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Abstract: Paper is devoted to an employing a variety of techniques for characterizing dynamics of the nonlinear 
neuro-physiological systems identifying the presence of chaotic elements. To analyze measured time histories 
of the neurophysiological system responses the phase space of these systems was reconstructed by delay 
embedding. The mutual information approach, correlation integral analysis, false nearest neighbour algorithm, 
Lyapunov exponent's analysis, and surrogate data method are used for comprehensive characterization. The 
correlation dimension method provided a low fractal-dimensional attractor thus suggesting a possibility of the 
existence of chaotic behavior. Statistical significance of the results was confirmed by testing for a surrogate 
data. We present the concrete numerical results regarding the ensembles fluctuations of spontaneous 
Parkinsonian tremor of a few patients. 
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1 Introduction 

The task of studying the dynamics of chaotic 
dynamical systems arises in many areas of science 
and technology. We are talking about a class of 
problems of identifying and estimating the 
parameters of interaction between the sources of 
complex (chaotic) oscillations of the time series of 
experimentally observed values. Such problems 
arise in physics, biology, medicine, neuroscience, 
geophysics, engineering, etc.  
Many studies in the cited and other fields of science 
and technique have appeared, where a chaos theory 
was applied to a great number of dynamical systems 
[1-16]. These studies show that chaos theory 
methodology can be applied and the short-range 
forecast by the non-linear prediction method can be 
satisfactory. Time series of the dynamical variables 
are however not always chaotic, and chaotic 
behaviour must be examined for each time series. In 
series of papers it has been developed an effective 
version of using a chaos theory method and non-
linear prediction approach to studying chaotic 
behaviour of the different dynamical systems. In our 
opinion, using these methods has very attractive 
perspectives in medicine and physiology (neuro- 
physiology). As example, let us underline that an 

ability to provide interaction between the different 
areas of the brain by using a multi-channel 
electroentselophalograms helps determine the 
location of the foci of abnormal activity in brain of 
patients with epilepsy. Many diseases of the brain, 
including epilepsy, Parkinson's disease, are 
associated with abnormal synchronization large 
groups of neurons in the brain. Particular attention is 
paid to a non-linear signals as obvious is a typicality 
of a chaotic behavior of nonlinear systems. 
    This paper is devoted to an employing a variety 
of techniques [16-21] for characterizing dynamics of 
the nonlinear neuro-physiological systems 
identifying the presence of chaotic elements. To 
analyze measured time histories of the 
neurophysiological system responses the phase 
space of these systems was reconstructed by delay 
embedding. The mutual information approach, 
correlation integral analysis, false nearest neighbour 
algorithm, Lyapunov exponent's analysis, and 
surrogate data method are used for comprehensive 
characterization. The correlation dimension method 
provided a low fractal-dimensional attractor thus 
suggesting a possibility of the existence of chaotic 
behavior. Here we also present preliminary 
numerical results regarding the ensembles 
fluctuations of spontaneous Parkinsonian tremor of 
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a few patients. To implement this program, we 
follow the procedure set out in detail in [3]. 
 
 
2.  New Method: Testing for chaos in 
time series  
 
 
2.1  Data 
Many diseases of the nervous system, including 
epilepsy and Parkinson's disease associated with 
abnormal synchronization large groups of neurons 
in the brain. A sign of Parkinson's disease is the 
synchronization of neurons in the ranks of the 
thalamus and basal ganglia. However, the functional 
role of synchronization in the generation of 
Parkinsonian tremor (involuntary limb regular 
oscillations with frequencies ranging from 3 to 6 
Hz) remains a matter of debate (see [13]).  
Standard therapy with no effect of medication - it's a 
deep electrical deep brain stimulation (DEBS) at 
high frequencies (above 100 Hz). Standard DEBS 
has been found empirically, the mechanism of its 
effect has not yet been elucidated, and it has 
restrictions, such as those associated with side 
effects. Confirmation that the tremor caused 
synchronous neuronal activity in nuclei of the 
thalamus and basal ganglia, would presumably 
result in a softer therapies with fewer side effects. In 
this connection of the relevance of the problem of 
determining the nature of the links between different 
areas of the brain and the muscles of patients. 
    The ensembles intervals of spontaneous 
Parkinsonian tremor three patients have been 
investigated in [13]. Fluctuations in the limbs were 
presented accelerometer signals recorded at the 
sampling rate of 200 Hz and 1 kHz. Information 
about the activity of the brain was presented 
recordings of local potentials (LP) of the four deep 
electrodes implanted in the thalamus and basal 
ganglia.  
The data were obtained at the Department of 
Stereotactic and Functional Neurosurgery, 
University of Cologne and the Institute of 
Neurosciences and Biophysics, Research Center 
Juelich (Germany). Accelerometer signals and the 
LP with one of the electrodes during heavy 
Parkinsonian tremor are shown in Fig. 1.  
The more detailed data can be found in [13] (and 
refs. therein). According to [13], the main 
conclusion is as the tests also showed that linear 
techniques do not reveal the activity of the thalamus 
and basal ganglia on the limb. 
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Fig. 1. Spontaneous interval Parkinsonian tremor 
(total duration 0.1x800) (a, b) and the accelerometer 
signal LP with one of the electrodes in arbitrary 
units (only the first 8 s shown); 

Besides, it has been  found that there are the 
fluctuations in the accelerometer signal, which 
correspond to a distinct peak in the power spectrum 
at a frequency of 5 Hz. The statistical significance 
of the findings has been confirmed by tests on 
surrogate data.  
 
 
2.2  Testing for chaos in time series 
On order to make testing for chaos in time series, 
we use the methodology [3,14-18]. As usually, let 
us consider scalar measurements s(n)=s(t0+ 
n∆t) = s(n), where t0 is a start time, ∆t is time step, 
and n is number of the measurements. In a general 
case, s(n) is any time series (f.e. atmospheric 
pollutants concentration). As processes resulting in 
a chaotic behaviour are fundamentally multivariate, 
one needs to reconstruct phase space using as well 
as possible information contained in s(n). Such 
reconstruction results in set of d-dimensional 
vectors y(n) replacing scalar measurements. The 
main idea is that direct use of lagged variables 
s(n+τ), where τ is some integer to be defined, results 
in a coordinate system where a structure of orbits in 
phase space can be captured. Using a collection of 
time lags to create a vector in d dimensions,  
 
y(n)=[s(n),s(n + τ),s(n + 2τ),..,s(n +(d−1)τ)],  
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the required coordinates are provided. In a nonlinear 
system, s(n + jτ) are some unknown nonlinear 
combination of the actual physical variables. The 
dimension d is the embedding dimension, dE. 
 
 
2.3 Time lag 
The choice of proper time lag  is important for the 
subsequent reconstruction of phase space.  If  τ is 
chosen too small, then the coordinates s(n + jτ),  
s(n +(j +1)τ)  are so close to each other in numerical  
value that they cannot be distinguished from each 
other. If τ is too large, then s(n+jτ),  s(n+(j+1)τ) are  
completely independent of each other in a statistical 
sense. If τ is too small or too large, then the 
correlation dimension of attractor can be under-or 
overestimated. One needs to choose some 
intermediate position between above cases. First 
approach is to compute the linear autocorrelation 
function CL(δ) and to look for that time lag where 
CL(δ) first passes through 0. This gives a good hint 
of choice for τ at that s(n+jτ) and s(n+(j +1)τ) are 
linearly independent.  
    It’s better to use approach with a nonlinear 
concept of independence, e.g. an average mutual 
information. The mutual information I of two 
measurements ai and bk is symmetric and non-
negative, and equals to 0 if only the systems are 
independent. The average mutual information 
between any value ai from system A and bk from B 
is the average over all possible measurements of 
IAB(ai, bk). Usually it is necessary to choose that τ 
where the first minimum of I(τ) occurs. 
 
 
2.4 Embedding dimension 
The goal of the embedding dimension determination 
is to reconstruct a Euclidean space Rd large enough 
so that the set of points dA can be unfolded without 
ambiguity. The embedding dimension, dE, must be 
greater, or at least equal, than a dimension of 
attractor, dA, i.e. dE > dA. In other words, we can 
choose a fortiori large dimension dE, e.g. 10 or 15, 
since the previous analysis provides us prospects 
that the dynamics of our system is probably chaotic. 
The correlation integral analysis is one of the widely 
used techniques to investigate the signatures of 
chaos in a time series. The analysis uses the 
correlation integral, C(r), to distinguish between 
chaotic and stochastic systems. According to [4], it 
is computed the correlation integral C(r).  If the time 
series is characterized by an attractor, then the 
correlation integral C(r) is related to the radius r as  

r
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→
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where d is correlation exponent. If the correlation 
exponent attains saturation with an increase in the 
embedding dimension, then the system is generally 
considered to exhibit chaotic dynamics. The 
saturation value of correlation exponent is defined 
as the correlation dimension (d2) of the attractor (see 
details in refs. [3,4]). 
     Another method for determining dE comes from 
asking the basic question addressed in the 
embedding theorem: when has one eliminated false 
crossing of the orbit with itself which arose by 
virtue of having projected the attractor into a too 
low dimensional space? In other words, when points 
in dimension d are neighbours of one other? By 
examining this question in dimension one, then 
dimension two, etc. until there are no incorrect or 
false neighbours remaining, one should be able to 
establish, from geometrical consideration alone, a 
value for the necessary embedding dimension. Such 
an approach was described by Kennel et al. [7]. In 
dimension d each vector y(k) has a nearest 
neighbour yNN(k) with nearness in the sense of some 
distance function. The Euclidean distance in 
dimension d between y(k) and yNN(k) we call Rd(k): 
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Rd(k) is presumably small when one has a lot a data, 
and for a dataset with N measurements, this distance 
is of order 1/N1/d. In dimension d + 1 this nearest-
neighbour distance is changed due to the (d + 1)st 
coordinates s(k + dτ) and sNN(k + dτ) to 
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  We can define some threshold size RT to decide 
when neighbours are false. Then if 
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(the nearest neighbours at time point k are declared 
false).  
Kennel et al. [7] showed that for values in the range 
10 ≤ RT ≤ 50 the number of false neighbours 
identified by this criterion is constant. In practice, 
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the percentage of false nearest neighbours is 
determined for each dimension d. A value at which 
the percentage is almost equal to zero can be 
considered as the embedding dimension. 
 
2.5 Nonlinear prediction model 
As usually, the predictability can be estimated by 
the Kolmogorov entropy, which is proportional to a 
sum of positive Lyapunov exponents. The spectrum 
of the Lyapunov exponents is one of dynamical 
invariants for non-linear system with chaotic 
behaviour. The limited predictability of the chaos is 
quantified by the local and global Lyapunov 
exponents, which can be determined from 
measurements.  
The Lyapunov exponents are related to the 
eigenvalues of the linearized dynamics across the 
attractor. Negative values show stable behaviour 
while positive values show local unstable behaviour. 
For chaotic systems, being both stable and unstable, 
Lyapunov exponents indicate the complexity of the 
dynamics. The largest positive value determines 
some average prediction limit. Since the Lyapunov 
exponents are defined as asymptotic average rates, 
they are independent of the initial conditions, and 
hence the choice of trajectory, and they do comprise 
an invariant measure of the attractor. An estimate of 
this measure is a sum of the positive Lyapunov 
exponents. The estimate of the attractor dimension 
is provided by the conjecture dL and the LE are 
taken in descending order. The dimension dL gives 
values close to the dimension estimates discussed 
earlier and is preferable when estimating high 
dimensions. To compute the Lyapunov exponents, 
we use a method with linear fitted map,  although 
the maps with higher order polynomials can be used 
too. 
 
2.6 Final remarks 
 
Summing up the review, it is useful to summarize 
the key points of the investigating system for a 
chaos availability and wording the forecast model 
(evolution) of the system. The above methods are 
just part of a large set of approaches (see our 
versions in [16-24]), which is used in the 
identification and analysis of chaotic regimes in the 
time series. Generally speaking, the short technique 
of processing any time series can be formulated as 
follows:  
a) check for the presence of a chaotic regime (the  
Gottwald-Melbourne’s test; the method of 
correlation dimension);  
b) reducing the phase space (choice of the time 

delay, the definition of the embedding space by 
methods of correlation dimension algorithm and 
false nearest neighbor points);  
c) determination of the dynamic invariants of a 
chaotic system (global Lyapunov exponents);  
d) forecasting evolution of the dynamical 
system. 
Algorithm for calculating the characteristics of the 
chaotic time series and use it to forecast the non-
linear method is presented in Fig.2 
 

I. Preliminary conclusion about the presence of 
chaos 
↓ 

1. The Gottwald-Melbourne test: 
K → 1 - chaos 

↓ 
2. The Fourier expansion 
irregular change - chaos 

↓ 
II. The phase space 

↓ 
3. Computation of the time delay τ using the 
autocorrelation function or the mutual information 

↓ 
4. Determining embedding dimension dE by the 

method of the correlation dimension or algorithm 
of the false nearest neighbor points 

↓ 
III. Forecasting 

↓ 
5. Computation of the global Lyapunov dimension 
λα; determination of the Kaplan-York dimension 

dL and average limits of predictability Prmax 
↓ 

6. Determining the number of nearest 
neighboring points NN for the best 

forecast results 
↓ 

7. Application of a nonlinear prediction method 
 
Fig. 2. Algorithm for computation of the 
characteristics of the chaotic time series and 
application of the non-linear prediction method to it 
[24]. 
 
 
The most important stage of this technique are the 
first two points, as the accuracy of the recovery will 
depend on the dimension of the attractor chaotic 
classification system and forecast its evolution. 
Therefore it is preferable not to use any one method, 
and several compare results. There is another very 
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important aspect related to the invariants of the 
system. The fact is that if the aggregate and dynamic 
topological invariants (see details in [1-3]), the two 
systems are identical, then we can say that the 
evolution of these systems are also subject to the 
same laws. Further, if one of these systems is known 
differential equation (or system of equations) 
describing its dynamics, it can be assumed that an 
analogous equation (or system) and the other 
describes the evolution of the system. 
 

 
3. Results and conclusions 
In our studying we have analyzed the time series of 
of the LP signal  using methodology from chaos 
theory. Table 1 summarizes our preliminary results 
for the time lag calculated for first 800 values of 
time series of the LP signal. The values, where the 
autocorrelation function first crosses 0.1, can be 
chosen as τ, as an attractor cannot be adequately 
reconstructed for very large values of τ.  
 
 Table 1. Time lag (τ), correlation dimension  (d2), 
embedding dimension (dE), Kaplan-Yorke 
dimension (dL), average limit of predictability 
(Prmax) and and the Gottwald-Melbourne chaos 
availability parameter   
 

τ d2 dE λ1 
9 5.61 6 0.0143 
λ2 dL Prmax K 

0.0039 4.07 8 0.63 
 

     
Let us note that the Kaplan-Yorke dimensions, 
which are also the attractor dimensions, are smaller 
than the dimensions obtained by the algorithm of 
false nearest neighbours.  
Our results show that the time series is resulted from 
the low-dimensional chaos. The embedding 
dimension for the time series is dN = 6. Also, the 
correlation dimensions were calculated using the 
algorithm of Grassberger and Procaccia. It is 
noteworthy that the nearest integer above the 
saturation value provides the minimum or optimum 
embedding dimension for reconstructing the phase-
space or the number of variables necessary to model 
the dynamics of the system. This concept can be 
applied, since the embedding dimension determined 
by both the correlation dimension method and the 
algorithm of false nearest neighbours are identical. 
In this case, the number of variables necessary to 
model the dynamics of the system equals six 

(preliminary estimate).  
 
From the other hand, the analysis of correlation 
dimension provides only the number of variables, 
but not their physical meaning. At last, let us 
comment regarding the Lyapunov exponents.  
Fistly, our  data show that the Kaplan-Yorke 
dimensions, which are also the attractor dimensions, 
are smaller than the dimensions obtained by the 
algorithm of false nearest neighbours. There are the 
two positive λi for the time series under 
consideration.  
Since the Lyapunov exponents determine 
conversion rate from a sphere into an ellipsoid, then 
the smaller sum of positive exponents results in the 
more stable dynamical system and, correspondingly, 
the higher predictability. The further work in 
application of the chaos theory methods to neuro-
physiological problems requires the availability of 
reliable empirical data and the corresponding time 
series of measured values.  
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