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Abstract: The presented study focused on the recognition of eight user activities (e.g. walking, lying, climbing
stairs) basing on the measurements from an accelerometer embedded in a mobile device. It is assumed that the
device is carried in a specific location of the user’s clothing. Three types of classifiers were tested on different sizes
of the samples. The influence of the time window (the duration of a single trial) on selected activities and methods
was investigated. A comparison with existing methods from the literature is presented.
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1 Introduction

The development of the systems recognizing human
actions basing on electronic sensors is related to the
area of ubiquitous processing and machine learning.
The problem has been studied since the late nineties,
when Foerster et al. published their work[4, 12]. Ap-
plications of the considered systems include medicine,
sport or defence-related issues[6, 8, 9]. The systems
are referred to as Human Activity Recognition (HAR)
systems. The idea behind it is to keep low computa-
tional complexity, which does not require server-side
processing and at the same time provide a high activity
recognition effectiveness, without any user-dependent
calibration. Additional requirements imposed on the
systems are handling both simple and complex user
actions, low power consumption, ease of use and fi-
nally - effectiveness not only in laboratory but also
in real environment. Selection of the input sensor (or
a set of sensors) for capturing the signals related to
human activity depends on the specific solution. The
most commonly used sensors in HAR systems are ac-
celerometers. Their advantages, as shown in[33], in-
clude relatively low power consumption comparing to
other sensors such as a microphone or a GPS receiver.
Other sensors mentioned in the literature are light sen-
sors, barometers, thermometers, compasses and Mois-
ture infra-red sensors, however, the most useful data
for activity recognition are provided by accelerome-
ters and microphones[5]. Another criterion for clas-
sification of considered systems is the destination of
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application. Systems can be designed as stand-alone
solutions or as extensions to existing systems. In this
work we focus on the second category, that is extend-
ing devices with HAR functionality. The most popular
devices are smart-phones due to their ease of use[7].
Notable examples of such systems are Kwapisz et
al.[8], Ravi et al.[9], Back et al.[1], Diatraea[3], The
Hearing Trousers Pocket[2], Scott at al.[11], iLearn of
the iPhone[10], MSP[5] and Dernbach et al.[6], which
are presented in more detail in the following section.
The systems vary in the number of recognized activity
classes, types of used classifiers, the process of learn-
ing and the recognition effectiveness.

In our study we focus on the extended set of ac-
tivities (7 common user activities considered in afore-
mentioned works supplemented by the turning activ-
ity). In addition to examining the classification meth-
ods utilised in the works, we also evaluated the in-
fluence of the time window size of a sample on the
recognition effectiveness. Studies of this kind have
not been conducted yet. It should be emphasized that
the size of the time window corresponds to the time
of a certain, basic movement within an activity. This
time depends not only on the activity, but also on the
person who is performing the action.

In the first part of the article selected methods
from the literature are presented. Next section covers
the test environment and a description of the experi-
ment. Finally, the obtained results are presented and
discussed.
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2 Background

Kwapisz et al.[8] used mobile devices running An-
droid system. The data was acquired with a three-axis
accelerometer. In the data gathering process twenty
nine people were engaged for performing measure-
ments under the supervision of the scientists. The set
of recognized activities consisted of running, walking,
walking upstairs and downstairs, sitting and standing
still. During the experiment, the participants were car-
rying the phone in the front pocket of the trousers.
The sampling rate was constant and set to 20 mea-
surements per second. The measurements of a single
activity were divided into ten seconds parts, imply-
ing that each part contained 200 measurements. The
feature vector consisted of the mean value, the stan-
dard deviation, the average distance from the mean
and the average time between the largest deviations -
the values were calculated separately for each axis. In
addition, the vector included the average resultant ac-
celeration and the distribution of values for each axis.
For the classification task the authors used a decision
tree, a logistic regression and a multi-layer percep-
tron network. Learning and evaluation involved ten-
fold cross-validation. The highest results were ob-
tained for the perceptron network and the effective-
ness reached 91.7%. For all of the methods the proper
recognition of walking on the stairs turned out to be
the most difficult.

Ravi et al.[9] for collecting the data used a HP
iPAQ mobile device supplemented by a prepared re-
search system consisting of an accelerometer, a bat-
tery and a Bluetooth transmitter. The purpose was
to recognize a similar set of actions as Kwapisz did,
but additionally it was extended with brushing teeth
and vacuuming. Notably, during the measurements
the data from the first and the last ten seconds were
discarded. It was done in order eliminate the sam-
ples, which could possibly be incorrectly labelled, as
the data labelling was performed in a semi-automatic
manner - the time slots, in which the given activity
was made were determined by using a stopwatch, and
then labelled by a script. The data was acquired at
the rate of 50 samples per second. In addition, the
measurements where grouped into windows of 256
samples with a 50% overlap between adjacent win-
dows, so that the second half of the current part of data
was also present in the following part. The computed
features included the mean value, the standard devia-
tion and the energy for each axis, and the correlations
between them in pairs. The feature vector was then
passed to the classifier. The authors utilised tables and
decision trees, k-nearest neighbours classifier, SVM
and naive Bayesian classifier. The best results were
obtained for a voting setup, which achieved the over-
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all prediction correctness of over 90%. The excep-
tion was the case when the learning and test sets were
collected by different persons, where Boosted SVM
achieved highest effectiveness of 73.33%.

Back et al.[1] modelled a more general case - the
positions of the sensors were not fixed and several lo-
cations were allowed (pockets in trousers or a shirt,
clipped to a belt, backpack or even held in hand). In
order to reduce the impact of the location of the phone
the second order Butterworth filter was used. In this
case, however, the number of recognized user actions
was limited to three - standing still, walking and run-
ning. Sampling was performed at the rate of 100 scans
per second and the data was grouped in 2-second time
windows. Therefore each data packet consisted of 200
measurements. Both in the supervised and unsuper-
vised measurements the effectiveness of the presented
method reached 100% for recognition of standing and
walking and 95% for running.

The authors of DiaTrace system[3], apart from
activity recognition, put also effort in assuring ease
of use. The provided methods and algorithms en-
abled recognition of such activities as walking, jump-
ing, running, cycling and driving a car. Additionally
considered activities were resting and being active in
a different way than mentioned above. The first in-
cluded sitting and sleeping, while the second could be
related to activities such as cleaning, gardening or oth-
ers. The accelerometers used in the experiments had
20Hz sampling rate. However, the actual sampling
was dependent on the rate of acceleration changes.
Therefore, the read data were later pre-processed by
applying interpolation. DiaTrace enabled identifica-
tion of the activity with the effectiveness exceeding
95% in the case of locating the phone in the front
pocket of trousers. For other device locations sys-
tem capabilities to correctly identify the activities de-
creased, for example riding a bicycle was confused
with driving a car.

The Hearing Trousers Pocket project[2] is a con-
tinuation of DiaTrace system[3]. The system in-
creased the effectiveness of the activity recognition
and also extended the set of recognized activities. To
achieve this, a microphone was used in order to record
sounds from surrounding environment. The study also
investigated the impact of the mobile device’s location
on the amplitude of the sound captured by the micro-
phone. The value of 100% was assigned to the sig-
nal amplitude received from a source within a distance
of 20 cm from the phone without any obstacles. The
phone placed in a bag or a backpack received the sig-
nal magnitude of 66%. In contrast, the mobile device
located in the trousers pocket was able to receive a sig-
nal at the level of 100%. This, however, was possible
only if the person carrying the phone remained mo-
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tionless. Otherwise, the scratching between the mi-
crophone and the clothing material introduced signif-
icant noise to the signal. For this reason, the possibil-
ity of using the microphone was limited. In the first
instance it was decided to extend the set of the con-
sidered activities with working at the computer, which
previously had been interpreted as resting. In this case
the microphone was able to record the sound of mouse
clicks and keystrokes. In the next step the microphone
was used to distinguish between the cycling activity
and driving a car. During the recognition process, the
extended DiaTrace system generated separate feature
vector for each signal, which was then classified by a
classifier specific for the signal. Thereafter, the re-
sults of the first row of classifiers where processed
by another classifier, which made the final decision
by considering the context. The latter assumed exclu-
sion of certain activities, which can not directly follow
each other. The sampling frequency for the accelera-
tion was 32Hz, and 8kHz for the sound. The chosen
classifier was the decision tree due to the high effi-
ciency and relatively low computational complexity.
The Data from the sensors were grouped into packets
of 4096 samples before the feature vectors were eval-
uated. Furthermore, the sound signal was considered
in the recognition process only if the amplitude was
high enough, otherwise the decision was made bas-
ing solely on the accelerometer. Frequency spectra of
both signals were obtained using a fast Fourier trans-
form. Eventually, the running system ended up using
25% of the CPU. The effectiveness of the recognition
combining both an accelerometer and a microphone,
has not been stated in the work.

11 AccApp

MEASURE SETTINGS ADVANCED

Figure 1: Screenshot of measurement capturing appli-
cation - AccApp.
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Table 1: Number of collected samples for each activ-
ity.

Activity Number of samples
standing 36363
walking 65661
sitting 74584
upstairs 22074
lying 41138
turning 20275
running 34111
downstairs 16991

The iLearn of the iPhone[10] system used an
iPhone with a three-axis accelerometer with sampling
frequency of 200 Hz and a Nike+ iPod Sport Kit
(mounted in the lining of a shoe). The data from
the footwear were sent approximately once per sec-
ond. The Vector consisted of 124 features describ-
ing the sample. The obtained features included the
mean value, the standard deviation, the minimum and
maximum value, the difference between the lowest
and highest value and the difference between the low-
est and the highest measurement. These values were
evaluated separately for each of the three axes within
a one-second time window. In order to evaluate the
frequency, the discrete Fourier transform was used,
calculated every second at 256 points within a time
window of 1,25 seconds. The vector also included
the energy calculated over the first ten components of
the transform and the energy of each component, as
well as the highest component’s value and index. The
values were also determined separately for each axis.
For the Nike+ sensor, in turn, full byte stream was put
into the feature vector since the device’s data format
is not documented and the meaning of the data could
not be established by observation[10]. In addition,
since the Nike+ sensor transmits the data only when
the user moves his feet, in case of lack of data the
value was set 0. For this reason another feature was
also included in the vector, which was set the value of
1 when the Nike+ sensor sent the data in a given time
window, and O otherwise. Eventually, the average ef-
fectiveness of 99.48% was achieved, with the standard
deviation of 0.91%. The second experiment assumed
selecting the measurements of a single user for the test
set, and using measurements of all other user for train-
ing the classifier. The average effectiveness obtained
in this case reached 97.4% with the standard deviation
of 4.05%. The results allowed the authors to conclude,
that it is possible to develop a model enabling efficient
recognition of activities without a need of training the
system in case of appearance of a new user.
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Table 2: Results acquired for each of the classifiers.

Sample size k-NN _ SVM _ Decision tree. .
Accurancy | Precision | Accurancy | Precision | Accurancy | Precision
10 98.15% 92.60% 98.45% 93.78% 97.53% 90.12%
20 98.56% 94.23% 98.95% 95.82% 98.09% 92.37%
30 98.70% 94.82% 99.10% 96.42% 98.38% 93.54%
40 98.78% 95.10% 99.23% 96.92% 98.41% 93.65%
50 98.83% 95.32% 99.23% 96.91% 98.42% 93.68%
60 98.87% 95.47% 99.28% 97.12% 98.60% 94.38%
70 98.86% 95.43% 99.19% 96.78% 98.60% 94.39%
80 98.88% 95.51% 99.30% 97.21% 98.48% 93.92%
90 98.78% 95.12% 99.26% 97.03% 98.43% 93.74%
100 98.82% 95.28% 99.27% 97.08% 98.50% 94.00%

3 Test environment and experiments

The analysis of the systems presented above lead us to
conducting a study on the impact of the length of the
sample considered in the classification on the recogni-
tion effectiveness. In the aforementioned works, high
effectiveness rates were achieved by various simplifi-
cations. Assumption of training the system for each
new user, made by some authors, significantly limits
its application. Training of the system is necessary
if the time of the activities is assumed to be constant
(while an older person performs an action slower than
a young person), which, unfortunately, is a common
case, therefore declining the systems’ reliability.

In our work we focused on the data obtained from
a smart-phone accelerometer located in the front or
side pocket of trousers. The considered activities
were walking, running, sitting, lying, standing still,
turning, walking up and downstairs. The choice of
the set of activities was meant to comply with ex-
isting works in order to enable a direct comparison.
For the same reason the accelerometer was the sen-
sor chosen. The measurements were collected with
the authors’ application for data acquisition (AccApp,
Figure 1) running on Sony Xperia ST21i with An-
droid Ice Cream Sandwich 4.0.4 and equipped with
a three-axis accelerometer Bosch BMA250, with a
measurement range of 2g ( where g is the accelera-
tion due to free fall) and a resolution of approximately
0,0769m/s%. The sampling was performed at the fre-
quency of 10Hz.

The measurements were collected by 8 people on
at least 2 different days. In addition, the activities
were measured in different environments, which was
dependent on the person and the date of the measure-
ment session. Among the participants there were 6
men and 2 women. The youngest participant was 12
years old and the oldest was 53. Each activity was
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recorded for at least 3 minutes. The total number of
collected samples was presented in Table 1.

For further evaluation the following classifiers
were selected: k-NN, SVM and decision tree as the
most common in the existing systems. After training
the classifiers, they were deployed into a mobile
application, where the results were recorded for eval-
uating the system. Two measures were considered:
accuracy and precision defined as follows:

_ TP+TN
aceuracy = TpITN{FP{FN

.. TP
Precision = rpirp

where:

TP - True Positive
TN - True Negative
F P - False Positive
F'N - False Negative

4 Results and Evaluation

The test procedure included evaluation of recognition
effectiveness for the following sample sizes: {10, 20,
30, ..., 100}. The feature vector consisted of 12 val-
ues: the minimum and maximum values, the mean
value and the standard deviation calculated for accel-
eration over each axis. The results where presented in
Table 2.

In case of the k-NN classifier the value of k was
set to 5, basing on the previous experiments[14]. The
highest result was achieved for 80 samples. However,
8 second time window is hard to accept in real envi-
ronment, since some of the activities (turning, mak-
ing small steps on the stairs) tend to be performed in
much shorter time. Therefore we assume 20 samples
as a best solution, resulting in a precision of 94.23%
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Table 3: Classification results for a decision tree with packets of 70 samples. The Ids represent the activities as
follows: 1- standing still, 2 - walking, 3 - sitting, 4 - walking upstairs, 5 - lying, 6 - turning, 7 - running, 8 - walking

downstairs.

Id 1 2 3 4 5 6 7 8 True False | Result

1 2555 | 5 1 0 0 19 0 0 2555 | 25 99.03%
2 3 4298 | 43 113 |0 3 32 148 | 4298 | 342 | 92.63%
3 9 21 5189 | 16 26 17 0 12 | 5189 101 98.09%
4 0 156 | 26 1165 | 2 0 0 141 | 1165 | 325 78.19%
5 0 0 26 6 2887 | 0 1 0 2887 | 33 98.87%
6 22 4 15 0 0 1387 | O 2 1387 | 43 96.99%
7 0 26 8 1 0 0 2381 | 4 2381 39 98.39%
8 1 178 | 24 114 |0 0 2 801 | 801 319 71.52%
Total 20663 | 1227 | 94,39%

and accuracy of 98.56%.

For the SVM classifier, the best result was also
achieved for the packets of 80 samples, but a similar
outcome was provided by 60 samples. Nevertheless,
again considering the durations of some activities, the
number of 20 samples was selected for further ex-
periments. Moreover, none of the 100 iterations (for
each of the ten tests, ten-fold cross-validation was per-
formed) resulted in precision rate of 98%.

The tests of the decision tree initially showed an
increase of recognition effectiveness along with num-
ber of samples. However, starting from the value of
80, the effectiveness dropped. The highest accuracy
and precision values were 98.60% and 94.39%, re-
spectively. In Table 3 detailed recognition results of
this setup were presented. Analysis of the results leads
to a conclusion, that the hardest activities to recog-
nize were walking downstairs, walking upstairs and
walking. The three activities were most often con-
fused with each other, which was also observed in the
case of k-NN and SVM classifiers. The highest single
result was acquired for standing still with 99.03% of
properly classified measurement packets.

5 Summary and Future Works

In the presented research we show that the choice
of k-NN, SVM and decision tree classifiers allows
to achieve high recognition effectiveness. In addi-
tion, we show that using only an accelerometer with
sampling frequency of 10Hz is sufficient for activity
recognition with high accuracy and precision, which
is important in terms of limiting power consumption.

The results achieved by the tested methods do not
differ significantly. The highest results were achieved
for a fairly long time window of seven to eight sec-
onds, which is unacceptable due to the nature of the

ISBN: 978-960-474-379-7

134

considered activities. We therefore conclude, that the
most reasonable choice is a two second time window,
corresponding to a packet of 20 samples. For this
value, the precision and accuracy of the SVM clas-
sifier reached 95.82% and 98.95%, respectively. We
state that using the time window of 2 seconds enables
reasonably effective activity recognition with simul-
taneous non-ignoring of short activities. However, the
studies showed that using greater time windows often
enables achieving higher results in the test environ-
ment. Future work will include extending the system
with a solution enabling effective activity recognition
regardless of the phone location. Previous studies of
this problem resulted in either low effectiveness or a
significant reduction of the number of recognized ac-
tivities.
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