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Abstract: - Nonlinear simulation and forecasting chaotic evolutionary dynamics during perception and tuition 
processes can be effectively performed using the concept of compact geometric attractors. We present a new 
approach to analyze and predict the nonlinear perception and tuition dynamics based on the concept of 
geometric attractors, chaos theory methods and algorithms for quantum neural network simulation. Using phase 
space information on the evolution of the perception and tuition processes in time and results of the of quantum 
neural network modelling techniques can be considered as one of the fundamentally new approaches in the 
construction of global nonlinear models of the most effective and accurate description of the structure of the 
corresponding attractor and in further optimal realizations of the perception and tuition processes. 
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1 Introduction 
It is very well known now that multiple physical, 
chemical, biological, social systems  could 
demonstrate the typical chaotic behaviour [1-2].  
Here one could remind a great majority of different 
systems, which  are formally very complex, and 
this feature is manifested at different spatial and 
temporal scale levels [1-15]. It is not difficult to 
understand that examples of such systems are the 
chemical systems, biological populations, 
cybernetical (neurocybernetical), communication, 
at last social, psychological and physiological etc 
systems and its subsystems.  
Most important, the fundamental issue in the 
description of the dynamics of the system is its 
ability to forecast its future evolution, i.e. 
predictability of behavior. Recently, the theory of 
dynamical systems is intensively developed, and, in 
particular, speech is about application of methods 
of the theory to the analysis of complex systems 
that provide description of their evolutionary 
dynamics by means solving system of differential 
equations. If the studied system is more 
complicated then the greater the equations is 
necessary for its adequate description. Meanwhile, 
examples of the systems described by a small 

amount of equations, are known nevertheless, 
theses systems exhibit a complicated behavior. 
Probably the best-known examples of such systems 
are the Lorenz system, the Sinai billiard, etc. They 
are described, for example, three equations (i.e., in 
consideration included three independent 
variables), but the dynamics of their behavior over 
time shows elements of chaos (so-called 
"deterministic chaos"). In particular, Lorentz was 
able to identify the cause of the chaotic behavior of 
the system associated with a difference in the initial 
conditions. Even microscopic deviation between 
the two systems at the beginning of the process of 
evolution leads to an exponential accumulation of 
errors and, accordingly, their stochastic divergence. 
During the analysis of the observed dynamics of 
some characteristic parameters of the systems over 
time it is difficult to say to what class belongs to 
the system and what will be its evolution in the 
future. Many interesting examples can be reminded 
in the modern statistical physics, physics of non-
ordered semiconductors etc. In recent years for the 
analysis of time series of fundamental dynamic 
parameters  there are with varying degrees of 
success developed and implemented a variety of 
methods, in particular, the nonlinear spectral and 
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trend analysis , the study of Markov chains, 
wavelet and multifractal analysis, the formalism of 
the matrix memory and the method of evolution 
propagators etc. Most of the cited approaches are 
defined as the methods of a chaos theory. In the 
theory of dynamical systems methods have been 
developed that allow for the recording of time 
series of one of the parameters to recover some 
dynamic characteristics of the system. In recent 
years a considerable number of works, including an 
analysis from the perspective of the theory of 
dynamical systems and chaos, fractal sets, is 
devoted to time series analysis of dynamical 
characteristics of physics and other systems [1-11]. 
In a series of papers [10-16] the authors have 
attempted to apply some of these methods in a 
variety of the physical, geophysical, hydrodynamic 
problems. In connection with this, there is an 
extremely important task on development of new, 
more effective approaches to the nonlinear 
modelling and prediction of chaotic processes in 
different complex systems.  
In this work we present a new, advanced approach 
to nonlinear simulation and forecasting chaotic 
evolutionary dynamics during perception and 
tuition processes.   New approach to analyze and 
predict the nonlinear perception and tuition 
dynamics is based on the concept of geometric 
attractors, chaos theory methods and algorithms of 
the quantum neural network simulation. Using 
phase space information on the evolution of the 
perception and tuition processes in time and results 
of the of quantum neural network modelling 
techniques can be considered as one of the 
fundamentally new approaches in the construction 
of global nonlinear models of the most effective 
and accurate description of the structure of the 
corresponding attractor and in further optimal 
realizations of the perception and tuition processes. 
 
2 New Conception to Analysis of 
Chaotic Processes in Complex 
Systems 
The basic idea of the construction of our approach 
to prediction of chaotic processes in complex 
systems during perception and tuition processes is 
in the use of the traditional concept of a compact 
geometric attractor in which evolves the 
measurement data, plus the implementation of 
neural network algorithms. The existing so far in 
the theory of chaos prediction models are based on 
the concept of an attractor, and are described in a 
number of papers (e.g. [1-8]). The meaning of the 
concept is in fact a study of the evolution of the 

attractor in the phase space of the system and, in a 
sense, modelling ("guessing") time-variable 
evolution. 
From a mathematical point of view, it is a fact that 
in the phase space of the system an orbit 
continuously rolled on itself due to the action of 
dissipative forces and the nonlinear part of the 
dynamics, so it is possible to stay in the 
neighborhood of any point of the orbit y (n) other 
points of the orbit yr (n), r = 1, 2, ..., NB, which 
come in the neighborhood y (n) in a completely 
different times than n. Of course, then one could try 
to build different types of interpolation functions 
that take into account all the neighborhoods of the 
phase space and at the same time explain how the 
neighborhood evolve from y (n) to a whole family 
of points about y (n+1). Use of the information 
about the phase space in the simulation of the 
evolution of some physical (geophysical etc.) 
process in time can be regarded as a fundamental 
element in the simulation of random processes.  
In terms of the modern theory of neural systems, 
and neuro-informatics (e.g. [11]), the process of 
modelling the evolution of the system can be 
generalized to describe some evolutionary dynamic 
neuro-equations (miemo-dynamic equations). 
Imitating the further evolution of a complex system 
as the evolution of a neural network with the 
corresponding elements of the self-study, self- 
adaptation, etc., it becomes possible to significantly 
improve the prediction of evolutionary dynamics of 
a chaotic system. Considering the neural network 
(in this case, the appropriate term "geophysical" 
neural network) with a certain number of neurons, 
as usual, we can introduce the operators Sij synaptic 
neuron to neuron ui uj, while the corresponding 
synaptic matrix is reduced to a numerical matrix 
strength of synaptic connections: W = | | wij | |. The 
operator is described by the standard activation 
neuro-equation determining the evolution of a 
neural network in time: 

∑
=

−=
N

j
ijiji swsigns

1

' ),( θ                              (1) 

where 1<i<N.  
Of course, there can be more complicated versions 
of the equations of evolution of a neural network. 
Here it is important for us another proven fact 
related to information behavior of a neuro-
dynamical system. From the point of view of the 
theory of chaotic dynamical systems, the state of 
the neuron (the chaos-geometric interpretation of 
the forces of synaptic interactions, etc.) can be 
represented by currents in the phase space of the 
system and its the topological structure is obviously 
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determined by the number and position of 
attractors. To determine the asymptotic behavior of 
the system it becomes crucial a information aspect 
of the problem, namely, the fact of being the initial 
state to the basin of attraction of a particular 
attractor.  
Modelling each physical attractor by a record in 
memory, the process of the evolution of neural 
network, transition from the initial state to the 
(following) the final state is a model for the 
reconstruction of the full record of distorted 
information, or an associative model of pattern 
recognition is implemented.  The domain of 
attraction of attractors are separated by separatrices 
or certain surfaces in the phase space. Their 
structure, of course, is quite complex, but mimics 
the chaotic properties of the studied object. Then, 
as usual, the next step is a natural construction 
parameterized nonlinear function F (x, a), which 
transforms:   

y(n) →     y(n + 1) = F(y(n), a), 
and then to use the different ( including neural 
network) criteria for determining the parameters a 
(see below). The easiest way to implement this 
program is in considering the original local 
neighborhood, enter the model(s) of the process 
occurring in the neighborhood, at the neighborhood 
and by combining together these local models, 
designing on a global nonlinear model. The latter 
describes most of the structure of the attractor.  
Although, according to a classical theorem by 
Kolmogorov-Arnold -Moser, the dynamics evolves 
in a multidimensional space, the size and the 
structure of which is predetermined by the initial 
conditions, this, however, does not indicate a 
functional choice of model elements in full 
compliance with the source of random data. One of 
the most common forms of the local model is the 
model of the Schreiber type [3] (see also [10]).  

 
3 Construction of the model 
prediction 
Nonlinear modelling of chaotic processes during 
perception and tuition processes can be based on 
the concept of a compact geometric attractor, which 
evolve with measurements. Since the orbit is 
continually folded back on itself by the dissipative 
forces and the non-linear part of the dynamics, 
some orbit points yr(k), r = 1, 2, …, NB can be 
found in the neighbourhood of any orbit point y(k), 
at that the points yr(k) arrive in the neighbourhood 
of y(k) at quite different times than k. Then one 
could build the different types of interpolation 
functions that take into account all the 

neighborhoods of the phase space, and explain how 
these neighborhoods evolve from y (n) to a whole 
family of points about y (n + 1). Use of the 
information about the phase space in modelling the 
evolution of the physical process in time can be 
regarded as a major innovation in the modelling of 
chaotic processes. 
This concept can be achieved by constructing a 
parameterized nonlinear function F(x, a), which 
transform y(n) to y(n+1)=F(y(n), a), and then using 
different criteria for determining the parameters a. 
Further, since there is the notion of local 
neighborhoods, one could  create a model of the 
process occurring in the neighborhood, at the 
neighborhood and by combining together these 
local models to construct a global nonlinear model 
that describes most of the structure of the attractor. 
Indeed, in some ways the most important deviation 
from the linear model is to realize that the 
dynamics evolve in a multidimensional space, the 
size and the structure of which is dictated by the 
data. However, the data do not provide "hints" as to 
which model to select the source to match the 
random data. And the most simple polynomial 
models, and a very complex integrated models can 
lead to the asymptotic time orbits of strange 
attractors, so for part of the simulation is connected 
with physics. Therefore, physics is "reduced" to fit 
the algorithmic data without any interpretation of 
the data. There is an opinion that there is no 
algorithmic solutions on how to choose a model for 
a mere data. 
As shown Schreiber [3], the most common form of 
the local model is very simple: 

∑
=

τ−−+=∆+
Ad
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n
j

n jnsaanns
1

)()(
0 ))1(()(

        

(2) 

where ∆ n - the time period for which a forecast .  
The coefficients )(k

ja , may be determined by a 
least-squares procedure, involving only points s(k) 
within a small neighbourhood around the reference 
point. Thus, the coefficients will vary throughout 
phase space. The fit procedure amounts to solving 
(dA + 1) linear equations for the (dA + 1) unknowns. 
When fitting the parameters a, several problems are 
encountered that seem purely technical in the first 
place but are related to the nonlinear properties of 
the system. If the system is low-dimensional, the 
data that can be used for fitting will locally not 
span all the available dimensions but only a 
subspace, typically. Therefore, the linear system of 
equations to be solved for the fit will be ill 
conditioned. However, in the presence of noise the 
equations are not formally ill-conditioned but still 
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the part of the solution that relates the noise 
directions to the future point is meaningless . Note 
that the method presented here is not only because, 
as noted above, the choice of fitting requires no 
knowledge of physics of the process itself. Other 
modelling techniques are described, for example, in 
[3,10]. 
Assume the functional form of the display is 
selected, wherein the polynomials used or other 
basic functions. Now, we define a characteristic 
which is a measure of the quality of the curve fit to 
the data and determines how accurately match y (k 
+ 1) with F (y (k), a), calling it by a local 
deterministic error: 
εD(k) = y(k + 1) − F(y(k), a).                        (3) 

The cost function for this error is called W (ε). If 
the mapping F (y, a), constructed by us, is local, 
then one has for each adjacent to y (k) point, y (r) 
(k) (r = 1, 2, ..., NB), 

)(r
Dε (k) = y(r, k + 1) − F(y(r)(k), a),             (4) 

where y (r, k + 1) - a point in the phase space which 
evolves y (r, k). To measure the quality of the curve 
fit to the data, the local cost function is given by 
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and the parameters identified by minimizing W (ε, 
k), will depend on a. 
Furthermore, formally the neural network 
algorithm is launched, in particular, in order to 
make training  the neural network system 
equivalent to the reconstruction and interim 
forecast the state of the neural network 
(respectively, adjusting the values of the 
coefficients).  
The starting point is a formal knowledge of the 
time series of the main dynamic parameters of a 
chaotic system, and then to identify the state vector 
of the matrix of the synaptic interactions ||wij|| etc. 
Of course, the main difficulty here lies in the 
implementation of the process of learning neural 
network to simulate the complete process of change 
in the topological structure of the phase space of 
the system and use the output results of the neural 
network to adjust the coefficients of the function 
display. The complexity of the local task, but 
obviously much less than the complexity of 
predicting the original chaotic processes in physical 
or other dynamic systems.  
 

4 Dynamics of quantum neural 
networks on basis of photon echo: 
Some numerical realizations 
This subchapter is devoted to description of our 
algorithm of the program realization of the photon 
echo based quantum neural networks and its using 
for simulation of the tuition process. Currently 
there is a considerable interest in the development 
of neuro-computers, i.e. physical realizations of 
neural network models [10,17]. Now the main 
features of the neural network are being actively 
developed . It is known that the optimal neural 
network must be multilayered one, with a 
possibility to implement learning, feedback and 
controlled noise. Key elements  are as follows: 
matrix linkages, which should act as a one-
dimensional or two-dimensional transducer image 
and model neuron, giving a binary or continuous 
sigmoid response to incoming stimulation. 
Although notable progress in the study of the 
features of quantum multilayer neural networks has 
been achieved, however, many important issues 
concerning their basic characteristics, operational 
models , information capacity, storage and recovery 
implementations chains induced sequentially in 
time , the possibility of learning, feedback , noise 
exposure etc. , until now are far from adequate 
resolution . This is especially true of neural 
networks based on photon echo [10]. Using the 
effect of photon echo (or multiphoton echo) is a 
new physical principle for implementation of a 
neural network to information processing. The 
basic aspects of theory of the photon echo based 
neural networks are stated previously (see, for 
example, [10,17-20]). So here we mention only the 
essential elements. Photon echo is a nonlinear 
optical effect, in fact this is the phenomenon of the 
four wave interaction in a nonlinear medium with a 
time delay between the laser pulses. Exciting 
sequence of optical pulses pass through the 
appropriate medium and call for the environment  
photon echo signal after a certain time interval. It is 
necessary that the medium was resonant , i.e. the 
carrier frequency of the optical pulses was close to 
the frequency of the excited transition. Interaction 
of light with a resonant medium should occur in a 
relatively short intervals , shorter than the "phase 
memory". Duration light pulses must be much less 
than the minimum relaxation time in the 
environment (condition of coherent interaction ) . 
the effect of the three-pulse stimulated photon echo 
has the necessary properties for use as a photon 
echo new physical principle implementations of 
neural networks.  
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One promising approach to the realization of an 
optical neural network is the inner product scheme 
[10,17]. Schematic diagram of the optical images 
for processing sequence is as follows:  {↓Input→ 
Cumulative matrix F1→Correlation region→ 
Cumulative matrix F2→Output→ Threshold 
Device ↑}. The first pulse has an amplitude equal 
to unity over the entire plane of the medium, the 
second pulse defines the vectors of memory, 
incoming in the form of vertical columns and 
providing accumulation of the memory matrix 

21 FF =  of the size (N⋅p) in the environment. The 
third pulse, whose amplitude is determined by a 
recognized one - dimensional image, comes to the 
input of the system and is uniformly distributed 
over the medium to the horizontal direction . As a 
result, there are arisen the stimulated echo-signals, 
which are collected in a horizontally disposed one-
dimensional array in the correlation region . In the 
first phase there are calculated the inner product 
between the input vector and memory vectors. 
Expression for the stimulated photon echo signal is: 

in
j

m
j

j
mu ξξ∑~)( . The amplitude of the first pulse 

is equal to unity and is omitted here. Further the 
inner product weigh the corresponding memory 
vectors pξξ ,...,1 , accumulated in the matrix F2. 
This operation leads to a stimulated echo signals, 
which are then summed, resulting in a one-
dimensional distribution of 

amplitude: ∑ ∑∑ =
m

in
ij

m
j

j
m
i

m
ii

m
i mus ξξξξ )()(~ . 

This ratio, threshold conversion and feedback 
determine the dynamics of the Hopfield neural 
network with the Hebb coupling matrix. The 
photon echo based implementation allows to 
replace the resolution of images in the space by a 
time resolution. As result processing two-
dimensional arrays is possible. Similarly, one has 
for the output signal amplitude as follows: 

∑ ∑ ∑=
m m ij

in
ij

m
ij

m
kl

m
kl

out
kl aaaamua

,
)(~ . To account for 

an effect of delay it is necessary to include the lag 
variables  into network dynamics: 
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where the onnection matrix (corresponding to the 
variables lag) have the form: 
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Here s is number of chains in the network , Qk is 
the number of images in the k-th chain. If l=0, then 

we have a network with instant response. Note that 
the need for storing states in previous times in 
neural networks with l> 0 makes it difficult for 
their implementation by the known methods with 
the exception of the method, based on the effect of 
photon echo . In order to obtain an opportunity to 
make modeling  invariant pattern recognition and 
get the most information capacity one should use 
the neural networks of higher orders. We have 
developed a software package for numerical 
modeling of the dynamics of the photon echo 
neural network. It has the following key features: 
multi-layering, possibility of introducing training, 
feedback and controlled noise. There are possible 
the different variants of the connections matrix 
determination and binary or continuous sigmoid 
response (and so on) of the model neurons. In order 
to imitate a tuition process we have carried out 
numerical simulation of the neural networks  for 
recognizing a series of patterns (number of layers  
N=3-5, number of images р=320; the error 
function:  
 

∑
=

∑
=

−=
max max

1

2})],(),([{..
p

p

k

k
kpOkptSSE ,          (8) 

 
where O(p,k) −  neural networks output k for image 
p and t(p,k) is the trained image р for output к; SSE 
is determined from a procedure of minimization; 
the output error is  RMS=sqrt(SSE/Pmax);  As 
neuronal function there is used function of the 
form: )]exp(1/[1)( xxf δ−+= . In our calculation there 
is tested the function  f(x,T)=exp[(xT)4] too. The 
results of the PC simulation (with using our neural 
networks package NNW-13-2003 [10]) of 
dynamics of the quantum multilayer neural 
networks with the input rectangular and sinusoidal 
pulses.are.listed.in.fig.1,2. 
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Fig. 1.  The results of modeling the multi-layer 
neural networks with a rectangular pulse input 
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Fig. 3 demonstrates the results of modeling the 
dynamics of multilayer neural network for the case 
of noisy input sequence. The input signal was the 
Gaussian-like  pulse with adding a noise with 
intensity D. At a certain value of the parameter D 
(the variation interval .0001-0.0040 ) the network 
training process and signal playback is optimal. 
The optimal value of D is 0.0017 . A coherency of 
input and output is optimal for the indicated 
optimal noise level. 
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Fig. 2. The results of modeling the dynamics of 

multilayer neural networks with sinusoidal input 
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Fig. 3. The results of modeling the dynamics of 
multilayer neural for the case of noisy input 

sequence. 

 
Thus, a stochastic resonance effect is in fact 
discovered in our PC experiment. In our view, this 
phenomenon is apparently typical for the neural 
network system. Obviously, one should search for 
the same effect for human tuition process. Analysis 
of the PC experiment results allows to make 
conclusion about sufficiently high-quality 
processing the input signals of very different shapes 
and complexity by a photon echo based neural 
network. 
 
5 Conclusions 
Here we have considered a new approach to 
nonlinear modelling and prediction of chaotic 

processes during perception and tuition processes, 
which is based on two key functional elements. 
Besides using other elements of starting chaos 
theory method, the proposed approach includes the 
application of the concept of a compact geometric 
attractor, and one of the neural network algorithms, 
or, in a more general definition of a model of 
artificial intelligence. The meaning of the latter is 
precisely the application of neural network to 
simulate the evolution of the attractor in phase 
space, and training most neural network to predict 
(or rather, correct) the necessary coefficients of the 
parametric form of functional display. In result one 
could get possibilities to analyze and predict the 
nonlinear (for example, perception and tuition) 
dynamics based on the concept of geometric 
attractors, chaos theory methods and algorithms for 
quantum neural network simulation [10,21]. Using 
phase space information on the evolution of the 
perception and tuition processes in time and results 
of the of quantum neural network modelling 
techniques can be considered as one of the 
fundamentally new approaches in the construction 
of global nonlinear models of the most effective 
and accurate description of the structure of the 
corresponding attractor and in further optimal 
realizations of the perception and tuition processes. 
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