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Abstract: - Pyrolysis is a fundamental step in thermochemical processes of biomass materials, so a suitable 

kinetic model is an essential tool to predict the evolution of the resulting products of reaction. However, many 

difficulties arise in modelling this process step due to the very high number of the involved reactions. In this 

work, a new double Gaussians distributed activation energy model was applied in fitting the experimental data 

of olive residue pyrolysis obtained by thermogravimetric analysis. 2-DAEM formulation considers two sets of 

parallel reactions occurring and sharing the same pre-exponential factor, but showing different distributions of 

the activation energy, described by two separate Gaussian distributions which, in turn, grasp the two pyrolysis 

steps with a high accuracy. Since it is well known that in fitting all the kinetic parameters the pre-exponential 

factor results high correlated with the activation energy, the former parameter was fixed. 
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1 Introduction 
The environmental impact of fossil fuel exploitation 

is promoting the development of energetic 

conversion processes of renewable energy sources 

such as biomass. The use of biomass helps to reduce 

the dependence from fossil fuels as well as the 

carbon dioxide emissions responsible for the 

greenhouse effect, due to its CO2 neutrality [1]. 

Microalgae have been identified as one of the most 

promising biomass source of energy [2]. In 

comparison with traditional terrestrial crops, 

microalgae do not require arable lands and can be 

produced all year round at high growth rate with a 

reduced use of fertilizers, pesticides and water [3]. 

In particular, microalgae have been appointed as 

ideal biodiesel feedstock in virtue of their high 

lipids content up to 80% of dry biomass mass [4]. 

Microalgae biomass can be converted into energy 

by means of thermochemical processes such as 

pyrolysis, gasification and combustion. Pyrolysis 

represents one of the most important steps in all 

these processes, so understanding and modeling its 

mechanism are a fundamental prerequisite to predict 

the behavior of the biomass during the whole 

process and thus to design a suitable reactor. During 

pyrolysis, biomass is decomposed into volatiles, 

which constitute the larger part of the pyrolysis 

products, and into a solid residue, the char. Volatiles 

consist of light gaseous (CH4, CO2, CO, C2H4 and 

others) and condensable species (tar, with no 

predictable composition). Moreover, pyrolysis is a 

complex process whose kinetic parameters are 

difficult to obtain through models due to by the high 

number of products, not easily identifiable in 

experiments. Pyrolysis can be generally described as 

a two-step process [5]: a primary step occurring in a 

lower temperature range, where light gas and tar are 

released, and a secondary one, at higher 

temperatures, where the release of light gas 

continues and the aromatization of the biomass 

macromolecules leads to char production. A large 

number of kinetic models were proposed in the 

literature [6,7]. Pyrolysis can be modeled with a 

detailed kinetic model that takes into account the 

evolution of a selected number of species or, as in 

this work, with a global kinetic mechanism that 

considers the evolution of a unique species, defined 

as CxHyOz, representing all the volatiles.  

In this work, the distributed activation energy model 

(DAEM) is used to model the pyrolysis of the 

microalgae Chlorella vulgaris. The DAEM assumes 

that a series of first-order parallel reactions occurs, 

sharing the same pre-exponential factor and 

characterized by a continuous distribution of the 

activation energies; in the literature different forms 

of activation energy distribution can be found: 

Gaussian [8], Weibull [9] or Gamma [10] 

distributions; in this study the Gaussian one was 

adopted.  
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The DAE model has been extensively applied for 

modeling algae pyrolysis with good results as 

reported in literature [11,12].  

However, one of the major problems arising in the 

DAE model application is the interpretation of 

pyrolysis as a single step process, because its 

classical formulation is not able to distinguish 

between the different pyrolysis steps. To circumvent 

such a limitation, in a previous work focused on 

coal pyrolysis, the authors proposed an extended 

model able to catch the kinetic parameters of both 

the steps by including a second Gaussian 

distribution [13].  This multi-Gaussian approach 

was also used by Zhang et al. [14] to model biomass 

pyrolysis and gasification considering different 

distribution of activation energy for each class of 

reactions that share the same pre-exponential factor. 

In this paper the multi-Gaussian model is applied to 

predict the behavior of Chlorella vulgaris 

microalgae and the results are compared with those 

obtained with the single DAE model. Both the 

models were used in interpreting the experimental 

data obtained by thermogravimetric analysis (TGA). 
 

2 Mathematical model 
The equation that represents the total volatile 

yield as a function of time/temperature for the 

original DAE model is: 

� exp �- ��	 � exp	�- �
�
� dT
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where v and v* are the volatile yield  and the total 

amount of volatiles, respectively, k0 is the pre-

exponential factor, α the heating rate and T the 

temperature. f(E) is the distribution curve of the 

activation energy E which satisfies the condition: 
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In this work, as already said, the f(E) function  is 

modeled as Gaussian distribution: 
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where E0 is the mean activation energy and σE the 

corresponding standard deviation. The focus of the 

analysis is to estimate E0, σE and k0 from recorded 

experimental data. However, as already noticed in 

literature [15], regression algorithms show a strong 

correlation between k0 and E0 leading to a non-

uniqueness of kinetic parameters that is called 

compensation effect [16]. So to overcome this 

drawback, one choice is to fix k0 at a defined value, 

that must be consistent with the transition-state 

theory which indicates values in the range 10
11

 - 

10
16

  s
-1

[14]. A value of 10
13

 s
-1

 was chosen for this 

kind of biomass [12]. 

In the multi-Gaussian model two distributions of 

activation energy, sharing the same pre-exponential 

factor are considered, so the classical DAEM 

equation becomes: 
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where fi(E) are Gaussian functions related to the two 

considered pyrolysis steps, defined in the form: 
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and w is a parameter ranging between 0 and 1 which 

weights the occurrence of the two reaction classes. 

This parameter describes how many volatiles are 

released during the primary and the secondary 

pyrolysis step. The value of w would be 0 if all the 

volatiles were produced during the secondary phase 

of pyrolysis and 1 if they were totally released 

during the primary one. In this model, the 

parameters to be estimated are 5: two mean 

activation energies E01 and E02 coupled with two 

standard deviations σE1 and σE2, each couple of these 

parameters characterizing the single Gaussian 

distribution, and the weighting parameter w.   

To fit the experimental data, a C++ program was 

written and run into the ROOT environment [17], an 

object-oriented data analysis program, using the 

routine MINUIT for the minimization of the 

function selected for the fitting: 

2 � ∑ +456 ( 4�75�. 859�                             (6) 

where N is the number of data points,  and  yi
s
 and 

y(Ti) are the experimental and the calculated data, 

respectively. In each step of the minimization, the 

DAE equation is integrated numerically with the 

method of Gaussian quadrature. 

 

 

3 Experimental section 
Chlorella vulgaris cultures were grown in BG-11 

medium (NaNO3: 1.50 g L
-1

, K2HPO4: 0.04 g L
-1

, 

MgSO4·7H2O: 75.0 mg L
-1

, CaCl2·2H2O: 36.0 mg L
-

1
, citric acid (C6H8O7·1H2O): 6.0 mg L

-1
, ferric 

ammonium citrate (C12H22FeN3O14): 6.0 mg L
-1

, 

Na2CO3: 20.0 mg L
-1

, Na-EDTA: 1.0 mg L
-1

, 

H3BO3: 2.86 mg L
-1

, MnCl2·4H2O: 1.81 mg L
-1

, 

ZnSO4·7H2O: 0.22 mg L
-1

, Na2MoO4·2H2O: 0.39 

mg L
-1

, CuSO4·5H2O: 79.0 µg L
-1

, Co(NO3)2·6H2O: 

49.4 µg L
-1

). All the cultures were conducted in 5.0 

L flat-plate photobioreactors maintained at 25 ± 1 

°C and exposed to a light intensity of 150 mmol 

photons m
-2

 s
-1

 provided by phytostimulant 

fluorescent tubes, with a light\dark photoperiod of 

12:12 h.   
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In Table 1 and Table 2 the properties of the 

Chlorella vulgaris biomass are reported. The 

proximate analysis was performed by TG analysis 

according to the ASTM D5142/02 method. The 

elemental composition was carried out using a 

EA3000 (Eurovector) elemental analyzer. To 

measure the biochemical composition of the 

biomass, the lipids were extracted according to the 

protocol described by Bligh and Dyer [18] and the 

lipids content was determined gravimetrically by 

evaporating the solvents under vacuum and drying 

the extract for 4 h at 80°C. Protein content was 

approximated by multiplying elemental nitrogen 

concentrations by a factor of 6.25 [19]. 

Table 1: Chemical and physical properties of 

Chlorella vulgaris biomass. 

 

Table 2: Biochemical composition of Chlorella 

vulgaris biomass. 

 

 
The pyrolysis experimental tests were performed 

with a thermogravimetric analyzer SDT Q600 (TA 

Instruments). Before the TG analysis, the biomass 

was dried, grounded and sieved to select the 

particles with diameter ranging from 50-100 µm, in 

order to avoid diffusional intraparticle effects. Small 

samples, approximately 7 mg, were used to ensure 

uniform heating and to minimize the transport 

phenomena resistance through the sample bed in the 

crucible. For each experimental tests, the samples 

were heated in a N2 inert atmosphere, with a N2 flux 

of 100 ml/min, at 10, 20 and 40 K/min up to a 

temperature of 1223 K and then maintained at this 

temperature for 10 min. 

 

4 Results and discussion 

 

In Fig. 1 and in Fig. 2 the TG and DTG curves of 

the microalgae pyrolysis are reported for the three 

heating rates. 

 

 
Fig. 1: TG curves of the microalgae Chlorella 

vlgaris varying the heating rate. 

 

 
Fig. 2: DTG curves of the microalgae Chlorella 

vulgaris varying the heating rate. 

 

From the DTG curves the two steps of the pyrolysis 

are clearly visible, the first occurring at lower 

temperatures (450-700 K) and the second at higher 

ones (500-850 K). The first step refers to the 

primary pyrolysis, where the majority of the 

volatiles are released, the second step corresponding 

to the secondary pyrolysis. In the latter case, the 

repolymerization of the residue solid 

macromolecule, to form char, occurs with a further 

but lower release of volatiles.  

To show the improvement obtained using the double 

DAEM, the results obtained with this model were 

compared with those of the original DAE model.  

As shown in Fig. 3, the 1-DAEM represents well the 

main step of the pyrolysis process, that in the 
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present case is the primary one and also the 

predominant part of the Chlorella vulgaris 

pyrolysis,  as it can be seen from the DTG curves. 

However, the single DAEM is not able to catch the 

second step. The fitting curve, indeed, does not 

represent well the experimental data. 

 

 
Fig. 3: Comparison between the biomass 

experimental data (red points) and the 1-DAEM 

fitting (black line) data at 20 K min
-1

. 

 

Looking at the Fig. 4, where the result of the fitting 

performed with the double DAE model is reported, 

a great improvement on the agreement with 

experimental data is obtained. In this case the model 

is able to grasp the two steps of the biomass 

pyrolysis.  

 

 
Fig. 4: Comparison between the biomass 

experimental data (red points) and the 2-DAEM  

fitting (black line) data at 20 K min
-1

. 

 

From the comparison of the numerical value of the 

kinetic parameters (Table 3), it is clear that the 1-

DAEM returns approximately an average value of 

the activation energy and of the standard deviation 

of the process.  

For what concerns the 1-DAEM, the numerical 

results confirm the hypothesis made looking only at 

the plot of Fig. 3. The value of the activation energy 

is included in the interval of the E01 and E02 given 

by the 2-DAEM even if it is almost similar to the 

E01 confirming that the 1-DAEM grasps only the 

predominant step. 

In the 2-DAEM, the w parameter assumes particular 

importance explaining how many volatiles are 

released during the primary and the secondary 

pyrolysis step. In the present case, the value is quite 

high (w = 0.78) indicating that, as expected, the 

primary step is the predominant mechanism. 

Furthermore, the 2-DAEM limits the first step of 

pyrolysis in a narrow interval of activation energy 

(σE1 = 17.3 kJ mol
-1

), meaning that the process is 

faster and confined in a narrower temperature 

interval. 

The value of E02 is considerably higher than that of  

E01. This behavior can be explained considering that 

Chlorella vulgaris is constituted mainly by 

carbohydrates and proteins, which start undergoing 

thermal cracking at temperature about 250 °C [20] 

with the breakage of the weakest chemical bonds. 

The thermal degradation of the residual molecules 

continues at higher temperatures in the second 

pyrolysis step, when the repolymerization of 

carbonaceous substrates forms char with a further 

volatiles production (secondary pyrolysis) [21]. This 

step requires the rupture of stronger bonds to extract 

the hydrogen from the hydroaromatic and aliphatic 

groups increasing the aromatic carbon content of the 

solid residue. 

 

Table 3: Kinetic parameters obtained with the 1-

DAEM and 2-DAEM at 20 K min
-1

. 

 1-DAEM 2-DAEM 

k0 [s
-1

] fixed 10
13 10

13 
E01 [kJ mol

-1
] 184.0 174.5 

σE1[kJ mol
-1

] 30.0 17.3 
E02 [kJ mol

-1
] - 258.5 

σE2 [kJ mol
-1

] - 63.5 

 - 0.78 

 

In Fig. 5 the f(E) functions for the 1-DAEM and the 

2-DAEM are reported. As already discussed, the 

single Gaussian model is able to give an average 

representation of the process focusing on the 

predominant mechanism. The f(E) function of the 

double Gaussian model shows that the two pyrolysis 

steps are partly superimposed, since the 

repolymerization reactions begin to occur when the 

reactions of the primary pyrolysis are still ongoing. 

This behavior was expected, considering that the 

value of σE2 (63.5 kJ mol
-1

) is higher than the value 

of σE1. The first pyrolysis, represented by the first 

peak of the f(E) curve, is faster and dominates the 
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whole process as pointed out also from the 

estimation of the w parameter. 

 

 
 

Fig. 5: Comparison between the f(E) functions 

carried out with the 1-DAEM (red line) and the 2-

DAEM (black line). 

 

Finally a simultaneous fit was performed in order to 

evaluate the independence of the kinetic parameters 

from the heating rate. The simultaneous fit gives 

good results for the three heating rates (Fig. 6) and 

the values reported in Table 4 show that the 

obtained kinetic parameters can be considered 

consistent in the range of the heating rates tested 

being almost the same of those obtained in the 

single fit. 

 

Table 4: Kinetic parameters obtained with the 

simultaneous fit. 

 2-DAEM 

k0 [s
-1

] fixed 10
13 

E01 [kJ mol
-1

] 175.0 
σE1[kJ mol

-1
] 17.9 

E02 [kJ mol
-1

] 263.0 
σE2 [kJ mol

-1
] 65.1 

 0.79 

 

The improvement in the representation of the 

pyrolysis process using the 2-DAEM is evident. 

Table 5 gives the residual sum of squares for the 

two models and the relative improvement of the 2-

DAEM. The 2-DAEM leads to an improvement in 

the pyrolysis modeling of about 30 times. 

 

Table 5: Summary for the Residual Sums of Squares 

for the two models. 

1-DAEM 0.067 
2-DAEM 0.002 

χ
2
(1-DAEM)/χ

2
(2-DAEM) 33 

 

 

10 K min
-1 

 
20 K min

-1 

 
40 K min

-1 

 
Fig. 6: Comparison between experimental data 

taken at different heating rate (red points) and 2-

DAEM simultaneous fit.  

 

5 Conclusions 

 
The pyrolysis of Chlorella vulgaris microalgae was 

modeled with a double Gaussians activation energy 

model to catch the kinetics of the two pyrolysis 

steps. The model estimates two different 

distributions of activation energies sharing the same 

pre-exponential factor. The results of the fitting 

show that the first pyrolysis is the predominant 

mechanism in biomass pyrolysis process, occurring 

at lower activation energy in a narrow interval (σE2 
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=17.3 [kJ mol
-1

]). The two steps are partially 

overlapped due to the wide temperature interval of 

the secondary pyrolysis. The double Gaussian 

model was compared with the traditional DAEM 

showing a great improvement. Furthermore the 

introduction of the w parameter, estimated from the 

fit, gives important information on the weight of the 

two pyrolysis steps identified in the process. 
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