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Abstract 

This paper presents the outline of a hybrid 

Artificial Neural Network (ANN) based on fuzzy 

clustering and neural networks for an Intrusion 

Detection System (IDS). While neural networks 

are effective in capturing the non-linearity in data 

provided, it also has certain limitations including 

the requirement of high computational resources. 

By clustering the data, each ANN is trained on a 

particular subset of data, reducing time required 

and achieving a higher detection rate. The outline 

of the implemented algorithm is as follows: first 

the data is divided into smaller homogeneous 

groups/ subsets using a fuzzy clustering technique. 

Subsequently, a separate ANN is trained on each 

subset. Finally, Results of each ANN from step 2 

is aggregated to form the final output which will 

decide the classification of the data point. 

Keywords: Artificial Neural Network, Intrusion 

Detection System, Fuzzy clustering 

1 Introduction 

Intrusion detection is an important aspect in 

today’s world where security is of utmost 

importance. A single intrusion in a network can 

cause information leaks or data modification 

which can prove to be hazardous to any company 

or organization. An intrusion detection system 

attempts to detect misuse or unauthorised access of 

a system or a network. An IDS does not usually 

perform any action to prevent intrusions; its main 

function is to alert the system administrators that 

there is a possible security violation; as such it is a 

proactive tool rather than a reactive tool [1]. 

Intrusion detection systems (IDS) can be classified 

as: (1) Host based or Network based (2) Online or 

Offline (3) Misuse based or Anomaly based. A 

host based IDS makes use of log files from 

individual computers, whereas a network based 

IDS captures packets from the network and 

analyses its contents. An online IDS is able to flag 

an intrusion while it’s happening whereas an 

offline IDS analyses records after the event has 

occurred and raises a flag indicating that a security 

breach had occurred since the last intrusion 

detection check was performed. An Anomaly 

based IDS detects deviation from normal 

behaviour while misuse based IDS compare 

activities on the system with known behaviours of 

attackers. 

This paper outlines a hybrid approach using 

Artificial Neural Networks and Fuzzy clustering to 

detect intrusions in a network. The method 

outlined is network based which extracts features 

from packets in the network. The algorithm 

classifies the packet as normal or the type of attack 

depending upon the contents of the packet. Attacks 

fall into four main categories: Denial of Service 

(DoS); User to Root (U2R); Remote to Local 

(R2L) and Probe. The KDD repository was used to 

train the algorithm.  

Neural networks which are a class of machine 

learning algorithms used to classify data can be 

used where the problem is too complex to be 

programmed by hand. Instead, the neural network 

is trained to give more importance to the features 

that are the main characteristics of a particular 

class in order to help the network classify the 

incoming data. Neural networks have been 

successfully implemented [2] [3] [4] to detect 

intrusions. 

Neural networks, however, require substantial 

amount of data to train on, before they can 

successfully classify incoming data. Due to this 

limitation, the neural network is not able to train 

well on low frequency attacks such as R2L and 

U2R resulting in their lower detection accuracy 
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[5]. Different hybrid approaches have been 

explored in the past to overcome the drawbacks of 

any one individual method [6] [7] [8]. The two 

approaches used in this paper viz. ANN and Fuzzy 

clustering are used so that they complement each 

other.  Neural Networks are good at being able to 

classify unseen data points whereas fuzzy 

clustering enables the algorithm to generalize well. 

2 Research Background 

Various approaches using ANN have been used for 

IDS. The Neural Network Intrusion Detector 

(NNID) system proposed by Ryan et al. [9] took 

into account the behaviour of individual users and 

created profiles for each user. The input pattern 

was then matched to the user profiles to identify 

the user (A node corresponding to a user with 

value > 0.5 is attributed to that user). A flag was 

raised if no match was found and the input was 

considered as an anomaly. However, this required 

large amount of data to train the network for each 

user. Insufficient data for a user might lead to false 

positives for that user’s behaviour on the network 

[9]. The NNID system had an anomaly detection 

rate of 96% and a false alarm rate of 7%. The 

Multi-layered Perceptron (MLP) by Cannady [10] 

using backpropagation algorithm modelled general 

use rather than creating user specific profiles. 

Training of the neural network required 26.13 

hours to complete with approximately 98% match 

in the training dataset and 97.5% match in the test 

dataset. 

In contrast to the above two approaches that used 

backpropagation algorithm, Silva, et al. [11] used a 

Hamming Net to classify network event in real 

time. The Hamming Net is a fast pattern matcher 

that finds the most similar class, according to a 

pre-defined similarity threshold, providing great 

flexibility and fault tolerance by finding small 

attack variations. On an average 70% of well-

known malicious input data within the payload file 

encountered its common pair in the exemplar file 

and is classified as suspicious information. 

Lei and Ghorbani [12] compared the performance 

of Self-Organizing Map (SOM) and Improved 

Competitive Learning Networks (ICLN). While 

the accuracy obtained for both SOM and ICLN 

were similar, the computation time for SOM was 

generally higher than that of ICLN (specifically, 

ICLN requires one fourth the computational time 

of the SOM). The clustering result is also 

independent of the number of initial neurons which 

is not the case in SOM. 

The results of the simulated annealing approach in 

Gao and Tian’s [13] paper show that the mean 

squared errors of training samples of improved 

simulated annealing neural network is smaller than 

that of a backpropagation network. Moreover the 

mean squared errors of testing samples of 

improved simulated annealing neural network is 

also smaller than that of a backpropagation 

network. When the number of the training samples 

change, we can get the same result. It shows that 

the network intrusion detection method based on 

improved simulated annealing neural network has 

higher stability, and can obtain higher detection 

and recognition accuracy. 

The Probabilistic Neural Network (PNN) 

implemented by Devaraju and Ramakrishnan [14] 

performs better than Feed Forward Neural 

Network (FFNN) and Radial Basis Neural 

Network (RBNN). However, PNN (accuracy = 

80.38%) performs only 0.02% better than FFNN 

(accuracy = 80.4%) which is not a significant 

difference. The accuracy of RBNN is 75.4%. 

These results are comparatively lower as compared 

to other algorithms implemented in the other 

papers discussed above. The hybrid approach 

presented in Wang et al. [15] using fuzzy logic and 

artificiaANN neural network have obtained an 

average accuracy of 96.71% which can be 

considered as very successful. The fuzzy logic 

provides some flexibility to the uncertain nature of 

detecting intrusions [16]. 

The hybrid approach in this paper implements 

fuzzy clustering and ANN. Fuzzy clustering - a 

form of unsupervised technique is used to divide 

the training data into smaller groups/ subsets. 

ANNs are trained using these subsets. Since the 

size of data is reduced, the training time required 

to train each ANN is also reduced. Aggregating the 

results of these individual ANNs by a final 

aggregating ANN helps increase its detection rate 

as any misclassifications made by individual 

ANNs will be corrected by the final aggregating 

ANN. Thus the objective is to lower the training 

time required while increasing the detection rate of 

identifying attacks. 

3 Problem Solution 

Figure 1 shows the general outline of the method 

using Fuzzy Clustering and Artificial Neural 

Network (FCANN). The dataset used for the 

experiments is the 1999 KDD Cup dataset. This 

dataset contains about five million connection 

records as training data and about two million 
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connection records as test data. It includes a set of 

41 features derived from each connection and a 

label which specifies the status of connection 

records as either normal or the specific type of 

attack. Random records are taken from the training 

set and given to the fuzzy clustering module (the 

first module). This module divides the training sets 

into smaller clusters. Each cluster forms a subset to 

be given to every ANN in the ANN module 

(second module). Each ANN trains on this subset 

to classify a record as one of the five groups – 

normal, DoS, U2R, R2L and Probe. This output is 

then given to the third module – the final 

aggregating module. The aggregator ANN takes 

the outputs of the individual ANN and trains on 

them to reduce any misclassifications. This module 

gives the final classification of the record. 

 

Fig 1 Block diagram of fuzzy clustering and ANN for IDS 

3.1 Training 

The FCANN algorithm can be divided into three 

submodules viz. fuzzy clustering; ANN; and fuzzy 

aggregation. The following sections describe these 

three submodules in detail. 

 

Module 1: Fuzzy Clustering 

The training data is divided into ‘x’ number of 

clusters such that there is homogeneity within the 

clusters and heterogeneity between clusters. Each 

data point belongs to a particular cluster with the 

degree specified by its membership grade. The 

training set is thus divided into several subsets 

decreasing the size and complexity of each subset. 

The Fuzzy c-means (FCM) clustering algorithm 

originally introduced by Bezdek [17] is used to 

divide the data into several clusters. The FCM 

algorithm is based on the minimization of the 

following objective function [18] [19]: 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚 ||𝑥𝑖 − 𝑐𝑗||

2
 ,      1 < 𝑚 <  ∞

𝑛

𝑖=1

𝑘

𝑗=1

 

where, u denotes the degree of membership of data 

point x falling into cluster center c and m is the 

weighting exponent greater than 1. The fuzzy 

clustering module is composed of the following 

steps: 

1. Fix c and m and randomly initialize ‘x’ 

number of cluster centers. Initialize 

membership matrix U to U(0) and step 

k=0. 

 

2. At each step k, calculate the cluster centers 

with the membership matrix U(k) 

𝑐𝑗 =  
∑ 𝑢𝑖𝑗𝑥𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑛
𝑖=1

 

3. Compute an updated membership matrix 

U(k+1) 

𝑢𝑖𝑗 =  
1

∑ (
||𝑥𝑖 − 𝑐𝑗||

||𝑥𝑖 −  𝑐𝑝||
)

2
𝑚−1

𝑘
𝑝=1

 

4. Compare U(k+1) and U(k). If ||𝑈 (𝑞 +

1) − 𝑈 (𝑞)|| <  𝜀 then stop. Otherwise set 

U(k) = U(k + 1) and return to step 2. 

Once the termination criteria is reached, the whole 

training set is divided into ‘x’ number of subsets, 

each of which is given to a different ANN for 

learning features specific to that subset. 
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Module 2: Artificial Neural Network 

The ANN module consists of a separate ANN for 

each cluster formed and aims to learn the patterns 

present in every subset. A simple feed-forward 

network is used for each ANN which consists of 

simple processing units called nodes and weighted 

connections between nodes in adjacent layers. The 

ANN employed in our experiments uses three 

layers - input, hidden and output layer. Data is 

given at the input layer and is traversed through 

the neural network and is classified into one of the 

five classes at the output layer. The five classes 

are: Normal, DoS, U2R, R2L and Probe. 

To learn the weights of this multi-layered neural 

network we use the backpropagation algorithm 

with the gradient descent weight update rule. The 

gradient descent aims to minimize the squared 

error between the ANN predicted output and the 

actual target values. The error function used is: 

𝐸𝑚 =  
1

2𝑛
 ∑ √(𝑇𝑘 −  𝑌𝑘)2

𝑘

 

The back propagation algorithm used to train the 

ANN is outlined as follows  [20]: 

1. Create an ANN with number of input 

nodes corresponding to the number of 

features in the dataset; the number of 

output nodes corresponding to the number 

of output classes and an appropriate 

number of hidden layer nodes. 

2. Initialize the weights to small random 

numbers. 

3. For every training example, forward 

propagate the input through the network: 

a. Each hidden node receives the 

weighted summation of the inputs 

and bias 

ℎ𝑖𝑑(𝑗) =  𝑏𝑗 +  ∑ 𝑥𝑖𝑤𝑖𝑗

𝑛

𝑖=1

 

 

where j is the jth hidden unit and i 

denoted the ith example 

b. This is then passed through a non-

linear activation function. A 

unipolar sigmoid activation 

function is used: 

𝑓(𝑥) =  
1

(1 + exp(−𝑥))
 

c. Output of the hidden layers is then 

given to the output layer in a 

similar manner: 

𝑦(𝑘) =  𝑏𝑘 +  ∑ 𝑥𝑖𝑤𝑖𝑘

𝑛

𝑖=1

 

and is passed through the 

activation function 

d. The output computed through the 

ANN is then compared to the 

target value and the error is 

calculated using the error function 

4. This error is then backpropagated through 

the ANN and the weights updated 

according to the expression: 

 

𝑤(𝑡 + 1) = 𝑤(𝑡) −  𝜂𝜕𝐸(𝑡)/𝜕𝑤(𝑡) 
 

where t is the number of epochs and 𝜂 is 

the learning rate. 

5. The momentum parameter α (0< α <1) is 

used to accelerate the learning process 

 

𝑤(𝑡 + 1) = 𝑤(𝑡) −
𝜂𝜕𝐸(𝑡)

𝜕𝑤(𝑡)
+  𝛼∆𝑤(𝑡) 

 

6. If the error 𝐸𝑚 < threshold defined then 

stop training. Else return to step 3. 

Thus in the ANN module every individual ANN is 

trained on its own subset and the resulting output 

is then given to the final aggregating ANN. 

Module 3: Fuzzy Aggregation 

Once the individual ANNs have been trained on 

their subsets, their results must be aggregated to 

reduce any errors introduced by individual ANNs 

in the ANN module. To achieve this, another ANN 

is used to learn and remove errors made by the sub 

ANNs. The following steps are used to accomplish 

this task  [15]: 

1. Forward propagate the whole training set 

through every sub ANN in module two. 

Each sub ANN will output its ‘opinion’ as 

to which class the particular record must 

fall into. 

 

2. This output of ANNx (one sub ANN in 

module two) is multiplied by its 

membership grade belonging to the cluster 

the sub ANN was trained on. 
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3. The input to the final aggregating ANN is 

 

𝑌𝑖𝑛𝑝𝑢𝑡 =  [𝑦1 . 𝑈1;  𝑦2 . 𝑈2 ;  … ; 𝑦𝑛 . 𝑈𝑛] 
 

The output is compared with the target 

output. The aggregating ANN uses the 

same backpropagation algorithm used for 

the individual sub ANNs in the ANN 

module. 

3.2 Testing 

During the stage of testing, the working 

methodology of ANN module and fuzzy 

aggregation module is similar as described above. 

First, the membership grade is calculated based on 

the cluster centres C. For a new input xi, the 

membership U is calculated based on C by: 

𝑢𝑖𝑗 =  
1

∑ (
||𝑥𝑖 − 𝑐𝑗||

||𝑥𝑖 −  𝑐𝑝||
)

2
𝑚−1

𝑘
𝑝=1

 

Once the membership of the input data is 

determined, the data point is given to the next 

ANN module. The outputs of all the ANNs in 

module 2 are then aggregated using the final ANN 

to determine which class the input should be 

classified as. 

The test data used has cases not seen by the 

network during the training phase. Thus, the 

testing will not only test the system on previously 

seen data but also on unseen data. This makes the 

intrusion detection task more realistic. 

The time taken for training is to be noted down for 

various combinations of parameters (learning rate 

and momentum). The test set will be presented to 

the system with those parameters and the detection 

rate noted. The ideal combination is to have 

minimum training time and maximum detection 

rate for the test set. 

4 Experiments and Results 

4.1 Experiment 

The software used to implement the FCANN 

algorithm was MATLAB R2008a on a Windows7 

PC with i5 core 2.30 GHz CPU and 4GB RAM. 

In the experiments, KDD CUP 1999 [21] dataset is 

used which is a version of the original 1998 

DARPA intrusion detection evaluation program 

dataset. Random selection was used to reduce the 

size of the dataset. Table 1 shows detailed 

information of the number of records used to train 

the network. The ‘kddcup data 10 percent’ dataset 

was used for training. All the records belonging to 

U2R, R2L and Probe attacks were selected due to 

their low frequency in the dataset. 3,000 Normal 

records and 10,000 DoS records were randomly 

selected [15]. 

Table 1 Number and distribution of training and test 

dataset 

Connection 

type 

Training dataset Testing dataset 

Number 

of 

records 

% of 

records 

Number 

of 

records 

% of 

records 

Normal 3000 16.41 60,593 19.48 

DoS 10,000 54.69 229,853 73.89 

U2R 52 0.28 288 0.09 

R2L 1126 6.16 16,189 5.2 

Probe 4107 22.46 4166 1.34 

 

The KDD dataset contains 41 features and the 

class of attack (or normal). Symbolic value 

features such as protocol_type are converted to 

numeric values to be given to the ANNs. The 

dataset is normalized before being used so that all 

feature values are in consistent ranges. 

The training data was divided into 6 clusters in the 

fuzzy clustering module [15]. Each subset was 

then given to its individual ANN in the ANN 

module (2nd module). This ANN has 41 input 

nodes corresponding to the 41 features in the 

dataset; 5 output nodes corresponding to the five 

classes viz. Normal; DoS; R2L; U2R and Probe. 

The number of hidden nodes was determined using 

the empirical formula √𝐼 + 𝑂 + α where I is the 

number of input nodes, O is the number of output 

nodes and α is taken as 10 due to the complexity of 

intrusion detection [15]. Thus, the second module 

ANN architecture is 41-18-5. The output of the 

second module is given to the final aggregating 

module. Thus the input features to the final 

aggregating ANN is 5. The number of output 

nodes too will be 5 corresponding to the 5 output 

classes and the number of hidden layer nodes are 

13 calculated using the formula stated above. The 

final ANN architecture is 5-13-5. 
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Table 2 Training time taken for various values of momentum and learning rate 

Training time 
taken (CPU 

seconds) 

Learning Rate 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M
o

m
e

n
tu

m
 

0 2350.7 1470.0 753.0 790.7 1799.0 1263.0 358.1 352.4 242.9 249.3 

0.1 2687.9 1238.4 839.2 624.6 413.2 1416.7 363.6 403.5 290.9 250.4 

0.2 1824.5 2103.9 635.4 502.2 449.5 347.0 288.3 252.2 196.9 256.2 

0.3 2641.2 880.6 607.4 700.0 420.0 340.5 250.6 211.5 247.6 186.3 

0.4 1427.8 823.0 541.5 392.9 431.3 259.6 239.3 179.1 185.8 152.0 

0.5 1443.9 878.5 453.0 326.8 302.3 220.3 195.7 177.5 137.1 131.8 

0.6 1158.6 1098.9 383.7 329.6 183.3 175.9 154.4 109.2 116.1 130.0 

0.7 1053.9 461.2 330.8 235.0 144.3 139.8 124.1 101.0 95.5 75.4 

0.8 526.3 295.0 157.9 121.5 118.0 74.8 67.1 63.8 59.4 50.2 

0.9 255.0 128.1 140.2 71.8 56.2 46.9 43.8 60.6 84.4 49.9 
 

Table 3 Test set detection rate for various momentum and learning rate values 

Test set 
detection 

rate(%) 

Learning Rate 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M
o

m
e

n
tu

m
 

0 64.01 64.44 75.35 72.73 80.95 82.52 82.19 81.78 81.82 79.55 

0.1 64.32 64.82 65.38 75.29 77.34 35.70 78.22 81.76 83.25 81.87 

0.2 74.95 64.55 75.89 68.97 72.10 78.61 78.88 78.89 82.03 78.52 

0.3 64.55 64.64 64.97 73.62 72.80 77.74 83.14 79.06 81.93 78.71 

0.4 22.14 64.55 76.73 70.58 79.64 77.65 81.38 81.85 78.90 79.30 

0.5 74.96 74.90 72.74 69.34 78.36 78.45 78.89 81.78 83.25 80.80 

0.6 74.77 64.57 65.21 73.00 74.71 72.82 81.78 81.96 79.14 81.61 

0.7 64.44 65.97 67.80 72.37 77.58 73.10 78.70 81.71 78.29 81.69 

0.8 69.77 74.91 75.03 72.59 74.48 73.14 77.04 77.78 79.56 77.29 

0.9 67.89 70.44 67.56 68.71 73.69 39.54 39.19 73.40 75.13 72.79 

 

4.2 Results 

Table 2 shows the training time taken in CPU 

seconds for various values of momentum and 

learning rate and Table 3 shows the detection rate 

over the test set on the trained neural network. The 

same random dataset generated was used for all 

the experiments. 

The general trend seen in the training time taken 

from Figure 2 is that as learning rate increases 

(from 0.1 to 1) the training time decreases. A 

higher learning rate leads to faster convergence to 

the global minima. Higher momentum also leads 

to lower training times as the convergence takes 

place in the right direction. 

 

Figure 3 shows the test set detection rate for error 

threshold of 0.01. It can be seen from the figure 

that higher detection rate is obtained for higher 

learning rate and lower momentum values. 
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Fig 2 3D plot for Training time taken with error threshold 

of 0.01 

 

To understand how the clusters are formed and 

how they affect the performance of the ANN, the 

records belonging to each class in each cluster 

were identified. 

 

 

 

Fig 3 3D plot for Test set detection rate with error 

threshold of 0.01 

 

The distribution of records in the 6 clusters formed 

is as shown in Table 4. The detection rate of the 

training and test set, the cluster it belongs to and 

the classes identified by each ANN are shown in 

Table 5.  

 

 

Table 4 Distribution of records in each cluster produced by the FCM algorithm 

 
Cluster Number  

1 2 3 4 5 6 Total 

C
la

ss
 

Normal 0 1 5 167 25 2,802 3,000 

DoS 0 2,173 7,172 580 4 71 10,000 

U2R 0 0 0 0 1 51 52 

R2L 0 8 0 50 15 153 1,126 

Probe 1,585 141 0 937 1,251 193 4,107 
 

Table 5 Analysis of ANN output in module 2 and module 3 

ANN 

Training 

detection 

rate (%) 

Cluster 

Test set 

detection 

rate (%) 

Classes identified 

1 99.05 2 74.88 DoS; Probe 

2 99.15 5 19.53 Normal; DoS; R2L; Probe 

3 100.00 1 1.34 Probe 

4 99.02 6 21.00 Normal; DoS; U2R; R2L; Probe 

5 99.93 3 73.90 DoS 

6 99.08 4 28.77 Normal; DoS; R2L; Probe 

Final aggregating 

ANN 

99.07 - 81.60 Normal; DoS; U2R; R2L; Probe 
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The FCM algorithm clusters data such that the 

records within each cluster are similar as can be 

verified from Table 4. Cluster 1 contains only 

Probe records and cluster 3 contains mainly DoS 

records. Cluster 6 is the only cluster that has 

significant amount of records from all classes. The 

values in Table 5 were taken for learning rate = 

0.8, momentum = 0.6 and error threshold=0.01. 

These values were chosen as they gave a good 

combination of low training time and high 

detection rate (refer Table 2 and Table 3). Cluster 

1 which had all Probe records, gave a 100% 

training detection rate but only 1.34% in the test 

set. This is because the ANN trained on cluster 1 

received all Probe records and hence it classified 

all records as Probe achieving 100% in training 

set. For the test set too, it classified all records as 

Probe giving it a very low detection rate of 1.34% 

(the percentage of Probe records in test set). 

Exactly similar is the case for cluster 3 where the 

ANN classifies all incoming records as DoS. Since 

73.89% of the test set is made of DoS records, its 

test set detection rate too is 73.90%. Though the 

detection rate is high, it is merely due to the large 

number of DoS records present in the test set and 

not because the ANN has learnt to classify 

correctly. This basically renders ANN 3 and ANN 

5 (belonging to cluster 1 and 3 respectively) 

redundant as it classifies all records as Probe and 

DoS respectively. If the data within each cluster is 

too homogeneous (belonging to the same class), 

the ANN will just flag any data as belonging to 

that particular class. Due to this, the membership 

grades play an important role as it effectively 

decides the input values to the 5 nodes of the final 

aggregating ANN. For this, the membership grade 

of the records belonging to the different clusters 

must have significant difference to overcome the 

default output of each ANN. However, upon 

inspection it was found that the membership 

grades of the records do not differ significantly 

from each other. This makes getting the records 

classified correctly at the module 2 level more 

important. Due to this, majority of the load in 

classifying the record correctly falls on the final 

aggregating ANN. 

5 Conclusion and Future work 

In this paper, the FCANN algorithm was 

implemented to detect network intrusions. The 

algorithm was implemented with several 

combinations of learning rate and momentum to 

find the best learning rate and momentum 

combination which gives a lower training time and 

higher detection rate. The results of each module 

of the algorithm are analysed to understand its 

working. Results have shown that homogeneity 

within each cluster is not preferable and is not an 

ideal way to divide the training data. Each ANN 

must receive records belonging to different classes 

to get a better training at classifying records. An 

ideal way to divide the data to achieve good results 

(low training and high detection rate) remains an 

open problem for future research. 
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