
A Model-Driven Solution for Development

of Multimedia Stream Processing Applications

ANNA BOBKOWSKA, MICHAŁ NYKIEL, JERZY PROFICZ

Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology

Narutowicza 11/12, 80-233 Gdańsk

POLAND

annab@eti.pg.gda.pl, mnykiel@task.gda.pl, j.proficz@task.gda.pl, http://www.kaskada.pg.gda.pl

Abstract: This paper presents results of action research related to model-driven solutions in the area of

multimedia stream processing. The practical problem to be solved was the need to support application

developers who make their multimedia stream processing applications in a supercomputer environment. The

solution consists of a domain-specific visual language for composing complex services from simple services

called Multimedia Stream Processing Modeling Language (MSP-ML) and a tool integrated with the

supercomputer environment which makes round-trip transformations between models and executable service

structures. The contribution to the debate about optimal model-driven technology can be stated as follows.

Effective application of modeling requires model-driven solutions characterized by a high level of

integration of models and tools in their context of use including user goals and activities as well as target

environment. Such solutions sometimes require combination of several available approaches, i.e. domain-

specific modeling, use of standards and modeling tools embedded in the platform.

Key-Words: model-driven solution, domain-specific language, modeling tool integrated with supercomputer

environment, services, multimedia stream processing.

1 Introduction

The goal of this paper is to present the results of

action research related to model-driven solution for

the development of applications which perform

multimedia stream processing in supercomputer

environment.

1.1 Idea of Model-Driven Solution

In model-driven engineering (MDE) approach,

models direct the course of entire software

development and evolution. Several standards, e.g.

OMG Unified Modeling Language (UML) [10] or

OMG Business Process Model and Notation

(BPMN)[8], provide a common language for

communication among software developers and

allow for research on more advanced issues of

MDE. It has been argued that more extensive use

of models and advanced tools makes modeling

technology more mature [12]. Other research

results suggest that actual benefits from models

can be achieved with the application of domain-

specific modeling (DSM) [6] with the application

of meta-case tools.

 We argue that effective application of MDE

requires a model-driven solution (MDS) which is

customized exactly to the context of application

development. It should be developed with

a systemic approach and all its elements must

smoothly interact. The context of MDS includes

user goals and activities as well as the platform on

which applications are developed and executed.

 Depending on the requirements to MDS,

standard modeling languages or domain-specific

languages are more appropriate. For example, for

communicating analysis results to a wide audience

of stakeholders one should rather choose

a standard language. But for support of design with

full code generation in a given domain, a domain

specific modeling might be a more suitable

approach. When selecting the DSM approach, use

of meta-case tools seems a natural consequence.

However, in some cases development of

specialized tools integrated with the target

environment is an even better choice. What is

interesting, MDS sometimes requires combination

of all abovementioned approaches. The MDS

described in this paper provides arguments and

illustration for this statement.

1.2 Discussion of Model-Driven Solution

to the Problem at Hand

 The practical part of the action research was

driven by the needs of developers of multimedia

stream processing applications. They needed

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 128

a technique which could elevate the level of

abstraction they were working on as well as a tool

fully integrated with the environment which allows

for automatic generation of executable structures.

 The first part of the delivered solution is

a domain-specific visual language which fulfils the

requirement of elevating the level of abstraction on

which application developers operate and which

fits exactly to the context of application

development. The language was defined with the

use of standard OMG Meta-Object Facility (MOF)

[9]. The second part of the solution is a tool

integrated with the environment which allows for

modeling as well as round-trip transformations

between models and executable service structures.

 One could ask questions: Why this solutions is

the most appropriate in this case? Why standard

modeling languages are not suitable? Why research

results related to service-oriented architecture or

multimedia stream processing were not applied?

And assuming the need of DSM, why the most

popular MetaEdit+ tool [5] has not been used? The

standard modeling languages, such as UML or

BPMN, are inappropriate for this application as

they were designed to model sequential processing

of discrete data, e.g. objects or messages.

Multimedia streams, which are processed by

supercomputers as parallel tasks in continuous and

pipeline style, are different from this type of data.

Thus, application of these languages would be a

misconception. As we describe in section 6, results

of related work on modeling services do not fit to

the specifics of this application. On the basis of

this analysis we have made decision to design

a domain-specific visual language, called

Multimedia Stream Processing Modeling

Language (MSP-ML). As one of the requirements

was strong integration with the supercomputer

environment, the only reasonable solution was

a tool integrated with this environment.

1.3 Structure of the Paper

 The paper is structured as follows. Section 2

presents the context of the MDS including the

specifics of supercomputer environment and

specifics of multimedia stream processing as well

as several roles of developers involved in

application development and patterns of their

interaction. Section 3 describes MSP-ML with

OMG MOF standard. Section 4 contains an

overview of the features of the tool called Complex

Service Designer. Section 5 presents a case study

of using this solution for face detection. Section 6

compares MSP-ML to related work and section 7

draws conclusions.

2 Context of the Model-Driven

Solution
The context of use of this MDS includes the

supercomputer environment, specifics of

multimedia stream processing and the needs of

developers of multimedia stream processing

applications.

2.1 Supercomputer Environment
This project was implemented in Academic

Computer Center TASK [1] placed in the Gdansk

University of Technology. It uses a supercomputer

called ‘Galera’. Its architecture is based on a

computation cluster and utilizes 672 nodes with 8

computation cores each, providing in total 5376

cores and 50TFlops theoretical computational

power. The nodes are interconnected using 20Gbps

Infiniband, and they have access to a high

performance mass storage with a capacity of

500TB, based on the Lustre file system. The

computing center is connected with the Gdansk

metropolis surveillance equipment including

cameras and microphones in the university

campus, train stations, sport stadiums and, in the

near future, the airport. It is used by about thirty

application developers who make their applications

in areas of integrated video and audio data

processing for security support, medical data

processing and document analysis with the purpose

of plagiarism detection.

2.2 Specifics of Multimedia Stream

Processing

Multimedia stream processing requires an

integrated hardware/software environment, where

video and audio streams are forwarded,

applications are deployed and analysis services

have their execution environment. This

environment is delivered by KASKADA platform,

which is a middleware dedicated to support

Fig 1. The model of the KASKADA platform

architecture.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 129

development and execution of multimedia stream

processing applications [7]. As it is shown in

Figure 1, its architecture consists of four layers:

complex services, simple services, tasks and

process/threads. Above this middleware, there are

applications or users directly using the platform.

The middleware uses hardware infrastructure of

supercomputer (shown below the process/threads

layer) which uses computational cluster nodes.

 The highest layer of the KASKADA

architecture operates with complex services which

describe processing scenarios in terms of

communication between simple services.

 The second layer, called simple service, is

responsible for managing basic functions with

algorithm definitions and related metadata, i.e.

execution and quality parameters, input/output

types as well as computations characteristics such

as expected CPU and memory load.

 The third layer enables computational task

execution. Tasks are executable programs which

implements concrete stream processing algorithms.

These programs are directly related to simple

services. They run computations declared by the

services when they are called.

 The lowest layer is built directly on the

operating system and uses processes and threads.

The processes and threads perform all the

computational task operations, cooperating with

each other, utilizing shared memory and other

parallelism mechanisms provided by cluster nodes.

2.3. Developers and Patterns of Interaction

The need for the solution has appeared in practice

of application development. Developers expressed

a request of a language for design of complex

services and communication among their different

roles. They had problems with editing long XML

files which describe complex services. The

problem was in assuring compliance to syntax and

in memorizing the names of all elements and their

attributes. Furthermore, problems with limited

comprehension of the long XML files have caused

annoying mistakes. The language together with an

accompanying tool should eliminate these

problems.

 The following three roles of developers are

involved in application development:

 Application developers, who perform software

engineering activities including requirements

elicitation, analysis and design as well as

composition of services in concrete scenarios,

 Service developers, who are responsible for

providing complex services, which are

developed with the use of simple services,

 Algorithm developers, who develop the

algorithms of simple services.

MSP-ML is used mainly by service developers for

designing complex service structures from simple

services. However, it is used also as a means of

communication between several roles of

developers regarding details of existing or

requested complex services.

 Two typical patterns of cooperation between

different developer roles can be distinguished. The

first one, reuse-driven development, shown in

Figure 2a, assumes that algorithm developers

provide implementations of reusable simple

services and place them in a service repository.

Then, service developers design reusable complex

service structures using MSP-ML and they place

them in the service repository as well. When

application developers receive a request for an

application from customer, they simply take

services from the service repository and use them

in their applications. The second pattern, request-

driven development, shown in Figure 2b, assumes

that not all complex services are available for the

application requested by the customer. In this case,

application developers communicate the need for

complex services to the service developers using

specifications as well as diagrams in MSP-ML. If

these complex services can be developed on the

bases of existing simple services, the service

designers just make the composition using MSP-

Fig 2. Interaction patterns: (a) reuse-driven

development, (b) request-driven development.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 130

ML and return the results to the application

developers. However, if some simple services are

missing, the request is sent to the algorithm

developers, again using the specifications as well

as the diagrams in MSP-ML. When requested

simple services are placed in the service repository,

the complex service structures can be tested and,

finally, integrated by the application developers

into the requested application.

3 MSP-ML description

The goal of MSP-ML construction was to provide

a visual modeling language which allows

application developers to elevate the level of

abstraction they operate on when they compose

complex services from simple services. The

language should be precise enough to allow for

automatic generation of executable service

structures in XML format.

3.1 MSP-ML meta-model
The meta-model of the MSP-ML is presented in

Figure 3. The basic elements of the model are:

ComplexService, which is a container for services,

inputs and outputs; and SimpleService, which

aggregates parameters and pins. MultimediaPins

and MessagePins are connected with each other

through MultimediaChannels or MessageChannels.

3.2 Notation and semantics
Descriptions of the model elements (meta-classes)

in terms of their notation and semantics are

presented in Table 1. The meta-classes for the

MSP-ML reflect the requirements of

understandability by application developers and

precision necessary to transform them structures

which can be executed by KASKADA platform.

When designing MSP-ML we have used the

following criteria in order to assure a high

understandability by application developers [4]:

 conceptual expressiveness,

 visual expressiveness,

 consistency with the tradition of modeling.

In consequence, the following decisions regarding

consistency were made. All elements related to

messages are modeled with dashed lines, all input

pins and input streams are modeled as empty

elements of notation while output streams and

output pins are modeled as filled elements of

notation. The multimedia channels have the thicker

Fig 3. Meta-model of the MSP-ML.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 131

icon as they represent transportation of heavy

loaded streams in opposition to discrete and small

messages. The language has gone through

assessment in tests of XML file generation,

evaluation from the perspective of cognitive

dimensions and empirical studies with its users.

They confirmed that the design decisions were

optimal.

Table 1. Notation and semantics of MSP-ML

meta-classes.

Meta-class name Notation

ComplexService

Complex Service is a container for all other kinds of

element in the diagram. It can contain many Simple

Services, inputs, outputs and channels between them.

SimpleService

Simple Service is a basic functional element of the

complex service diagram. It is responsible for analysis

and processing the data. The service definition

contains the service name, a unique key (an identifier

within a diagram) and a set of parameters.

SimpleServiceParameter

with Constant

{parameter} = {constant}

Represents a service parameter with a constant value.

It can be either a quality parameter that determines

which algorithm is used, or an execution parameter

whose value is passed to the algorithm.

SimpleServiceParameter {parameter} ~ {mapping}

Represents a service parameter acquired by mapping.

The value of Complex Service Parameter is assigned

to the Simple Service Parameter.

MultimediaInputPin

Multimedia Input Pin represents an input of the Simple

Service. It can be connected to a single multimedia

stream. Every input pin is identified with a number

related to the containing simple service.

MultimediaOutputPin

Multimedia Output Stream represents an output of the

Simple Service. It generates a multimedia stream.

Every output pin identified with a label related to the

containing simple service.

MessageInputPin

Message Input Pin represents an input of the Simple

Service. It can be connected to a single message

stream. Every input pin is identified with a number

related to the containing simple service.

MessageOutputPin

Message Output Stream represents an output of the

Simple Service. It generates a message stream. Every

output pin is identified with a label related to the

containing simple service.

MultimediaStreamInput

Multimedia Stream Input is an element that represents

a source of a multimedia stream, e.g. a video camera.

It delivers multimedia streams to Simple Services.

Stream Input is identified with a number.

MultimediaStreamOutput

Multimedia Stream Output is an element representing

an output of the complex service. Multimedia streams

which are connected to the Multimedia Stream Output

will be available to customers.

MessageStreamInput

Message Stream Input is an element that represents a

source of a message stream. It delivers message

streams to Simple Services. Message Stream Input is

identified with a number.

MessageStreamOutput

Message Stream Output is an element representing an

output of the complex service. Messages which are

sent to the Message Stream Output will be available to

customers.

MultimediaChannel

Multimedia Channel represents a kind of channel,

which transmits a single multimedia stream.

MessageChannel

Message Channel represents a kind of channel, which

transmits a single message stream.

3.3 Example of diagram

An example of the complex service diagram with

the descriptions of model elements is presented in

Figure 4. It consists of five simple services, two

multimedia stream inputs and one multimedia

stream output, one message stream input and one

message stream output connected by several

multimedia stream channels and message stream

channels.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 132

4 Complex Service Designer

4.1 Overview

Complex Service Designer is a tool for modeling

in MSP-ML which allows for round-trip

transformations of MSP-ML models to executable

service structures in XML format. The tool is fully

integrated with the User Console, which is a web

application used as a front-end for managing the

platform. This approach to the service composition

is much more user-friendly and efficient

comparing to the necessity to edit XML files

manually.

4.2 Technology and components

The tool is implemented in Microsoft Silverlight

technology including framework for RIA (Rich

Internet Application) development based on .NET

platform and C# object-oriented language. It offers

a good support for vector graphics, animations,

interactivity and multimedia, which was very

useful when implementing features related to

modeling in MSP-ML. The architecture of the tool

is shown in Figure 5.

Complex Service Designer is decomposed into

four components:

 Modeler – a component responsible for

modeling;

 DataProvider – a component used for

communication between the Complex Service

Designer and the service repository;

 Coverter – a component responsible for round-

trip transformation between MSP-ML models

and XML files;

 Validator – a component responsible fo

validation of diagrams.

Communication between Complex Service

Designer and the service repository is required on

multiple stages of complex service scenario

development. Simple services names and

descriptions must be obtained from the repository.

Additionally, Complex Service Designer requires

detailed data about the selected services for the

validation process, which checks parameters and

input/output formats.

4.3 Round-trip transformation

Round-trip transformations are made by Converter

component. It is based on mappings between MSP-

ML meta-classes and XML constructs which are

recognized and interpreted by KASKADA

Fig 5. Complex Service Designer integration with

the platform.

Fig 4. An example of a MSP-ML diagram with the descriptions of model elements.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 133

platform. The most typical use of the convertor is

the forward way, i.e. from MSP-ML models to

executable XML service structures. However, the

tool supports also reverse transformation, i.e. from

executable XML files to MSP-ML models.

 Transformation from diagrams to the XML file

is done in the following way:

1. Every Simple Service is converted to a

<simpleService/> construct with the name

and key attributes.

2. Parameters of each Simple Service are

represented as <parameter/> elements which

contain literal value or <mapping/> construct.

3. Each Multimedia/Message Stream Input is

converted to an <inputStream/> element.

4. Multimedia Output Pins are transformed to

<outputStream/> and Message Output Pins

are converted to the <event/> construct within

the <simpleService/>. The pin name is

represented as the name attribute.

5. All of the Multimedia/Message Channels are

converted to <destination/> element within

<outputStream/> or <inputStream/>

constructs, according to the channel source. The

key attribute determines the target of the

channel.

6. Every Multimedia/Message Stream Output is

represented as a serviceOutput attribute of the

associated <outputStream/>.

5 A Case Study

5.1 Problem of Face Detection

Let's assume that police requests an application for

monitoring security of some area in a city.

Surveillance devices, including PAL and HD

cameras, are connected to a security center.

However, in order to increase efficency,

automation of the monitoring facilities is required.

The application should deliver real-time face

detection in the moving crowd as well as archive

the processed data for further usage. The real-time

face detection should allow for tracing suspected

persons and support fast-reaction in case of crime.

5.2. Development process

As the request comes from the customer, the first

task for an application developer is searching

through the service repository for complex services

performing this kind of multimedia stream

processing. As no such complex service exists in

the service repository, the application developer

sends requests to service developers to deliver it.

The service developers search for related simple

services and composes a complex service using

MSP-ML with Complex Service Designer. In this

case, face detection requires decoding of incoming

streams, algorithms of face detection with message

sending, services of video images trimming and

storing them on the disk and encoding the stream

before sending it to the security center (output of

the complex service). Currently, KASKADA

service repository contains Codec Services,

including H.264 and MPEG-2, which can be

reused for decoding and encoding. Storing services

also can be reused. The request for the missing

Face Detect service is sent to algorithm developers.

Thus, this is an example of the most complex case

of request-driven pattern. When the service of Face

Detect is delivered, the service developer can

automatically generate executable service structure

which can be used by the application developer.

For testing purposes, such a service can be called

directly, using the user console. However, the

application developer can also use it in an

application located at another application server.

Such application usually requires a dedicated GUI,

including alarms, additional business logic and

deployment settings. An example of a deployment

diagram is shown in Figure 6. It presents an

application server with an application called Face

Web Application, a managing server responsible

for coordination of the complex service and a

cluster which performs the actual processing. After

configuration of cameras and processing

parameters the application is ready to be used by

the police.

5.3 Overview of application

Application overview is presented in Figure 7.

Face Web Application requires input stream from

surveillance camera to be transmitted to the

supercomputer.

Fig 6. An example of the deployment diagram of

the face detection.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 134

 When the user decides to begin face detection

the application sends a request to the platform to

start the complex service. KASKADA platform

manages the entire lifecycle of the service. After

receiving a request the repository is searched for

necessary simple services. The next step is

selection of algorithms that match requested

quality criteria, such as precision or processing

speed. Afterwards, streams that have been selected

by the user for the analysis are retrieved from the

data repository. Required multimedia and message

stream channels between the services are also

created in this step. After necessary validation of

data formats and parameter values, the

computation tasks are started. With continuous

monitoring of cluster CPU, memory and network

load, the platform is able to distribute new tasks on

nodes optimally and whole analysis process may

run in real time alongside other services.

 The complex service generates an output stream

where detected faces are marked with red

rectangle. Furthermore, the service is able to send a

message with stored image to the application,

which can be forwarded to a mobile device. This

feature allows police officer to be aware of current

situation even when he has no access to a

computer. Multimedia processing service delivered

by KASKADA platform is efficient and

successfully performs real-time face detection on

streams from surveillance cameras.

6 Related work
In literature, one can find three main approaches to

the problem of modeling stream processing

services. The first approach concentrates on the

service-oriented architecture of such systems.

Related work includes Service-oriented

Architecture Modeling Language (SoaML) [11],

which is a well-known standard for modeling SOA

systems based on UML. It was developed by

Object Management Group as a UML profile

because pure OMG UML [10] does not provide

proper methods for identifying service providers,

consumers and relations between them. This

language is suitable for designing most of service-

oriented systems, but it does not support modeling

interfaces other than data flow between services,

which is necessary in multimedia stream

processing applications.

 Another solution for modeling SOA systems is

Service-Oriented Modeling Framework [3],

designed by Michael Bell for managing the life

cycle of service-oriented systems. It introduces

five major modeling activities; one of them is

logical design modeling which is focused on

establishing relationships between services and

data exchange paths. Although this language seems

to fit better to our purpose than SoaML in terms of

modeling the data flow, it is still not suitable for

designing multimedia processing services. The

main problem is a high level of abstraction, to

general concepts of service inputs and outputs and

a lack of differentiation between data and message

streams.

 The second approach is the use of languages

designed for modeling processing scenarios. The

most popular language in this category is OMG

Fig 7. An overview of the face detector application.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 135

Business Process Model and Notation (BPMN) [8],

which is widely used for modeling various

business processes. The problem with adapting this

language in our context of application was related

to its high level of abstraction and the missing

concept of multimedia stream flow. Without proper

elements for modeling input and output streams or

service parameters, it is impossible to create an

accurate description of a multimedia processing

scenario.

 The third approach to modeling multimedia

processing services is focused on multimedia

processing. A good example of such language is

4MPS (Metamodel for Multimedia Processing

Systems) [2], which was proposed as a solution for

describing systems with any multimedia

processing design. The meta-model offers high-

level semantics for the domain and introduces

some abstract concepts such as processing objects

and signal flow, which can be interpreted as

processing services and multimedia streams in our

platform. However, 4MPS have not allowed for

modeling of communication patterns needed in our

application, the most important of which is

message passing between services.

 To sum up, none of the discussed solutions has

fit well to our context of multimedia stream

processing applications. Furthermore, attempts to

apply and extend them, would require to

implement a number of useless constructs while

the usefull constructs must have been complicated

in some cases.

 MSP-ML together with Complex Service

Designer is a best-fit solution in this context. It

constitutes a general contribution to the field of

multimedia stream processing applications for the

following reasons. It provides a successful

combination of two originally separated fields of

service-oriented architecture and multimedia

stream processing. It was developed with solid

methodology of model-driven approach, i.e.

combination of DSM, meta-model in OMG MOF

and a tool integrated with the execution

environment. It delivers a complete model-driven

solution to the needs of developers of multimedia

stream processing applications. As such, it might

be of interest for other solution providers in the

area of multimedia stream processing applications.

7 Conclusions

This paper has presented the results of action

research related to model-driven solutions for

development of multimedia stream processing

applications in supercomputer environment. The

problem domain is appropriate for such action

research because it is innovative and common

solutions cannot be directly applied. In

conclusion, we would like to stress the following:

 Need to focus on the context in terms of user

goals and activities as well as environment -

When one develops a model-driven solution,

one should focus on needs in the context rather

than available MDE technology;

 The design of the MSP-ML with the use of

OMG MOF as well as cognitive dimensions

and empirical studies with the users - MSP-ML

is a kind of domain-specific visual language

which contains only these categories which are

needed in this context of use. The meta-model

of this language is made with OMG MOF

standard which should result in easy

extensions of the language when needed. MSP-

ML is precise enough to be the basis for round-

trip transformations as well as for

communication among developers of

multimedia stream processing applications;

 Automation of round-trip transformations

delivered by Complex Service Designer which

is embedded in the supercomputer

environment;

 Unique combination of several approaches

related to modeling: standards, domain-

specific modeling and tools integrated with the

platform, which appeared to be the right

solution to the real needs of application

developers;

 Practical application of this model-driven

solution - The solution is used by about thirty

application developers and it satisfies its goals;

 Contribution to techniques of multimedia

stream processing applications - As this

solution proved to be useful in this specific

context of development of multimedia stream

processing applications in supercomputer

environment, some elements of the solution,

e.g. approach or MSP-ML, might be of interest

to solution providers of other multimedia

stream processing applications;

 Contribution to the debate on effective and

efficient use of model-driven engineering -

Several distinctive approaches in MDE were

proposed and decision makers sometimes

wonder which of them should be applied. This

paper argues for treatment of MDE approaches

as a kind of patterns. They appear to be

complementary and they can be combined in

the development of model-driven solutions.

Acknowledgments:

The work was done as a part of MAYDAY EURO

2012 project, Operational Program Innovative

Economy 2007-2013, Priority 2 “Infrastructure

area R&D”. The platform is currently developed as

a part of the Center of Excellence in Scientific

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 136

Application Development Infrastructure “NIWA”.

References:

[1] Academic Computer Centre at Gdańsk

University of Technology, www.task.gda.pl

(access on 5.03.2014)

[2] Amatriain X., A Domain-Specific

Metamodel for Multimedia Processing

Systems, IEEE Transactions On Multimedia,

Vol. 9, No. 6, October 2007

[3] Bell M., Service-Oriented Modeling: Service

Analysis, Design, and Architecture. John

Wiley and Sons, 2008.

[4] Bobkowska A., Nykiel M., Proficz J.,

Evaluation of Multimedia Stream Processing

Modeling Language from the Perspective of

Cognitive Dimensions, Proceedings of PPIG

2011 - Psychology in Programming Interest

Group Annual Conference, York, UK, 2011

[5] Domain Specific Modeling with Meta-Edit+,

www metacase.com (access on 10.06.2011)

[6] Kelly S., Tolvanen J-P., Domain-Specific

Modeling: Enabling Full Code Generation,

John Wiley &Sons, 2008.

[7] Krawczyk H., Proficz J., KASKADA –

multimedia processing platform

architecture, In: SIGMAP 2010,

Proceedings of the International Conference

on Signal Processing and Multimedia

Applications, 2010.

[8] Object Management Group, OMG Business

Process Model and Notation, www.omg.org

(access on 5.03.2014)

[9] Object Management Group, OMG Meta-

Object Facility, www.omg.org (access on

5.03.2014)

[10] Object Management Group, OMG Unified

Modeling Language, www.omg.org (access

on 5.03.2014)

[11] Object Management Group, Service oriented

architecture Modeling Language (SoaML) -

Specification for the UML Profile and

Metamodel for Services (UPMS), 2008.

[12] Rios E., Bozheva T., Bediaga A., Guilloreau

N., MDD Maturity Model: A Roadmap for

Introducing Model-Driven Development,

LNCS 4066, 2006.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 137

