
Framework Reuse – Heaven or Hell

JAROSŁAW KUCHTA

Department of Computer Architecture

Gdańsk University of Technology

G. Narutowicza 11/12, 80-233 Gdańsk

POLAND

j.kuchta@eti.pg.gda.pl http://www.eti.pg.gda.pl

Abstract: Object-oriented frameworks have almost completely dominated the world of business applications.

Frameworks are widely considered to be helpful and are designed to speed up creation of applications.

However, when trying to apply a framework for a particular application, it often turns out that this is not as easy

as it seemed at the beginning. It takes time to become familiar with the framework, with its concepts and the

standard way of use. Afterwards it often appears that the standard way of using the framework, provided by the

authors, do not fully fit for the application. Developers try to match a solution to the existing structure and

behavior of the framework. If business requirements to the application are higher than capabilities provided by

the framework, The developers try to match the existing framework to save the application. This is what can be

called “framework hell”. Time is running out, and eventually one may find that the chosen framework should

not ever be used in the current application despite the initial similarities to the application requirements. This

paper presents a brief analysis of the main problems with the adjustment and reuse of frameworks. The analysis

results from three years of the author's experience in framework reuse, particularly with frameworks supporting

generation of applications based on Web services in ASP.NET technology. However, the author’s experience

can be extended to other frameworks, as it results in a number of guidelines to be followed by framework

developers to enable other developers to use frameworks in non-standard applications.

Key-Words: framework, reuse, extension, problems, issues

1 Introduction
Application frameworks are build specially to

provide developers several benefits [1, 2] such as:

maximum of built-in functionality, minimizing risk

of developer error, promotion of standard design

patterns and code guidelines, extensibility, and

portability [3]. However, the effective usage of a

framework requires almost expert–level knowledge.

As two famous framework experts, Schmidt &

Fayad, said: “Learning to use an OO application

framework effectively requires considerable

investment of effort. For instance, it often takes 6–

12 months to become highly productive with a GUI

frame-work like MFC or MacApp, depending on the

experience of the developers” [4]. The most

important misunderstanding about frameworks is

expectation to spare development time when using

them. Moser & Nierstrasz evaluated the effect of

object-oriented frameworks on developer

productivity and they stated that “Frameworks do

not make developers more productive; they just

reduce the amount of work” [5]. Bosch, Molin,

Mattson, and Bengtsson found several problems in

framework development, usage, composition and

maintenance. One of these problems is “to

understand the intended domain of the framework

and its applicability to the application” [6]. To

resolve these problems, emphasis is put on the

documentation of the frameworks [7, 8]. However,

Kirk, Roper and Wood found out in their

experiments with framework documentation [9] that

when developers meet problems with framework

usage, they search for the problem solution not only

in framework documentation (about 60% of

attempts), but in their previous knowledge (about

40%). They noticed that when developers tried to fit

their previous solutions to the current problem with

framework reuse, the time to get the proper solution

was longer – sometimes it worked, but mostly did

not.

So what opportunities do the developers have

when they cannot fit their solutions to the

capabilities of the framework? One option is to

abandon the framework and to try to use another

framework or to write a custom application “from

the scratch”. There are discussions on this approach

within developers community [10, 11]. Another

option is to try to fit or expand the current

framework capabilities to the requirements of the

current application.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 98

At this moment the developers meet a huge bag

of problems. Developers forums are full of requests

for help in case of framework modification or

extension. Their problems can be divided in two

categories: understandability problems and

inaccessibility of fragments of framework

implementation. These two categories of framework

reuse problems will be explained in the next two

sections of these paper. These problems hit me in

my three-year experience as assistant professor in

Computer Systems Department of Gdańsk

University of Technology – working with my

postgraduate students of Web Application Design

and cooperating with three industry companies in a

project of Comcute – a system for providing big

computing power in a crisis situation
1
. My personal

experience focused on Microsoft frameworks, such

as AJAX, ASP.NET, ADO.NET, WCF, Silverlight,

and RIA Services. I am aware that these Windows

frameworks are specially hard to extend as in most

cases they are provided as dynamic-link libraries

(DLL’s) – with no source available. I will show

some remedies to this obstacle so these “closed”

frameworks can be as “open” as frameworks for

Linux system. However this does not eliminate the

problems with inaccessibility of implementation

details. So in conclusions I will provide some

guidelines for framework designers. Following these

guidelines can cause frameworks to be more flexible

and easier to be reused.

2 Understandability problems
Problems with understanding details of framework

behavior may be caused by lack of adequate

documentation. Kirk, Roper, and Wood identified

four categories of such problems: understanding the

functionality of components; the interactions

between components; the mapping from the

problem domain to the framework implementation

and understanding the architectural assumptions in

the framework design [12]. They studied

documentation efficiency for developer problem

resolving using three forms of documentation:

pattern language, microarchitecture and source code

[13]. Pattern language, originated from the world of

architecture [14, 15], has been adopted to the world

o software engineering [16, 17]. It can be simply

understood as framework description, mainly

hypertext description [18]. The term

“microarchitecture” is here meant as a graphical

representation of internal framework structure,

mainly object and method dependencies [19]. Kirk,

1 http://comcute.eti.pg.gda.pl/en/

Roper and Wood have found out experimentally that

the source code has the most important impact on

problem solution (more than 50% problem solutions

were searched in source code and almost 75% was

found). Other authors agree that “poor

documentation can make understandability more

complex and a mind–breaking task” [20].

2.1 Source code as valuable documentation

The source code not only provides an insight into

the internal structure of the framework (static

relationships), but enables tracing of code execution

as well. The tracing capability is a powerful help for

the developers in recognition of functional

dependencies between currently active objects. I use

the term “tracing” instead of “debugging” although

the real developer tool is a debugger built in an IDE

(Visual Studio for example). However the goal for

the developers is to understand the framework

behavior, not to remove code errors (at least in the

initial period of framework use). The developers set

up breakpoints to see where do the execution thread

go and at which circumstances (e.g. two breakpoints

– one inside and one after an “if” instruction), and

watch object changes to see when the object

instances are created and what are the results of

computation held by object properties.

However, the above mentioned experiment [19]

was performed on open-source Java GUI framework

JHotDraw
2
, with source code provided in a natural

manner. What can developers do if the framework is

delivered in a form of DLL (without source code)?

Let’s assume that the framework was designed for

Windows system, the most likely for .NET

framework, and contains “managed” code. The

“managed” code (in contrast to “native” code)

means that the code execution is completely

managed by operating system (namely by a CLR

machine), not by a sole processor itself [21]. Some

people say that “managed” code differs from the

“native” code in reference counting and garbage

collection [22]. That is true, but not the whole truth.

“Managed” code is delivered to the CLR machine in

a Microsoft Intermediate Language (MSIL) form

and it can easily be “decompiled”, i.e. translated

back to some high–level language as C#, C++,

Visual Basic. The main constraint here is that a file

with a program symbol database (PDB) is required

to be delivered along the DLL file to do so. The

PDB file contains a list of program symbols (public,

protected and internal) to show “decompiled” code

2 http://www.jhotdraw.org/

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 99

in a human readable form (with meaningful names

of classes and methods).

Some framework authors deliver their

frameworks with the PDB files, but some don’t. Are

the developers hopes buried then? Fortunately, no.

Each DLL must provide a list of public and

protected symbols to be linked to the application. So

indeed a PDB file must be included in the DLL file.

There are some tools known which can “decompile”

almost every DLL to the source code using these

internal PDB’s [23]. One of these tools is free

Telerik JustDecompile
3
 program, which can

“decompile” the whole framework and can generate

a Visual Studio project that organizes just generated

code. Another tools is commercial RedGate .NET

Reflector
4
 which can be integrated with Visual

Studio to enable developer to use internal Visual

Studio debugger to get into third–party code and

assemblies
5
.

2.2 Source code decompilation problems

The word “almost” used above is emphasized,

because the decompiler results are not fully reliable.

It means that the developer can not simply get the

generated source code to recompile it and to get the

exact copy of “decompiled” DLL. There are some

obstacles in back–compiling decompiled source

code.

First, the DLL is not required to provide list of

private symbols. It is a free decision of a developer

to include private symbols in the PDB (and in the

DLL) file. If private symbols are not included in the

PDB, then the decompiler attempts to generate some

meaningful names to missing symbols. These names

are more or less meaningful and they can be

confusing for the developer (see example 1).

Example 1
[CompilerGenerated]
internal class <PrivateImplementationDetails>
{A7316BF1-EDFD-42B4-84FD-A64CEF0DCF01}
{
 internal static Dictionary<string, int> $$method0x6000281-1;
 …
}

The second issue is that a decompilation algorithm

may not be perfect. The MSIL-encoded C# “switch”

instruction may be hard to decompile due to

unstructured “goto” instructions or due to

3 http://www.telerik.com/products/decompiler.aspx
4 http://www.red-gate.com/products/dotnet-

development/reflector/
5 Telerik counterpart for JustDecompile is commercial JustCode

optimization options used by C# compiler when it

compiled C# code to MSIL. I observed “missing

label” errors found during compilation of just

decompiled code.

The more important problem is a mix of

managed and unmanaged code in the same DLL.

Basically C# programmers should avoid pointers

(known from C and C++) and they should use object

types (reference types) instead [24]. The object

references are safe, i.e. the managed execution

prevents references to uninitialized objects and does

not leave dangling references to disposed objects.

On the other hand, pointers are unsafe (and require

to use the keyword “unsafe”). It would be perfect if

all the framework code was written in safe

(managed) code. However, decompilation of

original .NET framework DLL’s revealed that

Microsoft’s programmers were not eager to write

“perfect” code. There are many classes and methods

marked as “unsafe”, especially in mscorlib.dll.

When decompiler hits a pointer and pointer

operations (e.g. increment, subtraction), it treats

each pointer as it would be in “byte*” type. On the

other hand, C# compiler takes into account the

pointer target size in pointer operations (see

example 2).

Example 2

When decompiler hits “char*” pointer moving to the next

character, it generates the “+” operator and operand of

“2” (in C# each character is two-bytes wide). Next, when

this code is compiled back, the pointer hits not “next”,

but “next after next” character (the proper decompilation

should generate “1” as “+’ operand value).

public override int GetByteCount
 (char[] chars, int index, int count)
 {
 unsafe
 {
 char* chrPointer;

 char[] chrArray = chars;
 char[] chrArray1 = chrArray;
 if (chrArray == null || (int)chrArray1.Length == 0)
 chrPointer = null;
 else
 chrPointer = &chrArray1[0];
 // caution: invalid “2” factor below:
 int byteCount = this.GetByteCount(chrPointer + index * 2,
count, null);
 return byteCount;
 }
 }

Mixing of managed objects and pointers requires a

special C# “fixed” instruction (which is unsafe).

This is because managed objects instances can

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 100

freely be moved in operational memory by

execution environment, and pointers require target

objects to be firmly set in the memory. “Fixed”

instruction is hard to decompile as there are also

unsafe instructions which are intended to dispose

the dynamically allocated memory avoiding safe

garbage collection mechanism of managed

execution environment (see example 3).

Example 3

There is a threat in the following decompiled code –

although a string parameter is converted to a character

array, which is fixed to char* pointer, we access a Length

property of the original unfixed string.

 public override unsafe int GetByteCount(string str)
 {
 fixed (char *chars = str.ToCharArray())
 {
 if (chars != null)
 // caution str.Length is unfixed!
 return this.GetByteCount(chars, str.Length, null);
 }
 }

Often unmanaged code is delivered in an

unmanaged DLL. This unmanaged DLL is linked to

managed code with a special attribute DllImport.

Obviously, unmanaged DLL is impossible to

decompile to source code using above mentioned

decompilers and a whole bulk of code remains

undiscovered.

The most important obstacle is obfuscation.

Code obfuscation is here a special post-processing

stage of compilation from C# (or other managed

code language) to MSIL that hides the code

intended meaning, which makes the MSIL code

hard to decompile [25, 26].

The above problems impede the source code

decompilation, and thereby understanding of

implementation of the framework. They make

impossible to recompile the code generated by the

decompiler and make it difficult for developer to

trace (debug) the code execution. However,

perfectly decompiled code is not necessary for

tracing if a decompiler is integrated with IDE (as

.NET Reflector is). Integrated debugger allows to

trace compiled code and to pass over imperfectly

generated source code. On the other hand, valid

source code is necessary if the developer needs to

modify the framework implementation.

3 Framework code inaccessibility
If the developer can not adjust the solution to the

framework capabilities, then the developer have two

opportunities to fit the framework to the solution:

extension or modification. Extension is the only

option if the source code of the framework is

unavailable. In such situation the developer may try

to write a kind of “framework adapter”, i.e. derived

classes and methods to change or supplement the

functionality. It is the moment when the developer

can meet implementation inaccessibility. If the

framework is poorly designed (i.e. designed without

a perspective to be extended), some data or

functionality (e.g. private fields or methods) may be

inaccessible. In the following subsection, methods

to avoid the inaccessibility obstacles will be shown.

However, in my experiences there were also

situations, when the developer attempts to reuse the

poorly designed (or improperly chosen) framework

are condemned to failure.

If the developer attempts to fit the framework to

the solution, then tries to write extending or

adapting classes derived from the original

framework classes. However, this proceeding may

be inhibited by some obstacles, such as “sealed”

classes and “private” or “internal” class members.

3.1 Sealed classes

First obstacle which hits the developer on the way to

framework extension is a “sealed” keyword. Classes

marked as sealed are excluded from the inheritance

mechanism, i.e. the developer is prohibited to write

classed derived from a sealed class. The “sealed”

modifier is intended for optimization – sealed

classes do not need virtual method tables to be

generated by the compiler, and any virtual method

declared in any ancestor class can be invoked

directly (not indirectly via VMT)
6
. There are some

reports about performance benefits from the sealed

classes [27], but these benefits are rather small.

Microsoft gurus claims in [28] that: “You can use

this approach to ensure that derived classes do not

modify or bypass behavior required for the current

class and all derived classes”, but just next to it they

warn: “Do not seal classes without having a good

reason to do so. Do not assume that because you do

not see a scenario in which extending a class would

be desirable, that it is appropriate to seal the

class”.

A limited remedy for the sealed class is to copy

source code of the original framework class into an

extension framework and to remove the “sealed”

keyword. However this solution causes a risk of

6 The “sealed” modifier can be used also for an overridden

virtual method to mark that the current implementation of this

method is final and can not overridden in a derived class.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 101

incompatibility problems when typecasting is used

(example 4).

Example 4

Two classes are defined in some framework: a BaseItem

class for items and an ItemContainer class for item

collection, with an AddItem method. As the BaseItem

class is sealed, we cannot derive from this class. So we

copy the BaseItem class to a new namespace and remove

the “sealed” keyword. Now we can derive from the new

BaseItem class and to define a SpecificItem class.

However, when we want to add an instance of Specific-
Item to original ItemContainer, we get an error, as the

SpecificItem class does is not a descendant of BaseItem

class.

namespace OriginalFramework
{
 public sealed class BaseItem
 { … }

 public class ItemContainer
 {
 public void AddItem (BaseItem item)
 { … }
 }
}

namespace ExtensionFramework
{
 using OriginalFramework;

 // notice: the “sealed” keyword is removed
 public class BaseItem
 { … }

 public class ExtensionItem: BaseItem
 { // in a public constructor we try to add
 // the new instance to the ItemContainer
 public ExtensionItem(ItemContainer owner)
 {
 owner.Add (this); // we get an error here
 // as the ExtensionItem class does not derive
 // from OriginalFramework.BaseItem
 }
 }

The same effect of preventing class derivation,

but without any performance benefit, is declaring

a class with a constructor marked with a “private”

modifier and with no public constructor. Such class

is intended to have a static initialization method, and

may be used to implement a Singleton design

pattern from “Gang of Four” pattern set [29].

If the class in the is not sealed, then it may be

extended by the developer, i.e. the developer can

write a derived class implementing an Adapter

design pattern from [29]. Then the developer leaves

the current interface of the original framework class

untouched, and overrides virtual methods

implementation or adds supplementing methods.

The benefit is that instances of the adapter class can

be used everywhere the instances of the original

class may appear. The disadvantage is that the user

of the adapter class may incidentally use an original

method (if it is not overridden in the adapter)

avoiding the adaptor method.

If the class is sealed, then the adapter class is not

derived from this class. However, the adapter class

can contain a field referencing to the original, sealed

class. Then the developer must include declaration

of every method required by the application of the

newly defined class. The implementation of these

methods can be trivial – just to invoke the original

class methods – but as it may be many of them, it is

a time-consuming task for the developer (example).

The next drawback is that instances of the adapter

class can not be used in place of instances of the

original method. Sometimes it forces writing

adapter classes to all the original classes in the

framework classes hierarchy (example 5).

Example 5

Assume that we have a tree of graphical shapes and the

shape classes are sealed. If we want to change behavior of

one of the shape classes, we need to write an adapter

class to this shape class. But as we can not place

instances of the adapter class in the shape tree, we are

forced to write adapter classes for the whole shape tree.

3.2 Dependent and dependency properties

Model-View-ViewModel design pattern [30] is

a kind of the Adapter implementation. Although

MVVM is designed to mediate between model

(business layer) classes and view (presentation

layer) classes, it can be used to wrap any class that

implements interface INotifyPropertyChanged [31].

It is a solution for a problem with handling internal

property changes. This problem appears when

changing one property of the object causes change

of another property of the same object. It happens

when these two properties are internally bound [32].

A client of this object “will not know” about the

change of the second property value until it will get

this property. In Microsoft XAML files object

properties are often bound to UI components, so that

property changes are reflexed in the view changes

(using a Binding class [33]). If a business layer class

is wrapped by adapter (which is another business

layer class), then the chain of notification may be

broken. The remedy for it is to generate and handle

a PropertyChanged event both in the original

framework class and in the adapter class (example).

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 102

An alternative for the INotifyPropertyChanged

interface implementation is a concept of dependency

properties. A DependencyProperty is a Microsoft

contrivance for declarative programming used in

UI-classes [34]. Two UI component properties may

be bound in XAML code, so that changing one

component property causes change of the other

component property change. DependencyProperties

are declared as static properties and registered for

UI-classes. Although they are static, an internal

XAML mechanism provides each UI-class instance

to have its own collection of dependency properties.

They can be accessed via instance (non-static)

properties using GetValue and SetValue methods.

Registration of a DependencyProperty can be

associated with a declaration of a Dependency-

PropertyChanged static event handler. Static

properties can not be overridden (although instance

properties can), and their associated property

changed event handler can not be overridden also.

The remedy for it is to override property metadata

by calling the OverrideMetadata method declared in

the WPF framework. However the Override-

Metadata method is not declared in the Silverlight

framework, so it is not an universal remedy. The

other remedy requires declaring an instance, virtual

counterpart of the DependencyPropertyChanged

event handler and to invoke it in the static handler

method in the original framework class (example 6).

Example 6

BaseClass, declared as a DependencyObject, registers a

static DataProperty dependency property and an instance

property Data. The DataProperty change event handling

method is a static DataPropertyChanged method. Its

instance counterpart is DataChanged method. As it is a

virtual method, it can be overridden in an ExtensionClass.

namespace OriginalFramework
{
 public class BaseClass: DependencyObject
 {
 public static DependencyProperty DataProperty
 = DependencyProperty.Register
 ("Data", typeof (object), typeof(BaseClass),
 new PropertyMetadata(DataPropertyChanged));

 public object Data
 {
 get { (object)GetValue(DataProperty); }
 set { SetValue(DataProperty, value); }
 }

 public static DataPropertyChanged (DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 (d as BaseClass).DataChanged(e);
 }

 public virtual DataChanged
 (DependencyPropertyChangedEventArgs e)
 { ... }
 }
}

namespace ExtensionFramework
{
 using OriginalFramework;

 public class ExtensionClass: BaseClass
 {
 public override DataChanged
 (DependencyPropertyChangedEventArgs e)
 { … }
 }
}

3.3 Private and internal members, non-virtual

methods

Even more important problem is caused by

members (fields, properties, methods) marked with

“private” or “internal” modifier. In C# internal

members are treated as public within the same

assembly (the same DLL), but as private outside of

it, so it is the same problem. As object data usually

is held in private fields (even the data is delivered to

the clients via public properties), the developer has

trouble when wants to get access to the original

framework class data (example 7).

Example 7

BaseClass declares a DataContext property and holds its

value in a private dataContext field. If the dataContext in

the current object is not set (has a null value), then the get

method of the DataContext property gets the actual value

from the owner object of the current object. If we declare

an ExtensionClass, we have no chance to know if the data

is held by the current object or by its owner. Also the set

method of the DataContext property invokes a private

method RaiseDataContextChanged(). The ExtensionClass

has no chance to change the value of the DataContext

property without a call to this method!

namespace OriginalFramework
{
 public class BaseClass
 {
 private BaseClass owner;
 private object dataContext;
 public object DataContext
 {
 get
 {
 if (dataContext!=null)
 return dataContext;
 else if (owner!=null)
 return owner.DataContext;

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 103

 else
 return null;
 }
 set
 {
 if (dataContext != value)
 {
 dataContext = value;
 RaiseDataContextChanged();
 }
 }
 }

 private void RaiseDataContextChanged()
 { … }
 }
}

namespace ExtensionFramework
{
 using OriginalFramework;

 public class ExtensionClass: BaseClass
 {
 public bool HasDataContext
 {
 get
 {
 // invalid dataContext access attempt
 return dataContext != null;
 }
 set
 {
 // invalid dataContext access attempt
 if (value == false)
 dataContext = null;
 }
 }
 }
}

Even when an original framework class declares

public (or protected) methods, but these methods

call private (or internal methods), then a extension

of these public methods may be impossible because

of inaccessibility of private methods (example 8).

Example 8

BaseClass declares a private method ValidateData, a

protected virtual method SetData and a public method

DoSomething. The protected method uses both public

and private method. Although in an ExtensionClass we

can override the protected SetData method (for instance

to call DoSomethingElse), we cannot do this as we

cannot use the private method, which is unavailable for

the derived class.

namespace OriginalFramework
{
 public class BaseClass
 {

 private void ValidateData (object p)
 { … }

 protected virtual void SetData (object p)
 {
 ValidateData (p);
 DoSomething (p);
 }

 public void DoSomething (object p)
 { … }
 }
}

namespace ExtensionFramework
{
 using OriginalFramework;

 public class ExtensionClass: BaseClass
 {
 protected override void SetData (object p)
 {
 ValidateData (p);
 DoSomethingElse (p);
 }

 public void DoSomethingElse (object p)
 { … }
}

A remedy for this might be to declare all methods as

virtual. On the other hand virtual methods need slots

in Virtual Method Tables and their invocations are a

bit slower than non-virtual method calls.

Not all problems with virtual methods may be

easily solved. If a method is declared as virtual, then

when it is overridden in the derived class, it must be

declared with the same parameter list and the same

result type. We cannot change the result type even if

the new would be declared as derived from the

original result type. The effect is that the result of

the method call must be typecasted.

A remedy for non-public members can be to use

a type reflection (using System.Reflection package).

This package provides GetMember (and GetField,

GetProperty, GetMethod, GetEvent) methods for

each class type [35]. These method lets a developer

to get info of any class member, not only of a public

member. By getting a MethodInfo data, a developer

can invoke any method indirectly (see example 9).

Example 9

Like in the example 8, the BaseClass declares a private

ValidateData method, a protected SetData method and a

public DoSomething method. The protected method uses

both the public and private method. Although in the

ExtensionClass we can override the protected method, we

cannot use the private method that is inaccessible.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 104

However when we get a reference to the private method

using a GetMethod, we can invoke it indirectly.

namespace OriginalFramework
{
 public class BaseClass
 {
 private bool ValidateData (object p)
 { … }

 protected virtual void SetData (object p)
 {
 if (ValidateData (p))
 DoSomething (p);
 }

 public void DoSomething (object p)
 { … }
 }
}

namespace ExtensionFramework
{
 uses OriginalFramework;

 public class ExtensionClass: BaseClass
 {
 protected override void SetData (object p)
 {
 MethodInfo aMethod = typeof(BaseClass).GetMethod
 ("ValidateData",
 BindingFlags.Instance | BindingFlase.NonPublic);
 if ((bool)aMethod.Invoke(this, new object[] {p}))
 DoSomethingElse (p);
 }
 }

 public void DoSomethingElse (object p)
 { … }
 }
}

3.4 Trust levels and friend assemblies

The reflection usage fails in a Silverlight

application. These applications are executed in a

sandbox – a limited framework environment which

not only complicates execution of some “risky”

operations as file input/output, but also prohibits

invocation of non-public methods by the clients

[36]. Attempt to use a code from example 9 in a

Silverlight application causes a runtime error.

Although since Silverlight 2 we could create

application in a full-trust mode, it was possible only

for out-of-browser applications. Only in the highest

5
th
 version of Silverlight Microsoft introduced a

elevated-trust mode for application run inside a

browser [37]. This problem is less-weighted as

Microsoft slowly retreats Silverlight, however it

may be still used in mobile applications [38, 39].

In my experiments with framework code I

noticed that internal classes appear widely in

Microsoft .NET framework (in mscorlib.dll,

system.dll and other libraries). Surprisingly,

Microsoft programmers also widely use cross-

assembly references to internal classes, i.e.

invocations from one assembly to classes defined

with “internal” modifier in the other assemblies. It is

possible due to a special “InternalsVisibleTo”

custom attribute (an analog to “friend” class in

C++). We can set names of “friend” assemblies,

which are allowed to access to internal classes and

class members of the original assembly. However,

as these “friend” assemblies have privileged access,

Microsoft uses a sophisticated trust mechanism.

Assemblies are identified with “strong names” [40],

which join “common” names with public keys

generated basing on “signature keys”. When an

assembly attempts to link to internal classes of the

current assembly, it checks the strong name of the

client assembly (and its signature). Event if we

would get full source code of the framework

assembly with decompilation and get it reliably

recompiled, we could not use internal members of

the other framework assemblies because we would

get different (invalid) signatures. The only remedy

for this is to recompile the whole framework (with

all assemblies), which is extremely difficult.

4 Conclusions
The above analysis brought me to a conclusion that

presented remedies are only surrogate solutions to

be used when a framework is “poorly” designed, i.e.

is designed with no consideration of extension

capabilities, and no source code is available. It

would be much less of a problem with frameworks

reuse if the framework developers obey the

following guidelines:

 Deliver source code to the framework, not only

compiled code.

 Document your code, not only with internal

comments, but with pattern language, examples

and microarchitecture explanations.

 Never use sealed classes and members.

 Avoid private class members, instead consider

protected or public members.

 Never use private and internal classes and class

members.

 Consider wide virtual method usage.

 In managed framework do not use unsafe code.

Consider translation from pointers to references.

However the above guidelines are only

recommendations for developers. They seem to be

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 105

in conflict with the rules of encapsulation in object-

oriented paradigm. The first guideline shows clearly

the advantages of open-source code over

commercial frameworks. We can get rid of a bulk of

framework understandability problems. Other

authors agree on the benefits of open–source code

[41, 42]. On the other hand risks of intellectual

property waiver is well known [43, 44]. However I

am deep convicted that benefits of wide framework

acceptance as a standard will overweight the

concerns of framework authors (see [45]).

References

[1] M. E. Fayad, D. C. Schmidt and R. E. Johnson,

Building Application Frameworks: Object–Oriented

Foundations of Framework, New York, NY, USA:

John Wiley & Sons, 1999.

[2] U. Vora and N. L. Sarda, "Framework for evolving

systems," in SEPADS'06 Proceedings of the 5th

WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems,

Madrid, 2006.

[3] IBM, "Building Object-Oriented Frameworks,"

[Online]. Available: http://lhcb–

comp.web.cern.ch/lhcb–

comp/Components/postscript/buildingoo.pdf.

[Accessed 2014].

[4] M. E. Fayad and D. C. Schmidt, "Object-Oriented

Application Frameworks," Communications of the

ACM, October 1997.

[5] S. Moser and O. Nierstrasz, "Effect of Object-

Oriented Frameworks on Developer Productivity,"

Computer, vol. 29, no. 9, 1996.

[6] J. Bosch, P. Molin, M. Mattsson and P. Bengtsson,

"Framework - Problems and Experiences," in

Building Application Frameworks, M. E. Fayad, D.

C. Schmidt and R. E. Johnson, Eds., John Wiley &

Sons, 1999.

[7] A. Aguiar, "A Minimalist Approach to Framework

Documentation," in OOPSLA 2000 ACM

Conference on Object-Oriented Programiming,

Systems, Languages, and Application (Addendum),

Minneapolis, 2000.

[8] G. Butler and P. Denommee, "Documenting

Frameworks," in Building Application Frameworks,

John Wiley & Sons, 1999.

[9] D. Kirk, M. Roper and M. Wood, "Identifying and

Addressing Problems in Object-Oriented

Framework Reuse," Empirical Software Eng., 12

2007.

[10] A. Dent, "Unit Testing Frameworks - When to

Abandon or Migrate?," 10 October 2008. [Online].

Available:

http://www.artima.com/weblogs/viewpost.jsp?threa

d=240268. [Accessed 2014].

[11] "Should you abandon an ORM framework when

you need to implement a bulk operation?," [Online].

Available:

http://programmers.stackexchange.com/questions/1

19003/should-you-abandon-an-orm-framework-

when-you-need-to-implement-a-bulk-operation.

[Accessed 2014].

[12] D. Kirk, M. Roper and M. Wood, "Defining the

Problems of Framework Reuse," in 26th Annual

Internation Computer Software and Applications

Conference (COMPSAC'02), Oxford, 2002.

[13] D. Kirk, M. Roper and M. Wood, "Identifying and

Addressing Problems in Framework Reuse," in

IEEE 13th International Workshop on Program

Comprehension (IWPC'05), St. Louis, MO, 2005.

[14] C. Alexander, "The Origins of Pattern Theory, the

Future of the Theory and the Generation of a Living

World," in OOPSLA 1996 ACM Conference on

Object-Oriented Programs, Systems, Languages

and Applications, San Jose, California, 1996.

[15] C. Alexander, S. Ishikawa and M. Silverstein, A

Pattern Language. Towns, Buildings, Construction,

New York: Oxford University Press, 1997.

[16] P. Evitts, A UML Pattern Language (Software

Engineering), Sams, 2000.

[17] R. E. Johnson, "Documenting Frameworks using

Patterns," in OOPSLA'92 Conference on Object-

Oriented Programming Systems, Lanugages, and

Applications, Vancouver, Canada, 1992.

[18] M. Meusel, K. Czarnecki and W. Köpf, "A Model

for Structuring User Documentation of Object-

Oriented Frameworks Using Patterns and

Hypertext," in 11th European Conference on

Object-Oriented Programming (ECOOP'97),

Jyväskylä, Finland, 1997.

[19] R. Lajoie and R. K. Keller, "Design and Reuse in

Object-Oriented Frameworks: Patterns, Contracts,

and Motifs in Concert," Transactions on Pattern

Languages of Programming, 01 2011.

[20] C. J. Satish and T. Raghuveera, "Visualizing object

oriented software using virtual worlds," in

SEPADS'05 Proceedings of the 4th WSEAS

International Conference on Software Engineering,

Parallel & Distributed Systems , 2005.

[21] Microsoft, "Differences between the Native and

Managed APIs," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/windows/desktop/ee453681%28v=vs.85

%29.aspx. [Accessed 2014].

[22] "Difference between native and managed code?,"

[Online]. Available:

http://stackoverflow.com/questions/855756/differen

ce-between-native-and-managed-code. [Accessed

2014].

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 106

[23] Z. Maksimovic, "List of Microsoft.NET IL

disassemblers," [Online]. Available:

http://www.agile-code.com/blog/list-of-microsoft-

net-il-disassemblers/. [Accessed 2014].

[24] D. Bolton, "C# Tutorial – About Value Types and

Reference Types," 2007. [Online]. Available:

http://cplus.about.com/od/learnc/ss/value.htm.

[Accessed 2014].

[25] J. Cappaert, Code Obfuscation Techniques for

Software Protection, Heverlee, Belgium:

Katholieke Universiteit Leuven – Faculty of

Engineering, 2012.

[26] LogicNP Software, "8 Ways to Protect and

Obfuscate Your .NET Code Against Reverse-

Engineerign," [Online]. Available:

http://www.ssware.com/articles/protect-and-

obfuscate-your-dotnet-code-against-reverse-

engineering-using-crypto-obfuscator.htm.

[Accessed 2014].

[27] "C# Sealed," [Online]. Available:

http://www.dotnetperls.com/sealed. [Accessed

2014].

[28] Microsoft, "Limiting Extensibility by Sealing

Classes," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/vstudio/ms229023%28v=vs.100%29.aspx

. [Accessed 2014].

[29] E. Gamma, R. Helm, R. Johnson and H. Vlissides,

Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley Professional,

1994.

[30] J. Smith, "WPF Apps With the Model-View-

ViewModel Design Patter," [Online]. Available:

http://msdn.microsoft.com/en-

us/magazine/dd419663.aspx. [Accessed 2014].

[31] J. Liberty, "C#5 – Making INotifyPropertyChanged

Easier," [Online]. Available:

http://jesseliberty.com/2012/06/28/c-5making-

inotifypropertychanged-easier/. [Accessed 2014].

[32] Microsoft, "Implementing the MVVM Pattern,"

[Online]. Available: http://msdn.microsoft.com/en-

us/library/gg405484%28v=pandp.40%29.aspx.

[Accessed 2014].

[33] Microsoft, "Binding Class," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/system.windows.data.binding%28v=vs.1

10%29.aspx. [Accessed 2014].

[34] Microsoft, "Dependency Properties Overview,"

[Online]. Available: http://msdn.microsoft.com/en-

us/library/cc221408%28v=vs.95%29.aspx.

[Accessed 2014].

[35] Microsoft, "Reflection in the .NET Framework,"

[Online]. Available: http://msdn.microsoft.com/en-

us/library/f7ykdhsy%28v=vs.110%29.aspx.

[Accessed 2014].

[36] A. Dai, "Security In Silverlight 2," [Online].

Available: http://msdn.microsoft.com/en-

us/magazine/cc765416.aspx. [Accessed 2014].

[37] "Silverlight Trusted Applications," [Online].

Available: http://msdn.microsoft.com/en-

us/library/ee721083%28v=vs.95%29.aspx.

[Accessed 2014].

[38] "Is Silverlight Dead?," [Online]. Available:

http://social.msdn.microsoft.com/Forums/silverlight

/en-US/f9e15a37-8c5a-4c32-9d38-

1d5b57da68de/is-silverlight-

dead?forum=silverlightdevtools. [Accessed 2014].

[39] L. Paneque, "Where is Silverlight now?," [Online].

Available:

http://www.codeproject.com/Articles/700213/Wher

e-is-Silverlight-now. [Accessed 2014].

[40] Microsoft, "Creating and Using Strong-Names

Assembles," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/xwb8f617%28v=vs.110%29.aspx.

[Accessed 2014].

[41] C. G. Carstea, "Open Source ERP," in Proceedings

of the WSEAS international conferences:

proceedings of the 1st International Conference on

Manufacturing Engineering, Quality and

Production Systems (MEQAPS '09), Brasov,

Romania, 2009.

[42] M. Foltin, P. Fodrek, M. Blaho and J. Murgaš,

"Open Source Technologies in Education," in

Resent Researches in Educational Technologies,

WSEAS, 2011.

[43] D. Graeser, "The Benefits and Risks of Open

Source Licensing," [Online]. Available:

http://www.zdnet.com/news/the-benefits-and-risks-

of-open-source-licensing/6354375. [Accessed

2014].

[44] E. J. Walsh and A. J. Tibbetts, "Reassessing the

Benefis and Risks of Open Source Software,"

Intellectual Property & Technology Law Journal,

January 2010.

[45] B. Perens, "The Emerging Economic Paradigm of

Open Source," FirstMonday, no. Special Issue #2:

Open Source, 2005.

Applications of Information Systems in Engineering and Bioscience

ISBN: 978-960-474-381-0 107

