

Intrusion Detection using Fuzzy Clustering and Artificial Neural

Network

Shraddha Surana

Research Scholar, Department of Computer Engineering, Vishwakarma Institute of

Technology, Pune

India

shraddha.surana@gmail.com

Abstract

This paper presents the outline of a hybrid

Artificial Neural Network (ANN) based on fuzzy

clustering and neural networks for an Intrusion

Detection System (IDS). While neural networks

are effective in capturing the non-linearity in data

provided, it also has certain limitations including

the requirement of high computational resources.

By clustering the data, each ANN is trained on a

particular subset of data, reducing time required

and achieving a higher detection rate. The outline

of the implemented algorithm is as follows: first

the data is divided into smaller homogeneous

groups/ subsets using a fuzzy clustering technique.

Subsequently, a separate ANN is trained on each

subset. Finally, Results of each ANN from step 2

is aggregated to form the final output which will

decide the classification of the data point.

Keywords: Artificial Neural Network, Intrusion

Detection System, Fuzzy clustering

1 Introduction

Intrusion detection is an important aspect in

today’s world where security is of utmost

importance. A single intrusion in a network can

cause information leaks or data modification

which can prove to be hazardous to any company

or organization. An intrusion detection system

attempts to detect misuse or unauthorised access of

a system or a network. An IDS does not usually

perform any action to prevent intrusions; its main

function is to alert the system administrators that

there is a possible security violation; as such it is a

proactive tool rather than a reactive tool [1].

Intrusion detection systems (IDS) can be classified

as: (1) Host based or Network based (2) Online or

Offline (3) Misuse based or Anomaly based. A

host based IDS makes use of log files from

individual computers, whereas a network based

IDS captures packets from the network and

analyses its contents. An online IDS is able to flag

an intrusion while it’s happening whereas an

offline IDS analyses records after the event has

occurred and raises a flag indicating that a security

breach had occurred since the last intrusion

detection check was performed. An Anomaly

based IDS detects deviation from normal

behaviour while misuse based IDS compare

activities on the system with known behaviours of

attackers.

This paper outlines a hybrid approach using

Artificial Neural Networks and Fuzzy clustering to

detect intrusions in a network. The method

outlined is network based which extracts features

from packets in the network. The algorithm

classifies the packet as normal or the type of attack

depending upon the contents of the packet. Attacks

fall into four main categories: Denial of Service

(DoS); User to Root (U2R); Remote to Local

(R2L) and Probe. The KDD repository was used to

train the algorithm.

Neural networks which are a class of machine

learning algorithms used to classify data can be

used where the problem is too complex to be

programmed by hand. Instead, the neural network

is trained to give more importance to the features

that are the main characteristics of a particular

class in order to help the network classify the

incoming data. Neural networks have been

successfully implemented [2] [3] [4] to detect

intrusions.

Neural networks, however, require substantial

amount of data to train on, before they can

successfully classify incoming data. Due to this

limitation, the neural network is not able to train

well on low frequency attacks such as R2L and

U2R resulting in their lower detection accuracy

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 209

[5]. Different hybrid approaches have been

explored in the past to overcome the drawbacks of

any one individual method [6] [7] [8]. The two

approaches used in this paper viz. ANN and Fuzzy

clustering are used so that they complement each

other. Neural Networks are good at being able to

classify unseen data points whereas fuzzy

clustering enables the algorithm to generalize well.

2 Research Background

Various approaches using ANN have been used for

IDS. The Neural Network Intrusion Detector

(NNID) system proposed by Ryan et al. [9] took

into account the behaviour of individual users and

created profiles for each user. The input pattern

was then matched to the user profiles to identify

the user (A node corresponding to a user with

value > 0.5 is attributed to that user). A flag was

raised if no match was found and the input was

considered as an anomaly. However, this required

large amount of data to train the network for each

user. Insufficient data for a user might lead to false

positives for that user’s behaviour on the network

[9]. The NNID system had an anomaly detection

rate of 96% and a false alarm rate of 7%. The

Multi-layered Perceptron (MLP) by Cannady [10]

using backpropagation algorithm modelled general

use rather than creating user specific profiles.

Training of the neural network required 26.13

hours to complete with approximately 98% match

in the training dataset and 97.5% match in the test

dataset.

In contrast to the above two approaches that used

backpropagation algorithm, Silva, et al. [11] used a

Hamming Net to classify network event in real

time. The Hamming Net is a fast pattern matcher

that finds the most similar class, according to a

pre-defined similarity threshold, providing great

flexibility and fault tolerance by finding small

attack variations. On an average 70% of well-

known malicious input data within the payload file

encountered its common pair in the exemplar file

and is classified as suspicious information.

Lei and Ghorbani [12] compared the performance

of Self-Organizing Map (SOM) and Improved

Competitive Learning Networks (ICLN). While

the accuracy obtained for both SOM and ICLN

were similar, the computation time for SOM was

generally higher than that of ICLN (specifically,

ICLN requires one fourth the computational time

of the SOM). The clustering result is also

independent of the number of initial neurons which

is not the case in SOM.

The results of the simulated annealing approach in

Gao and Tian’s [13] paper show that the mean

squared errors of training samples of improved

simulated annealing neural network is smaller than

that of a backpropagation network. Moreover the

mean squared errors of testing samples of

improved simulated annealing neural network is

also smaller than that of a backpropagation

network. When the number of the training samples

change, we can get the same result. It shows that

the network intrusion detection method based on

improved simulated annealing neural network has

higher stability, and can obtain higher detection

and recognition accuracy.

The Probabilistic Neural Network (PNN)

implemented by Devaraju and Ramakrishnan [14]

performs better than Feed Forward Neural

Network (FFNN) and Radial Basis Neural

Network (RBNN). However, PNN (accuracy =

80.38%) performs only 0.02% better than FFNN

(accuracy = 80.4%) which is not a significant

difference. The accuracy of RBNN is 75.4%.

These results are comparatively lower as compared

to other algorithms implemented in the other

papers discussed above. The hybrid approach

presented in Wang et al. [15] using fuzzy logic and

artificiaANN neural network have obtained an

average accuracy of 96.71% which can be

considered as very successful. The fuzzy logic

provides some flexibility to the uncertain nature of

detecting intrusions [16].

The hybrid approach in this paper implements

fuzzy clustering and ANN. Fuzzy clustering - a

form of unsupervised technique is used to divide

the training data into smaller groups/ subsets.

ANNs are trained using these subsets. Since the

size of data is reduced, the training time required

to train each ANN is also reduced. Aggregating the

results of these individual ANNs by a final

aggregating ANN helps increase its detection rate

as any misclassifications made by individual

ANNs will be corrected by the final aggregating

ANN. Thus the objective is to lower the training

time required while increasing the detection rate of

identifying attacks.

3 Problem Solution

Figure 1 shows the general outline of the method

using Fuzzy Clustering and Artificial Neural

Network (FCANN). The dataset used for the

experiments is the 1999 KDD Cup dataset. This

dataset contains about five million connection

records as training data and about two million

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 210

connection records as test data. It includes a set of

41 features derived from each connection and a

label which specifies the status of connection

records as either normal or the specific type of

attack. Random records are taken from the training

set and given to the fuzzy clustering module (the

first module). This module divides the training sets

into smaller clusters. Each cluster forms a subset to

be given to every ANN in the ANN module

(second module). Each ANN trains on this subset

to classify a record as one of the five groups –

normal, DoS, U2R, R2L and Probe. This output is

then given to the third module – the final

aggregating module. The aggregator ANN takes

the outputs of the individual ANN and trains on

them to reduce any misclassifications. This module

gives the final classification of the record.

Fig 1 Block diagram of fuzzy clustering and ANN for IDS

3.1 Training

The FCANN algorithm can be divided into three

submodules viz. fuzzy clustering; ANN; and fuzzy

aggregation. The following sections describe these

three submodules in detail.

Module 1: Fuzzy Clustering

The training data is divided into ‘x’ number of

clusters such that there is homogeneity within the

clusters and heterogeneity between clusters. Each

data point belongs to a particular cluster with the

degree specified by its membership grade. The

training set is thus divided into several subsets

decreasing the size and complexity of each subset.

The Fuzzy c-means (FCM) clustering algorithm

originally introduced by Bezdek [17] is used to

divide the data into several clusters. The FCM

algorithm is based on the minimization of the

following objective function [18] [19]:

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚 ||𝑥𝑖 − 𝑐𝑗||

2
 , 1 < 𝑚 < ∞

𝑛

𝑖=1

𝑘

𝑗=1

where, u denotes the degree of membership of data

point x falling into cluster center c and m is the

weighting exponent greater than 1. The fuzzy

clustering module is composed of the following

steps:

1. Fix c and m and randomly initialize ‘x’

number of cluster centers. Initialize

membership matrix U to U(0) and step

k=0.

2. At each step k, calculate the cluster centers

with the membership matrix U(k)

𝑐𝑗 =
∑ 𝑢𝑖𝑗𝑥𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑛
𝑖=1

3. Compute an updated membership matrix

U(k+1)

𝑢𝑖𝑗 =
1

∑ (
||𝑥𝑖 − 𝑐𝑗||

||𝑥𝑖 − 𝑐𝑝||
)

2
𝑚−1

𝑘
𝑝=1

4. Compare U(k+1) and U(k). If ||𝑈 (𝑞 +

1) − 𝑈 (𝑞)|| < 𝜀 then stop. Otherwise set

U(k) = U(k + 1) and return to step 2.

Once the termination criteria is reached, the whole

training set is divided into ‘x’ number of subsets,

each of which is given to a different ANN for

learning features specific to that subset.

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 211

Module 2: Artificial Neural Network

The ANN module consists of a separate ANN for

each cluster formed and aims to learn the patterns

present in every subset. A simple feed-forward

network is used for each ANN which consists of

simple processing units called nodes and weighted

connections between nodes in adjacent layers. The

ANN employed in our experiments uses three

layers - input, hidden and output layer. Data is

given at the input layer and is traversed through

the neural network and is classified into one of the

five classes at the output layer. The five classes

are: Normal, DoS, U2R, R2L and Probe.

To learn the weights of this multi-layered neural

network we use the backpropagation algorithm

with the gradient descent weight update rule. The

gradient descent aims to minimize the squared

error between the ANN predicted output and the

actual target values. The error function used is:

𝐸𝑚 =
1

2𝑛
 ∑ √(𝑇𝑘 − 𝑌𝑘)2

𝑘

The back propagation algorithm used to train the

ANN is outlined as follows [20]:

1. Create an ANN with number of input

nodes corresponding to the number of

features in the dataset; the number of

output nodes corresponding to the number

of output classes and an appropriate

number of hidden layer nodes.

2. Initialize the weights to small random

numbers.

3. For every training example, forward

propagate the input through the network:

a. Each hidden node receives the

weighted summation of the inputs

and bias

ℎ𝑖𝑑(𝑗) = 𝑏𝑗 + ∑ 𝑥𝑖𝑤𝑖𝑗

𝑛

𝑖=1

where j is the jth hidden unit and i

denoted the ith example

b. This is then passed through a non-

linear activation function. A

unipolar sigmoid activation

function is used:

𝑓(𝑥) =
1

(1 + exp(−𝑥))

c. Output of the hidden layers is then

given to the output layer in a

similar manner:

𝑦(𝑘) = 𝑏𝑘 + ∑ 𝑥𝑖𝑤𝑖𝑘

𝑛

𝑖=1

and is passed through the

activation function

d. The output computed through the

ANN is then compared to the

target value and the error is

calculated using the error function

4. This error is then backpropagated through

the ANN and the weights updated

according to the expression:

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝜂𝜕𝐸(𝑡)/𝜕𝑤(𝑡)

where t is the number of epochs and 𝜂 is

the learning rate.

5. The momentum parameter α (0< α <1) is

used to accelerate the learning process

𝑤(𝑡 + 1) = 𝑤(𝑡) −
𝜂𝜕𝐸(𝑡)

𝜕𝑤(𝑡)
+ 𝛼∆𝑤(𝑡)

6. If the error 𝐸𝑚 < threshold defined then

stop training. Else return to step 3.

Thus in the ANN module every individual ANN is

trained on its own subset and the resulting output

is then given to the final aggregating ANN.

Module 3: Fuzzy Aggregation

Once the individual ANNs have been trained on

their subsets, their results must be aggregated to

reduce any errors introduced by individual ANNs

in the ANN module. To achieve this, another ANN

is used to learn and remove errors made by the sub

ANNs. The following steps are used to accomplish

this task [15]:

1. Forward propagate the whole training set

through every sub ANN in module two.

Each sub ANN will output its ‘opinion’ as

to which class the particular record must

fall into.

2. This output of ANNx (one sub ANN in

module two) is multiplied by its

membership grade belonging to the cluster

the sub ANN was trained on.

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 212

3. The input to the final aggregating ANN is

𝑌𝑖𝑛𝑝𝑢𝑡 = [𝑦1 . 𝑈1; 𝑦2 . 𝑈2 ; … ; 𝑦𝑛 . 𝑈𝑛]

The output is compared with the target

output. The aggregating ANN uses the

same backpropagation algorithm used for

the individual sub ANNs in the ANN

module.

3.2 Testing

During the stage of testing, the working

methodology of ANN module and fuzzy

aggregation module is similar as described above.

First, the membership grade is calculated based on

the cluster centres C. For a new input xi, the

membership U is calculated based on C by:

𝑢𝑖𝑗 =
1

∑ (
||𝑥𝑖 − 𝑐𝑗||

||𝑥𝑖 − 𝑐𝑝||
)

2
𝑚−1

𝑘
𝑝=1

Once the membership of the input data is

determined, the data point is given to the next

ANN module. The outputs of all the ANNs in

module 2 are then aggregated using the final ANN

to determine which class the input should be

classified as.

The test data used has cases not seen by the

network during the training phase. Thus, the

testing will not only test the system on previously

seen data but also on unseen data. This makes the

intrusion detection task more realistic.

The time taken for training is to be noted down for

various combinations of parameters (learning rate

and momentum). The test set will be presented to

the system with those parameters and the detection

rate noted. The ideal combination is to have

minimum training time and maximum detection

rate for the test set.

4 Experiments and Results

4.1 Experiment

The software used to implement the FCANN

algorithm was MATLAB R2008a on a Windows7

PC with i5 core 2.30 GHz CPU and 4GB RAM.

In the experiments, KDD CUP 1999 [21] dataset is

used which is a version of the original 1998

DARPA intrusion detection evaluation program

dataset. Random selection was used to reduce the

size of the dataset. Table 1 shows detailed

information of the number of records used to train

the network. The ‘kddcup data 10 percent’ dataset

was used for training. All the records belonging to

U2R, R2L and Probe attacks were selected due to

their low frequency in the dataset. 3,000 Normal

records and 10,000 DoS records were randomly

selected [15].

Table 1 Number and distribution of training and test

dataset

Connection

type

Training dataset Testing dataset

Number

of

records

% of

records

Number

of

records

% of

records

Normal 3000 16.41 60,593 19.48

DoS 10,000 54.69 229,853 73.89

U2R 52 0.28 288 0.09

R2L 1126 6.16 16,189 5.2

Probe 4107 22.46 4166 1.34

The KDD dataset contains 41 features and the

class of attack (or normal). Symbolic value

features such as protocol_type are converted to

numeric values to be given to the ANNs. The

dataset is normalized before being used so that all

feature values are in consistent ranges.

The training data was divided into 6 clusters in the

fuzzy clustering module [15]. Each subset was

then given to its individual ANN in the ANN

module (2nd module). This ANN has 41 input

nodes corresponding to the 41 features in the

dataset; 5 output nodes corresponding to the five

classes viz. Normal; DoS; R2L; U2R and Probe.

The number of hidden nodes was determined using

the empirical formula √𝐼 + 𝑂 + α where I is the

number of input nodes, O is the number of output

nodes and α is taken as 10 due to the complexity of

intrusion detection [15]. Thus, the second module

ANN architecture is 41-18-5. The output of the

second module is given to the final aggregating

module. Thus the input features to the final

aggregating ANN is 5. The number of output

nodes too will be 5 corresponding to the 5 output

classes and the number of hidden layer nodes are

13 calculated using the formula stated above. The

final ANN architecture is 5-13-5.

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 213

Table 2 Training time taken for various values of momentum and learning rate

Training time
taken (CPU

seconds)

Learning Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
o

m
e

n
tu

m

0 2350.7 1470.0 753.0 790.7 1799.0 1263.0 358.1 352.4 242.9 249.3

0.1 2687.9 1238.4 839.2 624.6 413.2 1416.7 363.6 403.5 290.9 250.4

0.2 1824.5 2103.9 635.4 502.2 449.5 347.0 288.3 252.2 196.9 256.2

0.3 2641.2 880.6 607.4 700.0 420.0 340.5 250.6 211.5 247.6 186.3

0.4 1427.8 823.0 541.5 392.9 431.3 259.6 239.3 179.1 185.8 152.0

0.5 1443.9 878.5 453.0 326.8 302.3 220.3 195.7 177.5 137.1 131.8

0.6 1158.6 1098.9 383.7 329.6 183.3 175.9 154.4 109.2 116.1 130.0

0.7 1053.9 461.2 330.8 235.0 144.3 139.8 124.1 101.0 95.5 75.4

0.8 526.3 295.0 157.9 121.5 118.0 74.8 67.1 63.8 59.4 50.2

0.9 255.0 128.1 140.2 71.8 56.2 46.9 43.8 60.6 84.4 49.9

Table 3 Test set detection rate for various momentum and learning rate values

Test set
detection

rate(%)

Learning Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
o

m
e

n
tu

m

0 64.01 64.44 75.35 72.73 80.95 82.52 82.19 81.78 81.82 79.55

0.1 64.32 64.82 65.38 75.29 77.34 35.70 78.22 81.76 83.25 81.87

0.2 74.95 64.55 75.89 68.97 72.10 78.61 78.88 78.89 82.03 78.52

0.3 64.55 64.64 64.97 73.62 72.80 77.74 83.14 79.06 81.93 78.71

0.4 22.14 64.55 76.73 70.58 79.64 77.65 81.38 81.85 78.90 79.30

0.5 74.96 74.90 72.74 69.34 78.36 78.45 78.89 81.78 83.25 80.80

0.6 74.77 64.57 65.21 73.00 74.71 72.82 81.78 81.96 79.14 81.61

0.7 64.44 65.97 67.80 72.37 77.58 73.10 78.70 81.71 78.29 81.69

0.8 69.77 74.91 75.03 72.59 74.48 73.14 77.04 77.78 79.56 77.29

0.9 67.89 70.44 67.56 68.71 73.69 39.54 39.19 73.40 75.13 72.79

4.2 Results

Table 2 shows the training time taken in CPU

seconds for various values of momentum and

learning rate and Table 3 shows the detection rate

over the test set on the trained neural network. The

same random dataset generated was used for all

the experiments.

The general trend seen in the training time taken

from Figure 2 is that as learning rate increases

(from 0.1 to 1) the training time decreases. A

higher learning rate leads to faster convergence to

the global minima. Higher momentum also leads

to lower training times as the convergence takes

place in the right direction.

Figure 3 shows the test set detection rate for error

threshold of 0.01. It can be seen from the figure

that higher detection rate is obtained for higher

learning rate and lower momentum values.

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 214

Fig 2 3D plot for Training time taken with error threshold

of 0.01

To understand how the clusters are formed and

how they affect the performance of the ANN, the

records belonging to each class in each cluster

were identified.

Fig 3 3D plot for Test set detection rate with error

threshold of 0.01

The distribution of records in the 6 clusters formed

is as shown in Table 4. The detection rate of the

training and test set, the cluster it belongs to and

the classes identified by each ANN are shown in

Table 5.

Table 4 Distribution of records in each cluster produced by the FCM algorithm

Cluster Number

1 2 3 4 5 6 Total

C
la

ss

Normal 0 1 5 167 25 2,802 3,000

DoS 0 2,173 7,172 580 4 71 10,000

U2R 0 0 0 0 1 51 52

R2L 0 8 0 50 15 153 1,126

Probe 1,585 141 0 937 1,251 193 4,107

Table 5 Analysis of ANN output in module 2 and module 3

ANN

Training

detection

rate (%)

Cluster

Test set

detection

rate (%)

Classes identified

1 99.05 2 74.88 DoS; Probe

2 99.15 5 19.53 Normal; DoS; R2L; Probe

3 100.00 1 1.34 Probe

4 99.02 6 21.00 Normal; DoS; U2R; R2L; Probe

5 99.93 3 73.90 DoS

6 99.08 4 28.77 Normal; DoS; R2L; Probe

Final aggregating

ANN

99.07 - 81.60 Normal; DoS; U2R; R2L; Probe

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1
0

500

1000

1500

2000

2500

3000

Momentum

Training Time

Learning rate

T
ra

in
in

g
 T

im
e
 t

a
k
e
n
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
20

30

40

50

60

70

80

90

Momentum

Test Accuracy

Learning rate

A
c
c
u
rc

y
 (

%
)

30

40

50

60

70

80

90

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 215

The FCM algorithm clusters data such that the

records within each cluster are similar as can be

verified from Table 4. Cluster 1 contains only

Probe records and cluster 3 contains mainly DoS

records. Cluster 6 is the only cluster that has

significant amount of records from all classes. The

values in Table 5 were taken for learning rate =

0.8, momentum = 0.6 and error threshold=0.01.

These values were chosen as they gave a good

combination of low training time and high

detection rate (refer Table 2 and Table 3). Cluster

1 which had all Probe records, gave a 100%

training detection rate but only 1.34% in the test

set. This is because the ANN trained on cluster 1

received all Probe records and hence it classified

all records as Probe achieving 100% in training

set. For the test set too, it classified all records as

Probe giving it a very low detection rate of 1.34%

(the percentage of Probe records in test set).

Exactly similar is the case for cluster 3 where the

ANN classifies all incoming records as DoS. Since

73.89% of the test set is made of DoS records, its

test set detection rate too is 73.90%. Though the

detection rate is high, it is merely due to the large

number of DoS records present in the test set and

not because the ANN has learnt to classify

correctly. This basically renders ANN 3 and ANN

5 (belonging to cluster 1 and 3 respectively)

redundant as it classifies all records as Probe and

DoS respectively. If the data within each cluster is

too homogeneous (belonging to the same class),

the ANN will just flag any data as belonging to

that particular class. Due to this, the membership

grades play an important role as it effectively

decides the input values to the 5 nodes of the final

aggregating ANN. For this, the membership grade

of the records belonging to the different clusters

must have significant difference to overcome the

default output of each ANN. However, upon

inspection it was found that the membership

grades of the records do not differ significantly

from each other. This makes getting the records

classified correctly at the module 2 level more

important. Due to this, majority of the load in

classifying the record correctly falls on the final

aggregating ANN.

5 Conclusion and Future work

In this paper, the FCANN algorithm was

implemented to detect network intrusions. The

algorithm was implemented with several

combinations of learning rate and momentum to

find the best learning rate and momentum

combination which gives a lower training time and

higher detection rate. The results of each module

of the algorithm are analysed to understand its

working. Results have shown that homogeneity

within each cluster is not preferable and is not an

ideal way to divide the training data. Each ANN

must receive records belonging to different classes

to get a better training at classifying records. An

ideal way to divide the data to achieve good results

(low training and high detection rate) remains an

open problem for future research.

References

[1] W. W. Fu and L. Cai, “A Neural Network

based Intrusion Detection Data Fusion

Model,” in Third International Joint

Conference on Computational Science and

Optimization, 2010.

[2] C. Zhang, J. Jiang and M. Kamel, “Intrusion

Detection using hierarchical neural

networks,” Pattern Recognition Letters, pp.

779-791, 2005.

[3] X. Tong, Z. Wang and H. Yu, “A research

using hybrid RBF/ Elman neural networks for

intrusion detection system secure model,”

Computer Physics Communication, pp. 1795-

1801, 2009.

[4] S.-C. O. K. Y. Wonil Kim, “Intrusion

Detection Based on Feature Transform Using

Neural Network,” in Computational Science -

ICCS 2004, vol. 3037, Springer Berlin

Heidelberg, 2004, pp. 212-219.

[5] R. Beghdad, “Critical study of neural

networks in detecting intrusions,” Computers

& Security, pp. 168-175, 2008.

[6] G. Liu, Z. Yi and S. Yang, “A hierarchical

intrusion detection model based on the PCA

neural networks,” Neurocomputing, pp. 1561-

1568, 2007.

[7] L. Ren, “Research of Web Data Mining based

on Fuzzy Logic and Neural Networks,” in

Sixth International Conference on Fuzzy

Systems and Knowledge Discovery, 2006.

[8] F. M.-P. F. J. M.-G. R. L.-F. J. A. G.-M.-A.

D. M.-J. Iren Lorenzo-Fonseca, “Intrusion

detection method using Neural Networks

based on the reduction of characteristics,” in

Bio-Inspired Systems: Computational and

Ambient Intelligence, vol. 5517, Springer

Berlin Heidelberg, 2009, pp. 1296-1303.

[9] J. Ryan, M.-J. Lin and R. Miikkulainen.,

“Intrusion Detection with Neural Networks.,”

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 216

in AAAI Technical Report WS-97-07., 1997.

[10] J. Cannady, “Artificial Neural Networks for

Misuse Detection,” in National Information

Systems Security Conference (NISSC’98),

Arlington, VA., 1998.

[11] L. d. S. Silva, A. C. F. d. Santos, J. D. S. d.

Silva and A. Montes, “A Neural Network

Application for Attack Detection in Computer

Networks.,” in ISBN 0-7803-8359-1., 2004.

[12] J. Zhong Lei and A. Ghorbani, “Network

Intrusion Detection using an Improved

Competitive Learning Neural Network,” in

Proceedings of the second annual conference

on communication networks and services

research (CNSR’04) 0-7695-2096-0,, 2004.

[13] M. Gao and J. Tian, “Network Intrusion

Detection Method Based on Improved

Simulated Annealing Neural Network,” in

International Conference on Measuring

Technology and Mechatronics Automation,

2009.

[14] S. Devaraju and D. S. Ramakrishnan,

“Performance analysis of intrusion detection

system using various neural network

classifiers,” in IEEE-International

Conference on Recent Trends in Information

Technology, ICRTIT, MIT, Anna University,

Chennai, 2011.

[15] G. Wang, J. Hao, L. Huang and J. Ma, “A

new approach to intrusion detection using

Artificial Neural Networks and Fuzzy

clustering,” Expert systems with application,

vol. 37, pp. 6225-6232, 2010.

[16] N. B. Idris and B. Shanmugam, “Artificial

Intelligence techniques applied to Intrusion

Detection,” in IEEE Indicon 2005

Conference, Chennai, India, 2005.

[17] J. C. Bezdek, Pattern Recognition with Fuzzy

Objective Function Algorithms, 1981.

[18] J. C. Bezdek, R. Ehrlich and W. Full, “FCM:

The Fuzzy c-means clustering algorithm,”

Computers & Geosciences, vol. 10, no. 2-3,

pp. 191-203, 1984.

[19] C. L. Stephen, “Fuzzy model identification

based on Cluster Estimation,” Journal of

Intelligent and Fuzzy systems, vol. 2, pp. 267-

278, 1994.

[20] T. M. Mitchell, Machine Learning, McGraw-

Hill, 1997.

[21] “KDD Cup 1999,” [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kd

dcup99.html. [Accessed August 2012].

Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence

ISBN: 978-960-474-379-7 217

