the relative potential in the 3D space is recorded. The result 

is shown in a 2D form in Fig. 4-81, where the sign distribution in each frame is shown separately. The 

segmentation result is shown in Fig. 4-82, where the 3D result is shown in a 2D form and different 

areas are represented by different gray-scale values. Because it is obvious that there is much noise in 

the original images, the segmentation results have many small areas. Moreover, some regions of 

interest (such as the arm and the bat) are connected to the background noise areas. Nevertheless, the 

ball and some part of the hand can still be extracted according to Fig. 4-82, which is shown in Fig. 4-

83. In Fig. 4-83, it is obvious that the vertical translation of the ball can be estimated for further 

analysis. 

 

 

              
(a) frame 1                                                       (b) frame 2 

 
Fig. 4-80 Two frames of the “table tennis” video 

 

 

              
(a) the sign distribution of the                         (b) the sign distribution of the 

relative potential in frame 1                           relative potential in frame 2 

  
Fig. 4-81 The sign distribution of the relative potential values for the “table tennis” video sequence 
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(a) the segmentation result                              (b) the segmentation result 

on the plane of frame 1                                    on the plane of frame 2 

  
Fig. 4-82 The segmentation results for the “table tennis” video sequence 

 

 

 

 
 

Fig. 4-83 The comparison of the ball’s vertical position segmented from the “table tennis” video 

 

 

Fig. 4-84 shows three frames of a CT image sequence obtained from a public medical image 

database on the Internet for research use. The sequence has the size 192× 192 for each frame. Fig. 4-

85 shows the sign distribution of the 3D relative potential field in a 2D form, where different 3D 

bodies are represented by different gray-scale values. The segmented 3D bodies are shown as a series 

of sections in 2D form in Fig. 4-86. In another word, each 2D section of the bodies on the 

corresponding frame plane is shown separately as 2D image, and in each section the areas of different 

bodies are of different gray-scale values. 

 

 

 

             
(a) frame 1                                                            (b) frame 2 
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(c) frame 3 

 

Fig. 4-84 Three frames from a CT image sequence 

 

 

 

 

 

          
(a) the sign distribution of the                               (b) the sign distribution of the 

relative potential in frame 1                                  relative potential in frame 2 

 

 

 
 (c) the sign distribution of the 

relative potential in frame 3 

 
Fig. 4-85 The sign distribution of the 3D relative potential field 
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(a) the segmentation result                                   (b) the segmentation result 

on the plane of frame 1                                        on the plane of frame 2 

 

 

 
 (c) the segmentation result                 

on the plane of frame 3                     

 
Fig. 4-86 The segmentation result according to Fig. 4-85 

 

In this chapter, plenty of experimental results are shown for the study of 3D relative potential 

analysis on image sequences. The above experimental results indicate that the relative potential field 

of 3D image sequences can serve as a natural representation of 3D region border for object division. 

Moreover, the segmented 3D bodies from the sequence provide a convenient way for object tracking 

and analysis. The effectiveness of the relative potential method is based on some unique 

characteristics of its mathematical form, which serves as a suitable model for the representation of the 

local-global relevance between image points. The structure information of the sequence can be 

revealed by the relative potential transform. The sign distribution of the relative potential values can 

serve as the feature of 3D region border, based on which image sequence segmentation can be 

performed.  
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5 Relative Field Method on Color Image Processing 
 

Color image processing is an important branch of digital image processing
[97-103]

. Nowadays, color 

image can be obtained conveniently by many types of image capture devices. Color images are widely 

applied in research, industry, medicine, etc. The gray-scale value (or brightness, intensity) of a pixel 

can be derived from its color. The color has more information, based on which more accurate and 

effective processing results may be obtained. Therefore, color image processing has attracted more 

and more research interest and efforts.  

Currently, many existing processing methods are for gray-scale images. It is of much practical 

importance to extend such methods to color image processing, or study novel methods for color 

images considering their special characteristics. The extension from gray-scale processing to color 

involves the increasing of the data dimension (i.e. from scalar grayscale to three-dimensional color 

space such as RGB or HSI). The increasing of the data amount in color images also brings about new 

requirements for processing methods. 

In recent years, the physical field inspired methods have achieved promising results for image 

processing tasks such as image segmentation, biometrics, corner detection, etc
[3,17,19,22,69-74]

. The idea 

of regarding a digital image as a virtual field imitating the physical field gives a natural way of image 

structure presentation and decomposition for further analysis. Moreover, the novel representation may 

reveal new features useful in practical tasks. The electro-magnetic field in physics has a complete set 

of theoretical descriptions (a series of laws and theorems)
[75-78]

. There are on-going researches to 

explore the practical use of the methods imitating the electro-magnetic rules in signal and image 

analysis. In this research direction, existing methods focus on grayscale image processing, and there is 

a practical need of extending such promising methods to color image processing.  

In previous research work, the authors have presented a series of novel methods inspired by 

electro-magnetics for gray-scale image analysis. In this chapter, the extension of such methods from 

gray-scale processing to color image is studied. Since the “relative field” methods mentioned in 

Chapter 4 have similarity in their definition, they may be extended to color image processing in a 

similar way. The key idea underlying the “relative field” is introducing the measurement of pixel 

difference in their definitions. Therefore, the key problem of extending the “relative field” methods 

from grayscale to color image processing is the definition of the measurement of color difference.  

In this chapter, a novel measurement of color difference in the RGB space is presented. The 

relative potential field for color image analysis is presented, which is a typical case of extending the 

“relative field” methods. The spatial feature of the color relative potential is discussed theoretically 

and investigated by experiments on a series of color images, which is then applied in color image 

segmentation. Moreover, the brightness normalization is presented to eliminate the influence of 

shading and sheltering. 

 

5.1 The definition of the relative potential for color images 
 

In physics, the electro-static potential is determined by the source (i.e. the charge distribution). 

Therefore, the potential field can reflect some characteristics of the source. This relationship between 

the field and its source can be exploited in image transform, in which the image is regarded as the 

source (i.e. the pixels are regarded as discrete charges) and the generated virtual field may reveal 

important features of the image. In this chapter, a general form of virtual potential field for digital 

images (both gray-scale and color images) is presented. 

 

5.1.1 A general form of virtual potential field for 2D images 

 

The formula of the physical electro-static potential generated by a charge q is as following
[75-78]

: 
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r

q
V ⋅=

πε4

1
                                                              (5-1) 

 
where V is the electro-static potential at a space point. q is the charge quantity. r is the distance 

between the charge and the space point. ε  is a physical constant. 

For a charge distribution ρ  in the space, the potential generated by ρ  on the point (x,y) is as 

following
[75-78]

: 

 

 

1

4 V

d
V

r

ρ τ
πε

⋅= ∫                                                        (5-2) 

 

where V is the electro-static potential at a space point. The integral in Equation (5-2) is for the whole 

region where the charge distribution ρ  exists. 

Imitating the physical electro-static field, a general form of virtual potential for digital images 

(both color and grayscale images) is presented. For image analysis, not only the distance between two 

image points but also the relationship between their optical characteristics (such as the color) should 

be considered. Therefore, a general continuous form of image virtual potential is proposed as: 
 

( , ) ( , )

( ( , ), ( , ))
( , )m

c m

a b x ya b

f h a b h x y
V x y A da db

r →

= ⋅ ⋅∫ ∫                                        (5-3) 

 
where Vc

m
(x,y) is the continuous image potential value on point (x,y). A is a predefined constant value. 

h is the optical characteristics (such as the color) of image points. f is a function defined according to 

specific image processing tasks, which represents the relationship between the gray-scale values of 

point (x,y) and (a,b). r is the distance between (x,y) and (a,b). m is a constant that affect the 

reciprocal’s decreasing rate with the increasing distance r. The double integral in Equation (5-3) is on 

the two-dimensional image plane. For a specific processing task, the function f and the constants A, m 

should be pre-defined according to the specific processing purpose. 

For digital images, the general discrete form of image virtual potential is proposed as the discrete 

form of Equation (5-3): 
 

1 1

0 0 ( , ) ( , )
(  or )

( ( , ), ( , ))
( , )

H W
m

d m
j i i j x y
j y i x

f h i j h x y
V x y A

r

− −

= = →
≠ ≠

= ⋅ ∑∑                                          (5-4) 

where Vd
m
(x,y) is the discrete image potential on point (x,y). A is a predefined constant value. H and W 

are the height and width of the digital image respectively. h is the optical characteristic (such as the 

color) of image points. f is a function defined according to specific image processing tasks, which 

represents the relationship between the optical characteristic values of point (x,y) and (i,j). r is the 

distance between (x,y) and (i,j). m is a constant that affect the reciprocal’s decreasing rate with the 

increasing distance r. 

 

5.1.2 The relative potential field for color images 

 

For some important image processing tasks such as segmentation and edge detection, the difference 

between pixel values are the factor of major consideration. Therefore, the relative potential field for 

images is defined based on the general form of discrete image potential, where the function f(h(i,j), 

h(x,y)) is specialized as the difference between the optical characteristics (such as the color) of the two 

image points (x,y) and (i,j): 
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1 1

0 0 ( , ) ( , )
(  or )

( ( , ), ( , ))
( , )

H W
m

R m
j i i j x y
j y i x

Difference h i j h x y
V x y A

r

− −

= = →
≠ ≠

= ⋅ ∑∑                                     (5-5) 

 

where ( , )m

RV x y  is the relative potential value of point (x,y). A is a predefined constant value. H and W 

are the height and width of the image respectively. Difference(h(i,j), h(x,y)) is the difference of pixel 

value h  (color or grayscale), which is a scalar measuring the degree of difference between the two 

pixels. r is the distance between (x,y) and (i,j). m is a constant that affect the reciprocal’s decreasing 

rate with the increasing distance r.   

For gray-scale images, the Difference(h(i,j), h(x,y)) is naturally g(i,j)-g(x,y) (g is the grayscale 

value). The grayscale relative potential is as following: 

 
1 1

0 0 ( , ) ( , )
(  or )

( , ) ( , )
( , )

H W
m

R m
j i i j x y
j y i x

g i j g x y
V x y A

r

− −

= = →
≠ ≠

−= ⋅ ∑∑                                               (5-6) 

 

where ( , )m

RV x y  is the relative potential of the grayscale image on point (x,y). A is a predefined 

constant value. H and W are the height and width of the digital image respectively. g is the gray-scale 

value of image points. r is the distance between (x,y) and (i,j). m is a constant that affect the 

reciprocal’s decreasing rate with the increasing distance r. Such definition for gray-scale images has 

been studied in Section 2.1.1. 

For color images, because the color value is usually defined as a vector (such as RGB, HSI, etc.), 

the definition of the difference between pixels should be extended and re-defined. In this chapter, a 

novel measurement of color difference in RGB space is presented, based on which the color relative 

potential is defined for color image analysis.  

In order to extend the relative potential to color images, a scalar is needed to measure the 

difference of two colors in the three-dimensional RGB space. Here the proposed color difference 

measurement is presented as the extension of grayscale difference. The difference of two grayscale 

values g1, g2 is a scalar: Difference(g1, g2)=g1-g2. The difference has two factors: one is the sign, the 

other is its absolute value. The absolute value represents the degree of grayscale difference. The 

meaning of the sign can be considered as the relative order of the two grayscale values in an ordered 

set of all the possible grayscale values. In another word, all the possible discrete grayscale values form 

an ordered set with their natural value order from small to large. The sign of g1-g2 is ‘+’ (i.e. positive) 

when g1 comes after g2 in the ordered set. Otherwise, the sign is ‘-’ (i.e. negative) when g1 comes 

before g2 in the ordered set.  

Based on the above discussion, the grayscale difference can be extended to the measurement of 

color difference Difference(c1, c2). (c1, c2) is a pair of points in RGB color space. In order to define the 

sign of Difference(c1, c2), an ordered set of all possible discrete RGB color vectors is needed, in which 

the relative order of two arbitrary colors can be defined clearly and unambiguously. The ordered set of 

grayscale values is defined according to the natural value order. Since the RGB vector is composed of 

three intensities of color components, the order of such vectors can also be defined imitating the 

ordered grayscale set. In another word, the relative order between two colors can be based on the 

natural value order of the three intensities respectively. Consider the two color values:  

c1=(r1, g1, b1)    c2=(r2, g2, b2) 

where (r1, g1, b1) and (r2, g2, b2) are the red, green and blue components of c1 and c2 respectively. The 

determination of the order between c1 and c2 is defined as the following rule: 
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if r1<r2 then c1 comes before c2 

else if r1>r2 then c1 comes after c2 

    else if g1<g2 then c1 comes before c2 

        else if g1>g2 then c1 comes after c2 

            else if b1<b2 then c1 comes before c2 

                else if b1>b2 then c1 comes after c2 

                    else c1 is equal to c2 

 

The above order is the extension of the grayscale case, in which the intensities of the red, green and 

blue are compared one by one with decreasing priority. If r1 is not equal to r2, the order can be 

determined by comparing r1 and r2. If r1=r2, g1 and g2 is then compared to determine the order. If r1=r2 

and g1=g2, b1 and b2 should be compared. Based on the above rule, the relative order of c1 and c2 is 

defined and the sign of Difference(c1, c2) can be determined. If c1 comes before c2, the sign is ‘-’ 

(negative). If c1 comes after c2, the sign is ‘+’ (positive). Because the intensity of each RGB 

component is normally discrete and stored as 1 byte in computers, the value range of each component 

is [0, 255]. Therefore, an equivalent definition of the relative order for the color pair (c1, c2) is 

proposed as following: 

 

1 2 1 1 1 2 2 2( , ) sgn(( 65536 256 ) ( 65536 256 ))Order c c r g b r g b= ⋅ + ⋅ + − ⋅ + ⋅ +                  (5-7) 

 

According to Equation (5-7), Order(c1, c2) is +1 if c1 comes after c2 in the ordered color set, and it is -

1 if c1 comes before c2. 

The absolute value of Difference(c1, c2) can be naturally defined as the Euclidean distance of c1 

and c2 in the three-dimensional RGB space: 

 
2 2 2

1 2 1 2 1 2 1 2( , ) ( ) ( ) ( )Euclidean c c r r g g b b= − + − + −                                  (5-8) 

 

Therefore, the scalar measurement of the difference for RGB color (c1, c2) can be defined as: 

 

1 2 1 2 1 2( , ) ( , ) ( , )Difference c c Order c c Euclidean c c= ⋅                                    (5-9) 

 

In Equation (5-9), the absolute value of Difference(c1, c2) represents the degree of difference in RGB 

space. The sign of Difference(c1, c2) represents the relative order of the two color vector in the 

predefined ordered set of RGB colors. 

Based on the definition of Difference(c1, c2), the relative potential field for color images can be 

defined as following: 

 
1 1

0 0 ( , ) ( , )
(  or )

( ( , ), ( , ))
( , )

H W
m

R m
j i i j x y
j y i x

Difference h i j h x y
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r

− −

= = →
≠ ≠

= ⋅ ∑∑                                   (5-10) 

 

where ( , )m

RV x y  is the color relative potential on the point (x, y). h(i,j) and h(x,y) are the pixels’ colors: 

h(i,j)=(R1, G1, B1), h(x,y)=(R2, G2, B2). 

The color difference is as following: 

( ( , ), ( , )) ( ( , ), ( , )) (( ( , ), ( , ))Difference h i j h x y Order h i j h x y Euclidean h i j h x y= ⋅            (5-11) 

where 

1 1 1 2 2 2( ( , ), ( , )) sgn(( 65536 256 ) ( 65536 256 ))Order h i j h x y R G B R G B= ⋅ + ⋅ + − ⋅ + ⋅ +       (5-12) 

and 

Chapter 5 

132



 

132 

 
2 2 2

1 2 1 2 1 2( ( , ), ( , )) ( ) ( ) ( )Euclidean h i j h x y R R G G B B= − + − + −                       (5-13) 

 

The property of the color relative potential field is investigated in the following section. 

 

5.2 The spatial property of the color relative potential field 
 

In Equation (5-10), the relevance between two image points with distance r is represented 

quantitatively by the reciprocal of r
m
. The value of relative potential is virtually the weighted sum of 

the difference between image pixel (x,y) and all other points, and the weight is the factor of relevance, 

i.e. the reciprocal of r
m
. To investigate the properties of the color relative potential field, experiments 

are carried out for a series of test color images with the size of 128 × 128. When computing the 

relative potential values, the constant m in Equation (5-10) is pre-defined as m=3. The experimental 

results for some typical test color images are shown in Fig. 5-1 to Fig. 5-8. 

Fig. 5-1(a) to Fig. 5-8(a) are the original test images. Fig. 5-1(c) to Fig. 5-8(c) show the absolute 

value distributions of the color relative potential for the corresponding test images, where larger gray-

scale represents larger relative potential. Fig. 5-1(b) to Fig. 5-8(b) record the sign of relative potential 

value on each point, where white points represent positive values and black points represent negative 

values. The results shown in Fig. 5-1(b) to Fig. 5-8(b) indicate that the sign of the color relative 

potential value will reverse across the boundary of two adjacent regions, which may be exploited in 

the segmentation of different regions in color images. 

 

 

 

                
(a) Color image test1                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-1 The relative potential field of color image test1 

 

 

                
(a) Color image test2                 (b) The sign distribution             (c) The absolute value distribution 

                                     of the relative potential              of the relative potential 

 
Fig. 5-2 The relative potential field of color image test2 
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(a) Color image test3                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-3 The relative potential field of color image test3 

 
 

                 
(a) Color image test4                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-4 The relative potential field of color image test4 

 
 

                 
(a) Color image test5                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-5 The relative potential field of color image test5 

 
 

                 
(a) Color image test6                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-6 The relative potential field of color image test6 
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(a) Color image test7                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-7 The relative potential field of color image test7 

 

                 
(a) Color image test8                 (b) The sign distribution              (c) The absolute value distribution 

                                     of the relative potential             of the relative potential 

 
Fig. 5-8 The relative potential field of color image test8 

 

According to the definition of the color relative potential in Equation (5-10), the relative potential 

value of a pixel p is mainly affected by its local neighboring area. The local neighboring area consists 

of two classes of points. One class consists of the pixels in the same region of p (i.e. with similar color 

of p), the other consists of those in the different region. For simple test images, the color difference in 

the same region is zero. Thus the relative potential of p is mainly affected by the color difference 

between p’s region and its adjacent region. Suppose A and B are two adjacent regions shown in Fig. 

5-9. pa and pb are two border points at different border sides. pa is in region A and pb is in region B. ca 

and cb are the colors of region A and B respectively. According to the above discussion, the sign of 

pa’s relative potential is determined by Difference(ca, cb), while the sign of pb’s relative potential is 

determined by Difference(cb, ca). It is obvious that the signs of the relative potential on pa and pb are 

opposite. This is why the sign of the relative potential will reverse across the region border. This 

property of the relative potential field can be exploited in image analysis. 

 

 
Fig. 5-9 pa and pb on different sides of the region border 

 

5.3 Color image segmentation in the color relative potential field 
 

In the experimental results of the test images, it is indicated that the signs of color relative potential 

are opposite in the two different adjacent regions. This can provide the basis of region segmentation in 

color images. Here a method of region segmentation for color images is proposed based on the color 

relative potential as following: 

Step1: Calculate the color relative potential field for the color image; 

Step2: Obtain the sign distribution of the color relative potential; 
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Step3: Group the adjacent points with the same sign of relative potential into connected regions. In the 

region grouping process, the adjacent pixels of the 4-connection (i.e. the upper, lower, left and right 

pixels) for an image point p is investigated. If any of the four adjacent pixels has the same sign of 

relative potential as p, it is grouped into the region which p belongs to. The obtained connected 

regions are the result of region segmentation for the color image. 

Fig. 5-10 to Fig. 5-17 show the segmentation results based on the sign distribution of the relative 

potential according to Fig. 5-1(b) to Fig. 5-8(b). In the figures of segmentation results, different 

regions are represented by different gray-scale values. The results indicate that the region 

segmentation method is effective for test color images. 

 

                        
Fig. 5-10 The segmentation result           Fig. 5-11 The segmentation result 

for color image test1                                  for color image test2 

 

 

                        
Fig. 5-12 The segmentation result           Fig. 5-13 The segmentation result 

for color image test3                                  for color image test4 

 

 

                        
Fig. 5-14 The segmentation result           Fig. 5-15 The segmentation result 

for color image test5                                 for color image test6 

 

 

                        
Fig. 5-16 The segmentation result           Fig. 5-17 The segmentation result 

for color image test7                                  for color image test8 
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Real world color images consist of much more complex regions than the simple test images. To 

investigate the effectiveness of the above method on real world images, experiments are carried out 

for a series of real world color images. These color images are obtained from the public image 

databases on the Internet. Some of the experimental results are shown from Fig. 5-18 to Fig. 5-20. 

Fig. 5-18(a) shows a color image of a horse. The sign and absolute value distribution of the color 

relative potential are shown in Fig. 5-18(b) and Fig. 5-18(c) respectively. The segmentation result 

based on the sign distribution is shown in Fig. 5-18(d), where different regions are represented by 

different gray-scale values. In Fig. 5-18(d), the horse area can be effectively extracted. Fig. 5-18(e) 

shows the area of the horse extracted from the segmented result for a clearer view. 

To compare the color segmentation to grayscale image segmentation with the relative potential 

method, experiment is also carried out for the corresponding grayscale image of the horse. Fig. 5-18(f) 

shows the grayscale image of the horse. Fig. 5-18(g) shows the sign distribution of the gray-scale 

relative potential for the grayscale image, and Fig. 5-18(h) shows the segmentation result based on the 

sign distribution. 

 

             
(a) The original color image of the horse              (b) The sign distribution of the relative potential  

                                                                               field for the color image of horse 

 

             
(c) The absolute value distribution of the              (d) The segmentation result based on the 

relative potential field for the color image             sign distribution for the color image 

 

    
(e) The area of the horse extracted from the segmented result 
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(f) The corresponding grayscale image               (g) The sign distribution of the relative                             

of the horse                                                           potential field for the grayscale image 

 

 
(h) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-18 The experimental results for the horse image 

 

 

In Fig 18(d) and Fig. 5-18(h), the segmentation of the horse area for color and grayscale image are 

both effective. Moreover, the two results are similar perhaps because the colors in Fig 18(a) are not 

rich.  

Fig. 5-19(a) shows a color image of a house. The sign and absolute value distribution of the color 

relative potential are shown in Fig. 5-19(b) and Fig. 5-19(c) respectively. The segmentation result 

based on the sign distribution is shown in Fig. 5-19(d), where the main parts of the house can be 

effectively extracted and separated.  

To compare the color segmentation to grayscale image segmentation with the relative potential 

method, experiment is also carried out for the corresponding grayscale image of the house. Fig. 5-19(e) 

shows the grayscale image of the house. Fig. 5-19(f) shows the sign distribution of the gray-scale 

relative potential for the grayscale image, and Fig. 5-19(g) shows the segmentation result based on the 

sign distribution. 

 

 

                               
(a) The original color image of the house             (b) The sign distribution of the relative potential  

                                             field for the color image 
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(c) The absolute value distribution of the              (d) The segmentation result based on the  

relative potential field for the color image             sign distribution for the color image 

 

                               
(e) The corresponding grayscale                           (f) The sign distribution of the relative 

   image of the house                                              potential field for the grayscale image 

 

 
(g) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-19 The experimental results for the house image 

 
 

For the house image, the advantage of color segmentation is indicated by the comparison to 

grayscale segmentation. It is clear that the color segmentation gets better result than the grayscale 

segmentation for the house image by comparing Fig. 5-19(d) to Fig. 5-19(g). For example, the 

chimney, roof and eaves are separated clearly in Fig. 5-19(d). But in Fig. 5-19(g) the chimney, roof 

and eaves are connected into one region.  

Fig. 5-20(a) shows the color image of a butterfly. The sign and absolute value distribution of the 

color relative potential are shown in Fig. 5-20 (b) and Fig. 5-20 (c) respectively. The segmentation 

result based on the sign distribution is shown in Fig. 5-20 (d), where the butterfly area can be 

effectively extracted. Fig. 5-20 (e) shows the area of the butterfly extracted from the segmented result 

for a clearer view. 

To compare the color segmentation to grayscale image segmentation with the relative potential 

method, experiment is also carried out for the corresponding grayscale image of the butterfly. Fig. 5-

20 (f) shows the grayscale image of the butterfly. Fig. 5-20 (g) shows the sign distribution of the gray-

scale relative potential for the grayscale image, and Fig. 5-20 (h) shows the segmentation result based 

on the sign distribution. 
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(a) The original color image of the butterfly                (b) The sign distribution of the relative potential  

                                                                                       field for the color image 

 

                    
(c) The absolute value distribution of the relative        (d) The segmentation result based on the sign 

potential field for the color image                                distribution for the color image 

 

 
(e) The area of the butterfly extracted from the segmented result 

 

                    
(f) The corresponding grayscale image                        (g) The sign distribution of the relative potential 

  of the butterfly                                                             field for the grayscale image 

 

 
(h) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-20 The experimental results for the butterfly image 

 

The advantage of color image segmentation is also indicated by the comparison of Fig. 5-20(d) 

and Fig. 5-20(h). In Fig. 5-20(d), the area of the butterfly can be clearly separated from other objects, 

which is clearly shown in Fig. 5-20(e). However, in Fig. 5-20(h) the butterfly area is combined to the 

flower area. It is indicated that since color carries more information than grayscale, the processing of 

the color image may obtain more satisfactory results if proper method is used. 
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5.4 The preprocessing of brightness normalization  
 

Color is one of the most important optical features of an object’s surface. However, curved parts on 

the surface are common, and the change of normal direction at different surface points may cause the 

change of reflection characteristics. Therefore, it is common that the surface of an object has several 

parts of the same chrominance but different brightness. Moreover, part of a surface may also be in the 

shadow of other objects. In another word, shading is also commonly seen in color images. In such 

cases, the surface of a single object may be segmented into several sub-regions, which is not preferred 

when the integrity of the segmented objects is of much importance. 

In this chapter, a brightness normalization method is proposed to eliminate the influence of 

shading or surface curvature in color image segmentation. In the proposed method, the brightness of 

each pixel is normalized to the same value before the calculation of the color relative potential. 

Therefore, only the chrominance is considered in the measurement of color difference when 

calculating the color relative potential. Here the normalized value of brightness is set to 255. For the 

pixel with the color (r1, g1, b1), the brightness normalization result (rN, gN, bN) is given as following: 

 

1 1

1 1

1 1

255 /

255 /

255 /

N

N

N

r r h

g g h

b b h

= ⋅
= ⋅
= ⋅

                                                           (5-14) 

 

where h1 is the original brightness of (r1, g1, b1) according to the well known relationship between the 

RGB color and the brightness: 

 

1 1 1 10.299 0.587 0.114h r g b= ⋅ + ⋅ + ⋅                                              (5-15) 

 

Then the brightness after normalization is: 

1 1 1 1 1 1

1 1 1 1

0.299 0.587 0.114

    0.299 ( 255 / ) 0.587 ( 255 / ) 0.114 ( 255 / )

    (0.299 0.587 0.114 ) / 255

    255

N N N Nh r g b

r h g h b h

r g b h

= ⋅ + ⋅ + ⋅
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
= ⋅ + ⋅ + ⋅ ⋅
=

 

Thus the brightness of each pixel is normalized to 255. All the pixels are processed according to 

Equation (5-14) before the calculation of the color relative potential. Experiments are carried out to 

investigate the effectiveness of the brightness normalization on color image segmentation. The color 

relative potential is calculated for the normalized color image, and then the segmentation based on the 

sign distribution is implemented. Experiments are carried out on a series of color images, which are 

obtained from the public image databases on the Internet. Some of the experimental results are shown 

from Fig. 5-21 to Fig. 5-24. 

Fig. 5-21(a) is the color image of a Border Collie dog. The result of brightness normalization is 

shown in Fig. 5-21(b), where all the pixels have the same brightness. Fig. 5-21(c) shows the sign 

distribution of the color relative potential for the brightness normalized image. The segmentation 

result based on the sign distribution is shown in Fig. 5-21(d), where the dog area can be effectively 

extracted. Fig. 5-21(e) shows the dog area extracted from Fig. 5-21(d) for a clearer view. Because the 

main parts of the dog area is in grayscale and some areas of the grass are also in grayscale, in Fig. 5-

21(e) the dog area is attached with a small part of the grass area.  

In order to compare the segmentation results with and without brightness normalization, 

experiments are also carried out for color images without brightness normalization, and also for the 

grayscale image. Fig. 5-21(f) shows the sign distribution of the color relative potential for the original 

color image without brightness normalization, and Fig. 5-21(g) shows the corresponding segmentation 
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result. The grayscale image is shown in Fig. 5-21(h), and the corresponding sign distribution of the 

gray-scale relative potential is shown in Fig. 5-21(i). The segmentation result for the grayscale image 

is shown in Fig. 5-21(j). The comparison of Fig. 5-21(d), (g) and (j) indicates that the brightness 

normalization achieves more satisfactory results.  

 

 

                     
(a) The original color image of a Border Collie dog      (b) The brightness normalized image 

    

                     
(c) The sign distribution of the relative potential            (d) The segmentation result based on the sign 

 field for the brightness normalized image                       distribution for the brightness normalized image 

 

 
(e) The area of the dog extracted from the segmented result 

 

                     
(f) The sign distribution of the relative potential            (g) The segmentation result based on the sign 

 field for the original color image                                     distribution for the original color image 
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(h) The corresponding grayscale image of                     (i) The sign distribution of the relative potential 

 the Border Collie dog                                                     field for the grayscale image 

 

 
(j) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-21 The experimental results of brightness normalization for the image of Border Collie dog 

 

 

Fig. 5-22(a) is the color image of the flower. The result of brightness normalization is shown in 

Fig. 5-22(b), where all the pixels have the same brightness. Fig. 5-22(c) shows the sign distribution of 

the color relative potential for the brightness normalized image. The segmentation result based on the 

sign distribution is shown in Fig. 5-22(d), where the flower area can be effectively extracted. Fig. 5-

22(e) shows the flower area extracted from Fig. 5-22(d) for a clearer view.  

In order to compare the segmentation results with and without brightness normalization, 

experiments are also carried out for color image without brightness normalization, and also for the 

grayscale image. Fig. 5-22(f) shows the sign distribution of the color relative potential for the original 

color image without brightness normalization, and Fig. 5-22(g) shows the corresponding segmentation 

result. The grayscale image is shown in Fig. 5-22(h), and the corresponding sign distribution of the 

gray-scale relative potential is shown in Fig. 5-22(i). The segmentation result for the grayscale image 

is shown in Fig. 5-22(j). The comparison of Fig. 5-22(d), (g) and (j) indicates that the brightness 

normalization achieves more satisfactory results. 

 

 

 

                          
(a) The original color image of the flower                           (b) The brightness normalized image 
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(c) The sign distribution of the relative potential field        (d) The segmentation result based on the sign 

 for the brightness normalized image                                    distribution for the brightness normalized image 

 

 
(e) The area of the flower extracted from the segmented result 

 

                          
(f) The sign distribution of the relative potential field         (g) The segmentation result based on the sign 

  for the original color image                                                 distribution for the original color image 

 

                          
(h) The corresponding grayscale image of the flower          (i) The sign distribution of the relative potential 

                                                                              field for the grayscale image 

 

 
(j) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-22 The experimental results of brightness normalization for the flower image 

 

Fig. 5-23(a) is the color image of the peppers. The result of brightness normalization is shown in 

Fig. 5-23(b), where all the pixels have the same brightness. Fig. 5-23(c) shows the sign distribution of 

the color relative potential for the brightness normalized image. The segmentation result based on the 
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sign distribution is shown in Fig. 5-23(d), where the areas of different peppers can be effectively 

extracted and properly separated.  

In order to compare the segmentation results with and without brightness normalization, 

experiments are also carried out for color image without brightness normalization, and also for the 

grayscale image. Fig. 5-23(e) shows the sign distribution of the color relative potential for the original 

color image without brightness normalization, and Fig. 5-23(f) shows the corresponding segmentation 

result. The grayscale image is shown in Fig. 5-23(g), and the corresponding sign distribution of the 

gray-scale relative potential is shown in Fig. 5-23(h). The segmentation result for the grayscale image 

is shown in Fig. 5-23(i). The comparison of Fig. 5-23(d), (f) and (i) indicates that the brightness 

normalization achieves more satisfactory results. 

 

 

                                   
(a) The original color image of the peppers               (b) The brightness normalized image 

 

                                   
(c) The sign distribution of the relative potential       (d) The segmentation result based on the sign distribution 

  field for the brightness normalized image                 for the brightness normalized image 

 

                                   
(e) The sign distribution of the relative potential       (f) The segmentation result based on the sign 

  field for the original color image                              distribution for the original color image 

 

                                   
(g) The corresponding grayscale image                     (h) The sign distribution of the relative potential 

 of the peppers                                                             field for the grayscale image 
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(i) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-23 The experimental results of brightness normalization for the peppers image 

 
 
 

Fig. 5-24(a) is the color image of a dog and the grass. The result of brightness normalization is 

shown in Fig. 5-24(b), where all the pixels have the same brightness. Fig. 5-24(c) shows the sign 

distribution of the color relative potential for the brightness normalized image. The segmentation 

result based on the sign distribution is shown in Fig. 5-24(d), where the dog area can be effectively 

extracted. Fig. 5-24(e) shows the dog area extracted from Fig. 5-24(d) for a clearer view. Because 

some part of the grass area has similar chrominance to that of the dog area, the extracted dog area is 

attached with a small part of the grass area in Fig. 5-24(e). 

In order to compare the segmentation results with and without brightness normalization, 

experiments are also carried out for color image without brightness normalization, and also for the 

grayscale image. Fig. 5-24(f) shows the sign distribution of the color relative potential for the original 

color image without brightness normalization, and Fig. 5-24(g) shows the corresponding segmentation 

result. The dog area extracted from Fig. 5-24(g) is shown in Fig. 5-24(h). Compared with Fig. 5-24(e), 

the brightness normalization can produce more complete segmentation result of the dog area. 

The grayscale image is shown in Fig. 5-24(i), and the corresponding sign distribution of the gray-

scale relative potential is shown in Fig. 5-24(j). The segmentation result for the grayscale image is 

shown in Fig. 5-24(k). The comparison of Fig. 5-24(d), (g) and (k) indicates that the brightness 

normalization achieves more complete segmentation results. 

 

 

                     
(a) The original color image of a dog and the grass       (b) The brightness normalized image 
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(c) The sign distribution of the relative potential field       (d) The segmentation result based on the sign 

  for the brightness normalized image                                  distribution for the brightness normalized image 

 

 

 
(e) The area of the dog extracted from the segmented result 

 

 

                         
(f) The sign distribution of the relative potential field        (g) The segmentation result based on the sign 

 for the original color image                                                 distribution for the original image 
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(h) The area of the dog extracted from the segmented result for the original image 

 

                         
(i) The corresponding grayscale image of                           (j) The sign distribution of the relative potential 

a dog and the grass                                                              field for the grayscale image 

 

 
(k) The segmentation result based on the sign distribution for the grayscale image 

 
Fig. 5-24 The experimental results of brightness normalization for the image of a dog and the grass 

 

The brightness normalization is suitable for such color images where the surfaces of different 

adjacent objects have different chrominance, which is a common case in color images. But the 

brightness normalization also has limitation. For those image areas where different adjacent objects 

have familiar chrominance but different brightness (such as the images with lots of grayscale area), 

the brightness normalization method may mistake two adjacent regions of different objects into one 

area in segmentation. Therefore, it is indicated that there should be a proper balance between the 

consideration of brightness and chrominance in color image segmentation, which will be investigated 

in future research.  
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The work in this chapter indicates that the “relative field” method can be effectively extended to 

color image processing. The richer information in color images may bring more satisfactory 

processing results than grayscale images. In this chapter, the RGB color model is used to representing 

color information. Because there are other color models which have their own advantages respectively, 

further work will study the possible improvements of the processing results by using other kind of 

color model.  
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6 Summary and Discussion 
 

Physics-inspired image processing is a promising and interesting research area. The work described in 

this book is part of the authors’ on-going research work. It is obvious that there is much possibility for 

the improvement and extension of the methods, and also the creation of new and better algorithms. In 

this chapter, some interesting topics about the methods presented in the book are discussed. 

 

6.1 The transformation among different patterns (the diffusing, whirling, and 

shrinking patterns) of vector field 
 

In this book, several image analysis methods inspired by electro-magnetism are presented. Effective 

image segmentation can be implemented based on these methods. These methods are of different 

types according to their operating principles. The relative potential field is a scalar field method, in 

which image region division can be performed according to the change of relative potential’s sign. 

The edge vector method generates a vector field which is at right angles to the image plane, and 

region division can be performed according to the change of vector direction (i.e. coming out of or 

into the image plane).  

On the other hand, the diffusing vector field, curling vector field and compressing vector field are 

of the same category, in which the region division is performed by area growing in the 2D vector field 

on the image plane. Moreover, the above three vector fields are all belong to the “relative field”. 

Therefore, it is interesting to study the similarity and relation of the three forms (the diffusing, 

whirling, and shrinking forms) of 2D vector field. 

Experiments have been carried out for test images to get their diffusing vector field and then 

transform the field pattern. It is interesting to find that the rotation of the vectors can implement the 

transformation among the three patterns of the 2D vector field. In another word, a vector field of 

diffusing pattern (in which the vectors diffuse outwards in each homogeneous region) can be 

transformed to a compressing pattern (in which the vectors shrink inwards in each homogeneous 

region) by reversing the direction of each vector. Moreover, a vector field of diffusing pattern can also 

be turned into a whirling pattern (in which the vectors form a whirl in each homogeneous region) by 

rotating each vector 90 degrees clockwise. The experimental results for some test images are shown in 

Fig. 6-1 to Fig. 6-3. The vector directions in these results are discretized into eight directions. 

Fig. 6-1(a) shows a whole homogeneous region. Fig. 6-1(b) shows its diffusing vector field in 

which the vectors form a pattern of expanding. Fig. 6-1(c) shows the result of rotating each vector in 

Fig. 6-1(b) 90 degrees clockwise. Fig. 6-1(c) has a pattern of whirling. Fig. 6-1(d) is the result of 

reversing each vector in Fig. 6-1(b). Fig. 6-1(d) has a pattern of shrinking. 

 

 

 

 

 
(a) the image test1 (the original image, and 4 times of original size on the right) 
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(b) the direction of each vector in the diffusing vector field of test1 

 

 

 
(c) the field of whirling vectors by rotating each vector in (b) 90 degrees clockwise 

 

 

 
(d) the field of shrinking vectors by reversing the direction of each vector in (b) 

 
Fig. 6-1 The diffusing vector field of image test1, and the corresponding whirling and shrinking patterns obtained by vector 

rotation 

 

Fig. 6-2(a) has a region of ellipse. Fig. 6-2(b) shows its diffusing vector field. In Fig. 6-2(b), the 

vectors in the ellipse region form a pattern of expanding, which is highlighted by the dark area. Fig. 6-

2(c) shows the result of rotating each vector in Fig. 6-2(b) 90 degrees clockwise. In Fig. 6-2(c), the 

vectors in the ellipse region form a pattern of whirling. Fig. 6-2(d) shows the result of reversing each 

vector in Fig. 6-2(b). In Fig. 6-2(d), the vectors in the ellipse region form a pattern of shrinking. 
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(a) the image test2 (the original image, and 4 times of original size on the right) 

 

 
(b) the direction of each vector in the diffusing vector field of test2 

(c)  

 
(c) the field of whirling vectors by rotating each vector in (b) 90 degrees clockwise 

 

 
(d) the field of shrinking vectors by reversing the direction of each vector in (b) 

 
Fig. 6-2 The diffusing vector field of image test2, and the corresponding whirling and shrinking patterns obtained by vector 

rotation 
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Fig. 6-3(a) has two regions of an ellipse and a rectangle. Fig. 6-3(b) shows its diffusing vector 

field. In Fig. 6-3(b), the vectors in the ellipse and rectangle regions form a pattern of expanding 

respectively, which is highlighted by the two dark areas. Fig. 6-3(c) shows the result of rotating each 

vector in Fig. 6-3(b) 90 degrees clockwise. In Fig. 6-3(c), the vectors in the ellipse and rectangle 

regions form a pattern of whirling. Fig. 6-3(d) shows the result of reversing each vector in Fig. 6-3(b). 

In Fig. 6-3(d), the vectors in the ellipse and rectangle regions form a pattern of shrinking. 

 

 

 
(a) the image test3 (the original image, and 4 times of original size on the right) 

 

 

 
(b) the direction of each vector in the diffusing vector field of test3 

 

 

 
(c) the field of whirling vectors by rotating each vector in (b) 90 degrees clockwise 
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(d) the field of shrinking vectors by reversing the direction of each vector in (b) 

 
Fig. 6-3 The diffusing vector field of image test3, and the corresponding whirling and shrinking patterns obtained by vector 

rotation 

 

According to the above results, the three patterns of the vector “relative field” can be transformed 

to one another. It is indicated that there is close relationship between the three 2D vector field methods 

in this book. Further work may study their detailed relationship for a better understanding of the 

“relative field”. 

 

6.2 The Source-reverse Transform and the Laplacian Operator 
 

It is interesting that some of the methods in the book have underlying relationship with other existing 

concepts and methods. The relationship between the source-reverse transform and the Laplacian 

operator is one example. In Chapter 2, a source-reverse transform is presented, in which the virtual 

field source F(x,y) is estimated according to Equation (2-25). Here the definition of the source 

reversing is re-written for a convenient view and discussion: 

 

( , ) (  ( ( , )))F x y div grad f x y= −                                                   (6-1) 

 

The gradient of the image f(x,y) is given as: 

 

( , ) ( , )
 ( ( , ))

f x y f x y
G grad f x y i j

x y

→ → →∂ ∂= = +
∂ ∂

                                          (6-2) 

 

Then the divergence of the image’s gradient is given as: 

 

yx
GG

div G
x y

→ ∂∂= +
∂ ∂

                                                            (6-3) 

 

The two components of the gradient vector are: 

 

( , )
x

f x y
G

x

∂=
∂

   
( , )

y

f x y
G

y

∂=
∂

                                                  (6-4) 

 

Therefore, in mathematics the virtual source F(x,y) is given as: 
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2 2

2 2

( , ) ( , )
( , )

f x y f x y
F x y div G

x y

→ ∂ ∂= = +
∂ ∂

                                            (6-5) 

 

In mathematics, the operation like Equation (6-5) is virtually defined as the Laplacian operator
[104-107]

: 

 
2 2

2 2x y

 ∂ ∂∆ = + ∂ ∂ 
                                                              (6-6) 

2 2 2 2

2 2 2 2

f f
f f

x y x y

 ∂ ∂ ∂ ∂∆ = + = + ∂ ∂ ∂ ∂ 
                                                 (6-7) 

 

The Laplacian operator has been used in image edge detection
[104-107]

. According to Equation (6-5) 

and (6-7), the Laplacian operator on images has a similar effect of the source-reverse transform 

studied in Chapter 2. With the Laplacian operator, the edge points can be located by detecting the 

zero-crossing points after applying the operator on the image. Similarly, in Chapter 2 it is indicated by 

experiments that the region borders can be detected by the sign reverse of the source values 

(equivalent to zero-crossing in the Laplacian operator method) in the virtual source. It is quite 

interesting that the Laplacian operator has a physical analogy of source reverse. 

The relationship between the virtual curl source and the image gradient is another interesting case. 

It is proved in Chapter 3 that the virtual curl source and the image gradient field are orthogonal. In 

another word, the virtual curl source can be obtained by rotating each gradient vector 90 degrees (all 

clockwise or all anti-clockwise). Moreover, the original image can be estimated by an opposite 

transform form the virtual curl source to the image. Therefore, the curl source transform provide a 

way of approximating the image from its gradient field with a magneto-static analogy. In the field of 

physics-inspired methodology for image processing, there are still plenty of unexplored research 

topics which are both interesting and of great value in practical use. 

 

6.3 Summary 
 

As a new branch of image transform method, the electro-magnetism inspired transforms has some 

unique characteristics compared with mathematical transforms such as Fourier transform, discrete 

cosine transform, etc. The virtual filed obtained by the transform is still defined in the same 2D or 3D 

space as the image. This is because the physical field itself is a kind of spatial distribution, and the 

field and the source both exist in the same physical space. In another word, the field inspired 

transforms convert the image in the 2D or 3D space into another form of representation in the same 

space. Therefore, the spatial properties of the transformed fields may have direct relationship with the 

image structure, and it is convenient to obtain some spatial features of the image directly in the 

transformed virtual field.  

The electro-magnetic fields (both scalar and vector field) have some common characteristics in 

their definition. Considering the electro-static potential, the electro-static force, and the magneto-static 

induction field in a continuous spatial area, all of them have a form of integral in their definitions. For 

a space point p, the field value on p is defined by an integral, which accumulates the effects of all the 

source points on p. Moreover, the integrands in their definitions have a common factor of 1/r (i.e. the 

reciprocal of the distance r between the source point and the field point). Therefore, the source points 

near p have obviously larger effects on the field value of p, and the effect of source point on p 

decreases quickly with the increasing of the distance r. Generally speaking, in images neighbouring 

points have stronger relevance than remote points. Therefore, the mathematical form of the electro-

magnetic fields (the common factor of 1/r in their definitions) can be a good representation of the 

above local-global relevance characteristic in images. In many image processing tasks, it is usually 
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necessary to consider the balance between the strong local relevance of close neighbouring points and 

a wide range of weaker relevance of remote points. The electro-magnetism inspired transforms are 

quite suitable for such requirement of image analysis. 

In the book, several forms of virtual field transforms for images are presented and studied, which 

are inspired by electro-static field or magneto-static field respectively. Some are of scalar field 

transform, and others are of vector field transform. In these transforms, the basic forms of the physical 

fields are imitated (i.e. the definition in integral form and the common factor of 1/r). Moreover, the 

original definitions of the physical fields are extended to a flexible and generalized form in some 

methods presented in this book for adaptability and expansibility. For image segmentation task, the 

relative potential field, diffusing vector field, compressing vector field and curling vector field are all 

defined in a form of “relative field”, in which the measurement of pixel difference is introduced into 

the virtual field definitions. In the future work, for various processing tasks, other kind of virtual fields 

besides the “relative field” will be studied. For example, other kind of virtual fields may be defined by 

giving different definition of function f in Equation (2-4) and (2-8). Further work will investigate 

more detailed properties of virtual field transforms inspired by electro-magnetic fields. The possible 

application of the methods to other practical processing tasks will also be investigated. Moreover, the 

methods presented in the book concentrate on the static electro-magnetic fields. The principles of 

time-variant field will be investigated in future work, and the possible application of the electro-

magnetic interaction in physics-inspired methods will also be studied. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary and Discussion

157



 

Chapter 6

158



 

157 

Reference 
 
[1] Mark S. Nixon, Xin U. Liu, Cem Direkoglu, David J. Hurley, On using physical analogies for feature and shape 

extraction in computer vision, Computer Journal, Vol. 54, No. 1, 2011, pp. 11-25. 

[2] D.J. Hurley, M.S. Nixon, J.N. Carter, A new force field transform for ear and face recognition,  IEEE 

International Conference on Image Processing, Vol. 1, 2000, pp. 25-28. 

[3] David J. Hurley, Mark S. Nixon, John N. Carter, Force field feature extraction for ear biometrics, Computer 

Vision and Image Understanding, Vol. 98, No. 3, 2005, pp. 491-512. 

[4] David J. Hurley, Mark S. Nixon, John N. Carter, Force field energy functionals for image feature extraction, 

Image and Vision Computing, Vol. 20, No. 5-6, 2002, pp. 311-317 

[5] Xin U Liu, Mark S Nixon, Water Flow Based Complex Feature Extraction. Advanced Concepts for Intelligent 

Vision Systems, Lecture Notes in Computer Science, 2006. pp. 833-845. 

[6] Xin U Liu, Mark S Nixon, Medical Image Segmentation by Water Flow, in Proceedings of Medical Image 

Understanding and Analysis, MIUA 2007. 

[7] Xin U Liu, Mark S Nixon, Water flow based vessel detection in retinal images, Proceedings of IET 

International Conference on Visual Information Engineering 2006, 2006, pp. 345-350. 

[8] Xin U Liu, Mark S Nixon, Image and volume segmentation by water flow, Third International Symposium on 

Proceedings of Advances in Visual Computing, ISVC 2007, 2007, pp. 62-74. 

[9] Alastair H. Cummings, On Using Water to Guide Image Feature Extraction, Technical Report, School of 

Electronics and Computer Science, the University of Southampton, United Kingdom 

[10] Cem Direkoglu, FEATURE EXTRACTION VIA HEAT FLOW ANALOGY, a thesis submitted for the degree 

of Doctor of Philosophy, School of Electronics and Computer Science, University of Southampton, United 

Kingdom, 2009. 

[11] Cem Direkoglu, Mark S. Nixon, Shape extraction via heat flow analogy, Proceedings of 9th International 

Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2007, pp. 553-564. 

[12] Cem Direkoglu, Mark S. Nixon, On using an analogy to heat flow for shape extraction, a book chapter in 

Pattern Analysis & Applications, Springer 2011. 

[13] Cem Direkoglu and Mark S. Nixon, Moving-edge detection via heat flow analogy, Pattern Recognition Letters, 

Vol. 32, No. 2, 2011, pp. 270-279. 

[14] Alastair H. Cummings, Mark S. Nixon, John N. Carter, A novel ray analogy for enrolment of ear biometrics, 

IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010, 2010, pp. 1-

16. 

[15] Alastair H. Cummings, Mark S. Nixon, John N. Carter, Circle detection using the image ray transform: A novel 

technique for using a ray analogy to extract circular features, Proceedings of the International Conference on 

Computer Vision Theory and Applications, Vol. 2, 2010, pp. 23-32. 

[16] Andrei C. Jalba, Michael H.F. Wilkinson, Jos B.T.M. Roerdink, CPM: A deformable model for shape recovery 

and segmentation based on charged particles, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 26, No. 10, 2004, pp. 1320-1335.  

[17] Kenong Wu and Martin D. Levine, 3D part segmentation using simulated electrical charge distributions, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 11, 1997, pp. 1223-1235. 

[18] Andrei C. Jalba, Jos B. T. M. Roerdink, Efficient surface reconstruction using generalized Coulomb potentials, 

IEEE Transactions on Visualization and Computer Graphics, Vol. 13, No. 6, 2007, pp. 1512-1519. 

[19] N. Ahuja and J. Chuang, Shape representation using a generalized potential field model, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 19, No. 2, 1997, pp. 169-176. 

[20] Chi-Hao Tsai, Min-Chi Ko, Skeletonization of Three-Dimensional Object Using Generalized Potential Field, 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22 No. 11, 2000, pp. 1241-1251. 

[21] Qing Liu, Jian Zhuang, Sun’an Wang, Algorithm for image resolution enhancement based on static electric 

field theory, Journal of Xi’an Jiaotong University, Vol. 40, No. 11, 2006, pp. 1300-1304. 

[22] Bin Luo, A.D.J. Cross, E.R. Hancock, Corner detection via topographic analysis of vector-potential, Pattern 

Recognition Letters, Vol. 20, No. 6, 1999, pp. 635-650. 

[23] B. Kimia Benjamin and Siddiqi Kaleem, Geometric Heat Equation and Nonlinear Diffusion of Shapes and 

Images, Computer Vision and Image Understanding, Vol. 64, No. 3, 1996, pp. 305–322. 

[24] Xinhua Ji, Jufu Feng, A new approach to thinning based on time-reversed heat conduction model, Proceedings 

of International Conference on Image Processing, Vol. 1, 2004, pp. 653-656. 

[25] Siddharth Manay, Anthony Yezzi, Anti-geometric diffusion for adaptive thresholding and fast segmentation, 

IEEE Transactions on Image Processing, Vol. 12, No. 11, 2003, pp. 1310-1323. 

Reference

159



 

158 

[26] H. Blum, Biological shape and visual science. I., Journal of Theoretical Biology, Vol. 38, No. 2, 1973, pp. 205-

287. 

[27] Chwen-Jye Sze, Hong-Yuan Mark Liao, Kuo-Chin Fan, A New Image Flux Conduction Model and Its 

Application to Selective Image Smoothing, IEEE Transactions on Image Processing, Vol. 10, No. 2, 2001, pp. 

296-306. 

[28] M. Bertalmío, A.L. Bertozzi, G. Sapiro, Navier-Stokes, fluid dynamics, and image and video inpainting, 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 

2001, pp. I355-I362.  

[29] Yi Zhao, Nonrigid Image Registration Using Physically Based Models, a master thesis presented to the 

University of Waterloo , Waterloo, Ontario, Canada, 2006. 

[30] Xiang Sean Zhou, Yong Rui, Thomas S. Huang, Water-filling: A novel way for image structural feature 

extraction, IEEE International Conference on Image Processing, Vol. 2, 1999, pp. 570-574. 

[31] H.  Digabel  and  C.  Lantuejoul, Iterative  algorithms,   Proceedings of 2nd European Symposium on  

Quantitative  Analysis  of  Microstructures  in  Material Science, Biology  and Medicine, 1977, pp. 85-99. 

[32] S. Beucher and C. Lantuejoul, Use of watersheds in contour detection, International workshop on image 

processing: real-time edge and motion detection/estimation, France, 1979. 

[33] L. Vincent and P. Soille, Watershed in digital spaces: an efficient algorithm based on immersion simulation, 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, 1991, pp. 583-598. 

[34] D. R. Chialvo and M. M. Millonas, How swarms build cognitive maps, The Biology and Technology of 

Intelligent Autonomous Agents, No. 144, 1995, pp. 439-450. 

[35] Vitorino Ramos and Filipe Almeida, Artificial Ant Colonies in Digital Image Habitats - A Mass Behaviour 

Effect Study on Pattern Recognition, Proceedings of ANTS’2000 - 2nd International Workshop on Ant 

Algorithms (From Ant Colonies to Artificial Ants), 2000, pp. 113-116. 

[36] Xiaodong Zhuang and N. E. Mastorakis, Image processing with the artificial swarm intelligence, WSEAS 

Transactions on Computers, Vol.4, Issue 4, 2005, pp. 333-341. 

[37] S. Ali Etemad, Tony White, An ant-inspired algorithm for detection of image edge features, Applied Soft 

Computing Journal, Vol. 11, No. 8, 2011, pp. 4883-4893. 

[38] Peng Huang, Huizhi Cao, Shuqian Luo, An artificial ant colonies approach to medical image segmentation, 

Computer Methods and Programs in Biomedicine, Vol. 92, No. 3, 2008, pp. 267-273. 

[39] Piergiorgio Cerello, Sorin Christian Cheran, Stefano Bagnasco, et al, 3-D object segmentation using ant 

colonies, Pattern Recognition, Vol. 43, No. 4, 2010, pp. 1476-1490. 

[40] Chen-yang Yan, You-peng Zhang, Wei-qing Xiong, Artificial Ant Colony Based on Grayscale Grads 

Perception on Digital Image Edge Detection, Computer Engineering and Applications, Vol. 42, No. 36, 2006, 

pp. 23-27. 

[41] Yudong Zhang, Lenan Wu, Face Pose Estimation by Chaotic Artificial Bee Colony, International Journal of 

Digital Content Technology and its Applications. Vol. 5, No. 2, 2011, pp. 55-63. 

[42] Alirezae Rezaee, Extracting Edge of Images with Ant Colony, Journal of Electrical Engineering, Vol. 59, No. 1, 

2008, pp. 57-59. 

[43] Peng Huang, Huizhi Cao, Shuqian Luo, A novel image segmentation algorithm based on artificial ant colonies, 

Proceedings of 2nd International Conference on Medical Imaging and Informatics, 2007, pp. 63-71. 

[44] Chad George, James Wolfer, A swarm intelligence approach to counting stacked symmetric objects, 

Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, AIA 2006, 

2006, pp. 125-130. 

[45] S. Aupetit, V. Bordeau, N. Monmarch´e, M. Slimane, G. Venturini, Interactive evolution of ant paintings, 2003 

Congress on Evolutionary Computation ProceedingsIEEE Press, Vol. 2, 2003, pp. 1376–1383. 

[46] Gary Greenfield, Ant Paintings using a Multiple Pheromone Model, 7th International Conference on Short and 

Medium Span Bridges 2006, Montréal, Québec, Canada, August 23-25, 2006. 

[47] Sambarta Dasgupta, Swagatam Das, Arijit Biswas, Abraham, Ajith, Automatic circle detection on digital 

images with an adaptive bacterial foraging algorithm, Soft Computing, Vol. 14, No. 11, 2010, pp. 1151-1164. 

[48] Om Prakash Verma, Madasu Hanmandlu, Puneet Kumar, Sidharth Chhabra, Jindal, Akhil, A novel bacterial 

foraging technique for edge detection, Pattern Recognition Letters, Elsevier, Vol. 32, No. 8, 2011, pp. 1187-

1196. 

[49] Jianhua Yang, Guangyu Wang, Image edge detecting by using the bacteriorhodopsin-based artificial ganglion 

cell receptive field, Thin Solid Films, Vol. 324, No. 1-2, 1998, pp. 281-284. 

[50] Dan Liu, Yu Zhao, Yan-Qiu Chen, Artificial Bacilli Model for Image Curve Extraction, Computer Science, Vol. 

32, No. 5, 2005, pp. 190-194. 

Reference

160



 

159 

[51] Xiao-Li Chu, Ying Zhu, Jun-Tao Shi, Image Edge Detection Based on Improved Artificial Fish-School Swarm 

Algorithm, Computer Systems & Application, Vol. 19, No. 8, 2010, pp. 173-176. 

[52] Hao He and Yan Qiu Chen, Artificial Life for Image Segmentation, International journal of pattern recognition 

and artificial intelligence, Vol. 15, No. 6, 2001, pp. 989-1003. 

[53] Christine Bourjot, Vincent Chevrier, Vincent Thomas, How social spiders inspired an approach to region 

detection, Proceedings of the International Conference on Autonomous Agents, No. 2, 2002, pp. 426-433. 

[54] Christine Bourjot, Vincent Chevrier, Vincent Thomas, A new swarm mechanism based on social spiders 

colonies: From web weaving to region detection, Web Intelligence and Agent Systems, Vol. 1, No. 1, 2003, pp. 

47-64. 

[55] Jeff Jones, Mohammed Saeed, Steve Lewis, Emergent computation and image processing - Feature extraction 

patterns generated by the interactions between simple agents and their image environment, Proceedings of 

Middle Eastern Symposium on Modelling and Simulation, 2003, pp. 5-7. 

[56] Charles E. White II, Gene A. Tagliarini, Sridhar Narayan, An Algorithm for Swarm-based Color Image 

Segmentation, Proceedings of IEEE SouthEast Conference, 2004, pp. 84-89. 

[57] Walther Fledelius, Brian H. Mayoh, A swarm based approach to medical image analysis, Proceedings of the 

IASTED International Conference on Artificial Intelligence and Applications, AIA 2006, 2006, pp. 150-155. 

[58] R.F. Edgar, Generation and application of image transforms, Optics Technology, Vol. 1, Issue 4, 1969, pp. 183-

190. 

[59] Wang Min, Zhang Yanning, Sun Jinqiu, Li Ying, Ma Miao, A Method of Image Transform Based on Linear 

Elements, Fifth International Conference on Image and Graphics, 2009, pp. 124-128. 

[60] R. Memisevic, G. Hinton, Unsupervised Learning of Image Transformations, Proceedings of IEEE Conference 

on Computer Vision and Pattern Recognition, 2007, pp. 1-8. 

[61] Lennart Wietzke, Oliver Fleischmann, Gerald Sommer, 2D Image Analysis by Generalized Hilbert Transforms 

in Conformal Space, Proceedings of the 10th European Conference on Computer Vision: Part II, 2008, pp. 638-

649. 

[62] Shou-Cheng Hsiung, J. H. Jeng, Image retrieval based on fractal transformation, WSEAS Transactions on 

Information Science and Applications, Vol. 2, No. 7, 2005, pp. 827-834. 

[63] T. Kowaliw, W. Banzhaf, N. Kharma, S. Harding, Evolving novel image features using genetic programming-

based image transforms, Proceedings of the IEEE Congress on Evolutionary Computation, 2009, pp. 2502-

2507. 

[64] Claude Gasquet, Patrick Witomski, Fourier analysis and applications: filtering, numerical computation, 

wavelets, Springer, 1999. 

[65] Lokenath Debnath, Wavelet transforms and their applications, Springer, 2002. 

[66] S. Mallat, A theory for multi-resolution signal decomposition: The wavelet representation, IEEE Pat. Anal. 

Mach. Intell., Vol. 11, No. 7, 1989, pp. 674-693. 

[67] R.N. Bracewell, The Fourier Transform and Its Applications (Series in Electrical Engineering), McGraw-Hill 

Book Company, New York, 1986. 

[68] Jaime Gomez, Carmen Morato, Teresa Castellanos, Juan Seijas, Two different approaches to classification 

applying appropriate wavelets, WSEAS Transactions on Systems, Vol. 4, No. 12, 2005, pp. 2369-2375. 

[69] X. D. Zhuang and N. E. Mastorakis, The Curling Vector Field Transform of Gray-Scale Images: A Magneto-

Static Inspired Approach, WSEAS Transactions on Computers, Vol. 7, Issue 3, 2008, pp. 147-153. 

[70] G. Abdel-Hamid and Y. H. Yang, Multiscale Skeletonization: An electrostatic field-based approach, 

Proceedings of IEEE International Conference on Image Processing, Vol. 1, 1994, pp. 949-953. 

[71] Andrew D. J. Cross and Edwin R. Hancock, Scale-space vector field for feature analysis, Proceedings of the 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 738-743. 

[72] K. Wu and M. D. Levine, 3D part segmentation: A new physics-based approach, IEEE International symposium 

on Computer Vision, 1995, pp. 311-316. 

[73] Xiao-Dong Zhuang, Nikos E. Mastorakis, A magneto-statics inspired transform for structure representation and 

analysis of digital images, WSEAS Transactions on Computers, Vol. 8, No. 5, 2009, pp. 874-883. 

[74] X. D. Zhuang, N. E. Mastorakis, A novel field-source reverse transform for image structure representation and 

analysis, WSEAS Transactions on Computers, Vol. 8, No. 2, 2009, pp. 376-385. 

[75] P. Hammond, Electromagnetism for Engineers: An Introductory Course, Oxford University Press, USA, forth 

edition, 1997. 

[76] I. S. Grant and W. R. Phillips, Electromagnetism, John Wiley & Sons, second edition, 1990. 

[77] Terence W. Barrett, Topological foundations of electromagnetism, World Scientific series in contemporary 

chemical physics, Vol. 26, World Scientific, 2008. 

[78] Minoru Fujimoto, Physics of classical electromagnetism, Springer, 2007. 

Reference

161



 

160 

[79] Gustavo Carneiro, Allan D. Jepson, Flexible Spatial Configuration of Local Image Features, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, Vol. 29, 2007, pp. 2089-2104. 

[80] C. R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A. Aisen, L. Broderick, Local versus global features for 

content-based image retrieval, IEEE Workshop on Content-Based Access of Image and Video Libraries, 1998,  

pp. 30-34. 

[81] Y. Shelepin, A. Harauzov, V. Chihman, S. Pronin, V. Fokin, N. Foreman, Incomplete image perception: Local 

features and global description, International Journal of Psychophysiology, Vol. 69, Issue 3, 2008, pp. 164. 

[82] Aude Oliva, Antonio Torralba, Building the gist of a scene: the role of global image features in recognition, 

Progress in brain research, Vol. 155, 2006, pp. 23-36. 

[83] Yuntao Qian, Rongchun Zhao, Image segmentation based on combination of the global and local information, 

International Conference on Image Processing, Vol. 1, 1997, pp. 204-207. 

[84] Dimitri A. Lisin, Marwan A. Mattar, Matthew B. Blaschko, Erik G. Learned-Miller, Mark C. Benfield, 

Combining Local and Global Image Features for Object Class Recognition, Proceedings of the 2005 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 03, 2005, pp. 47. 

[85] Takahiro Toyoda, Osamu Hasegawa, Random Field Model for Integration of Local Information and Global 

Information, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, 2008, pp. 1483-1489. 

[86] J.A. Montoya-Zegarra, J. Beeck, N. Leite, R. Torres, A. Falcao, Combining Global with Local Texture 

Information for Image Retrieval Applications, 10th IEEE International Symposium on Multimedia, 2008, pp. 

148-153. 

[87] M. Aly, P. Welinder, M. Munich, P. Perona, Automatic discovery of image families: Global vs. local features, 

16th IEEE International Conference on Image Processing, 2009, pp. 777-780. 

[88] X. Zhuang, N. E. Mastorakis, The Local Fuzzy Fractal Dimension as a Feature of Local Complexity for Digital 

Images and Signals, WSEAS transactions on Computers, Vol. 4, Issue 11, November 2005, pp. 1459-1469. 

[89] Michiharu Niimi, Hideki Noda and Eiji Kawaguchi, An image embedding in image by a complexity based 

region segmentation method, Proceedings of 1997 International Conference on Image Processing, Vol.3, 1997, 

pp. 74-77. 

[90] Andrew B. Watson, Image Compression Using the Discrete Cosine Transform, Mathematica Journal, 4(1), 

1994, pp. 81-88. 

[91] Ahmed, N., T. Natarajan, and K. R. Rao, On image processing and a discrete cosine transform. IEEE 

Transactions on Computers, C-23(1), 1974, pp. 90-93. 

[92] Wallace G., The JPEG still picture compression standard, Communications of the ACM, 34(4), 1991, pp. 30-44. 

[93] Antonios Oikonomopoulos, Ioannis Patras, Maja Pantic, Spatiotemporal localization and categorization of 

human actions in unsegmented image sequences, IEEE Transactions on Image Processing, Vol. 20, No. 4, 2011, 

pp. 1126-1140. 

[94] Kanglin Chen, Dirk A. Lorenz, Image sequence interpolation based on optical flow, segmentation, and optimal 

control, IEEE Transactions on Image Processing, Vol. 21, No. 3, 2012, pp. 1020-1030. 

[95] Iulian Udroiu, Ioan  Tache, Nicoleta  Angelescu, Ion Caciula, Methods of measure and analyse of video quality 

of the image, WSEAS Transactions on Signal Processing, Vol. 5, No. 8, 2009, pp. 283-292. 

[96] Radu Dobrescu, Matei Dobrescu, Dan Popescu, Parallel image and video processing on distributed computer 

systems, WSEAS Transactions on Signal Processing, Vol. 6, No. 3, 2010, pp. 123-132. 

[97] Ingmar Lissner, Philipp Urban, Toward a unified color space for perception-based image processing, IEEE 

Transactions on Image Processing, Vol. 21, No. 3, 2012, pp. 1153-1168. 

[98] David A. Kay, Alessandro Tomasi, Color image segmentation by the vector-valued allen-cahn phase-field 

model: A multigrid solution, IEEE Transactions on Image Processing, Vol. 18, No. 10, 2009, pp. 2330-2339. 

[99] Zhengmao Ye, Habib Mohamadian, Yongmao Ye, Practical approaches on enhancement and segmentation of 

trimulus color image with information theory based quantitative measuring, WSEAS Transactions on Signal 

Processing, Vol. 4, No. 1, 2008, pp. 12-20. 

[100] Keigo  Hirakawa, Patrick J. Wolfe, Spatio-spectral color filter array design for optimal image recovery, 

IEEE Transactions on Image Processing, Vol. 17, No. 10, 2008, pp. 1876-1890. 

[101] Athar Ali Moinuddin, Ekram Khan, Mohammed Ghanbari, Low complexity, efficient and embedded color 

image coding technique, IEEE Transactions on Consumer Electronics, Vol. 54, No. 2, 2008, pp. 787-794. 

[102] Jae Young Choi, Yong Man Ro, Konstantinos N. Plataniotis, Color face recognition for degraded face 

images, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 39, No. 5, 2009, pp. 

1217-1230. 

[103] Saibabu Arigela, Vijayan K.A Asari, locally tuned nonlinear technique for color image enhancement, 

WSEAS Transactions on Signal Processing, Vol. 4, No. 8, 2008, pp. 514-519. 

Reference

162



 

161 

[104] P. A. Basford, P. M. Des, Algorithm to Compute the Eigenvalues/Functions of the Laplacian Operator with 

a Region Containing a Sharp Corner, International Journal of Computer Mathematics, Vol. 7, No. 4, 1979, pp. 

339-350. 

[105] Erhan Alparslan, Componentwise Edge Detection by Laplacian Operator Masks, Signal Processing, Vol. 2, 

No. 2, 1980, pp. 179-183. 

[106] Fridrich Sloboda, Smooth and Sharp Laplacian Operators, Computers and Artificial Intelligence, Vol. 4, No. 

2, 1985, pp. 153-162.  

[107] Sonya A. Coleman, Bryan W. Scotney, Shanmugalingam Suganthan, Edge detecting for range data using 

laplacian operators, IEEE Transactions on Image Processing, Vol. 19, No. 11, 2010, pp. 2814-2824. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference

163



 

Reference

164



SUBJECT INDEX 
 
 

A 
Ampere’s Law, 68 
Area Expanding, 65 
Area Merging, 25 

 
B 
Base Point, 64 
Biot-Savart Law, 47 
Border Force, 28 
Brightness Normalization, 141 

 
C 
Color Relative Potential, 131 
Compressing Vector Field, 27 
Cross Product, 76 
Curl, 69 
Curl Source Reverse, 69 
Curling Vector Field, 61 
Current Element, 46 

 
D 
Diffusing Center, 22 
Diffusing Vector Field, 19 
Divergence, 38 

 
E 
Electro-Static Force, 17 
Electro-Static Potential, 5 

 
F 
Field Intensity, 36 
Field Source, 36, 68 

 
G 
Gaussian Law, 36 

 
H 
Hamiltonian Operator, 36, 68 

 
I 
Image Compression, 43 
Image Gradient, 37, 48 
Image Segmentation, 9, 25, 34, 55, 63 
Image Sequence, 79 
Image Sequence Segmentation, 88 
Image Structure, 23, 38, 65 
Image Transform, 5 

 

L 
Laplacian Operator, 156 
Local Image Feature, 6 

 
M 
Magnetic Induction, 47 

 
N 
Nature Inspired Method, 1 

 
P 
Physics Inspired Method, 1 
Primitive Region, 34, 65 

 
R 
Region Merging, 14, 56 
Region Shrinking, 34 
Relative Field, 79 
Relative Potential Field, 6 
Repulsive Vector, 18 
Right-Hand Rule, 45 
Rotating Expansion, 65 

 
S 
Sobel Operator, 37, 48, 70 
Source Reverse Transform, 37 

 
T 
Tangent Edge Vector, 47 
Three-Dimensional Relative Potential, 81 
Three-Dimensional Segmentation, 88 

 
V 
Vector Field Transform, 17 
Virtual Edge Current, 45 
Virtual Source, 37, 68 

 
 

Subject Index

165



 



 




	Preface
	Table of Contents
	Final Book
	Chapter 1
	Chapter 2
	ID9050 1
	ID9050 2
	ID9050 3
	ID9050 4
	ID9050 5
	ID9050 6
	ID9050 7
	ID9050 8
	ID9050 9
	ID9050 10
	ID9050 11
	ID9050 12
	ID9050 13
	ID9050 14
	ID9050 15
	ID9050 16
	ID9050 17
	ID9050 18
	ID9050 19
	ID9050 20
	ID9050 21
	ID9050 22
	ID9050 23
	ID9050 24
	ID9050 25
	ID9050 26
	ID9050 27
	ID9050 28
	ID9050 29
	ID9050 30
	ID9050 31
	ID9050 32
	ID9050 33
	ID9050 34
	ID9050 35
	ID9050 36
	ID9050 37
	ID9050 38
	ID9050 39
	ID9050 40

	Chapter 3
	Chapter 4
	Chapter 4
	Blank

	Chapter 5
	Chapter 5
	Blank

	Chapter 6
	Chapter 6
	Blank

	References
	References
	References
	References
	Blank

	Blank

	Blank





