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Abstract: - Electricity consumption due to transportation systems is a very important parameter to be monitored 

and studied in large cities, in order to optimize the energy management. Additional economic and 

environmental benefits can be obtained if a proper and reliable description and forecast of energy absorption is 

available. In this paper, a Time Series Analysis Model is presented and applied to the electricity consumption 

of public transportation in Sofia (Bulgaria). This method is able to consider the trend, the periodic and the 

random components of a certain set of data varying over the time, with the aim of forecasting future slope of 

the data. The strong periodic feature of the dataset will allow to build a good predictive model, thanks to the 

implementation of multiple seasonality in charge to reconstruct the daily, weekly and monthly periodicities. 

The triple seasonality model will show better performances with respect to the double seasonality one, in terms 

of error statistics, distribution and randomness. In addition, a proper interpretation of the model coefficients 

will open the way to the implementation of improved energy management processes. 
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1 Introduction 
Nowadays, efficient energy management is 

extremely important in large cities. There are 

several benefits that can derive from an accurate 

description and forecasting of electricity 

consumption. The first relates to the management of 

the energy system of the city. The energy provider 

requires each large consumer prior to declare 

needed energy for a given period of time. The 

second benefit is economic. The cost of energy 

expended above a stated amount is much higher 

than the primary. Incorrect queries lead to economic 

losses for the transport company. The third is the 

ability to use the model for the development of 

various business strategies, such as to provide 

energy consumption when changing routes and 

number of vehicles.  

It is important to highlight that in many advanced 

countries, in order to improve energy management 

in the electrical grid,  some relevant energy 

consumers have the possibility to split their loads in 

a continuously necessary part and in a detachable 

part. In the transportation case, for instance, the 

electrical engine of buses requires continuous 

energy availability, but the electrical energy used for 

heating systems is a detachable load. If the bus 

company knows the correct amount of the two load 

types and can forecast the two types of absorption, it 

can participate on a smart grid in a Demand 

Response Resource (DRR) system [1, 2]. Demand 

response programs are being used by electric system 

planners and operators as resource options for 

balancing supply and demand. Demand response 

provides an opportunity for consumers to play a 

significant role in the operation of the electric grid 

by reducing or shifting their electricity usage during 
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peak periods in response to time-based rates or other 

forms of financial incentives [3].  

DRRs are demand–side entities which actively 

participate in the markets as both buyers of 

electricity and sellers of load curtailment services. 

The objective of demand response is to make the 

load an active participant in balancing electricity 

supply and demand around the clock via side-by 

side competition with supply-side resources. DRRs 

curtail their loads in response to incentive payments 

to lower electricity consumption at specified times. 

For this reasons, a reliable prediction can be 

extremely useful to design and perform DRRs.  

In general, several predictive models for energy 

consumption are present in literature and are based 

on different approaches, such as Neural Networks, 

Support Vector Machines, Fuzzy logic, statistical 

tools, etc. [4-9]. 

Time Series Analysis (TSA) models are able to 

consider the trend, the periodic and the random 

components of a certain set of data varying over the 

time. They have been adopted for the prediction of 

road traffic noise [10, 11]. The comparison with 

other traffic noise models ([12-24]) showed good 

performances, both in the case of single seasonal 

coefficient and in the case of double periodicity. 

Another application of TSA model can be the 

prediction of air pollution components time 

evolution. For instance, in [25] the hourly ozone 

concentration in Monterrey area (Mexico) is 

modelled by means of a TSA model. In this case, 

the general trend was achieved, while the local 

oscillations were roughly predicted. 

In this paper a multiple seasonality TSA model is 

presented and applied to the electricity consumption 

of local transportation in Sofia (Bulgaria). The goal 

is to obtain an adequate model describing the 

process, to be used to predict the electricity required 

for a given future period. 

 

 

2 Methods 

 
2.1 Model presentation 
The Time Series Analysis (TSA) model adopted in 

this paper is largely used in several domains, such as 

Economics, Physics, Engineering, Mathematics, etc. 

(see for instance [26-30]). In particular, the authors 

applied these techniques to road traffic noise 

prediction [10, 11] and to air pollution [25], 

obtaining good predicting performances.  

The general idea of these TSA models is to 

reproduce the behavior of the data and to predict the 

future slope, by composing the trend and the 

periodicity of the time series, and by adding an error 

component obtained analyzing the residuals in the 

calibration phase. The latter component is in charge 

of compensating the oscillations due to the random 

part of the time series (background noise). The way 

these three parts are composed define a 

multiplicative, additive or mixed model.  

The detailed description of the TSA model 

procedure, with single seasonality pattern, can be 

found in [10]. The formula of the forecast Ft is: 

 

𝐹𝑡 =  𝑇𝑡𝑆𝑖̅   ,                             (1) 

 

where Tt is the trend, 𝑆𝑖̅ is the seasonal coefficient. 

 The trend is calculated as a linear regression on 

the observed data. 

It is important to underline that the more periodic 

is the time series, the more precise will be the model 

prediction. When two periodicities are present in the 

data (such as in [11]), it is necessary to use two 

seasonal coefficients. The forecast formula of the 

Double Seasonality TSA model (DSM) is: 

 

𝐹𝑡  =  𝑇𝑡  𝑆1̅,𝑖 𝑆2̅,𝑗   ,     (2) 

 

where  𝑆1̅,𝑖 and  𝑆2̅,𝑗 are the two different 

coefficients. 

In order to remove the effects of short period 

seasonality from the data, a centred moving average 

with width k1 (first lag detected) can be used. Then, 

it is possible to evaluate the recurring effect, 𝑆1,𝑡 , 

on the single hour by the ratio between the actual 

data at time t and the centred moving average at the 

same t :  

 

𝑆1,𝑡 =  
𝐴𝑡

𝑀(𝑘1)𝑡
    ,       (3) 

 

where 𝑀(𝑘1)𝑡 is the centred moving average with 

width k1 , at the period t. 

Finally, evaluating the mean of these effects 𝑆1,𝑡 

on m1,i homologous periods (that are the same hours 

of each day), the seasonal coefficient 𝑆1̅,𝑖 is 

obtained:  

 

𝑆1̅,𝑖 =  
∑ 𝑆1,𝑖+𝑙𝑘1

𝑚1,𝑖−1
𝑙=0

𝑚1,𝑖
   .         (4) 

 

At this point, it is possible to clean up the values 

of the first moving average from the effect of the 

second seasonality with lag k2. That is done using a 

second centred moving average process, with width 

k2 (second lag detected). As in the previous step, the 

effect of the second seasonality for each period (S2,t) 
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can be calculated, and a second seasonal coefficient 

can be evaluated with a mean on m2,j homologous 

periods: 

 

𝑆2,𝑡 =  
𝑀(𝑘1)𝑡

𝑀(𝑘2)𝑡
   ,     (5) 

 

𝑆2̅,𝑗 =  
∑ 𝑆2,𝑗+𝑙𝑘2

𝑚2,𝑗−1
𝑙=0

𝑚2,𝑗
 ,    (6) 

 

where 𝑀(𝑘2)𝑡 is the centred moving average with 

width k2 , at the period t. 

In our case, as it will be described in the next 

sections, the Double Seasonality Model (DSM) fails 

in following the winter/summer changes in the 

electricity consumption. Thus, a third coefficient is 

introduced by means of a corrective term, obtained 

dividing the average value of the measured 

electricity consumption in the h-th month (with h 

varying from 1 to 12) by the average value of the 

estimated trend line in the same month: 

 

𝑆3̅,ℎ =  
∑ 𝐴𝑡

𝑏ℎ
𝑡=𝑎ℎ

∑ 𝑇𝑡
𝑏ℎ
𝑡=𝑎ℎ

   ,       (7) 

 

where 𝑎ℎ and 𝑏ℎ are the progressive number of the 

first and the last hours of the h-th month in the 

considered dataset. 

Therefore, the forecast formula of the resulting 

Triple Seasonality TSA model (TSM) is: 

 

𝐹𝑡  =  𝑇𝑡  𝑆1̅,𝑖 𝑆2̅,𝑗 𝑆3̅,ℎ  .         (8) 

 

After the calibration phase on a given dataset, the 

forecast can be performed by means of a final 

extended formula:  

 

𝐹𝑡  =  𝑇𝑡  𝑆1̅,𝑖 𝑆2̅,𝑗 𝑆3̅,ℎ +  𝑚𝑒  , (9) 

 

that includes also me , the mean of the error 

evaluated by a statistical analysis on the error, 

defined as observed value (At) minus forecast (Ft) in 

the calibration phase: 

 

𝑒𝑡 = 𝐴𝑡 − 𝐹𝑡 .    (10) 

 

2.2 Linearity tests  
A Time Series is linear if it can be expressed as a 

linear combination of 𝑍𝑡 independent random 

variables, with 𝜓𝑗 unknown constant parameters 

[31]: 

 

𝑋𝑡 = ∑ 𝜓𝑗𝑍𝑡−𝑗
+∞
𝑗=−∞   .  (11) 

When this condition is not verified, the time 

series is non-linear. The non-linearity implies that 

the usual regressive model adopted in TSA cannot 

be applied. In order to check the linearity presence, 

some proper tests can be performed. In this paper, 

the authors adopt the Lee-White-Granger (LWG) 

test [32] and the Terasvirta-Lin-Granger (TLG) test 

[33]. 

 

 

3 Case study  
Electricity consumption of the local transportation 

in Sofia (Bulgaria) is considered as a case study.  

In the hauler “Transenergo”, the Power Engineer 

has to declare necessary electricity consumption for 

every hour of the following week.  The incorrect 

request affects the price of the electricity. Electricity 

consumption is a random process which depends on  

many factors. The Power Engineer has information 

for the following data: kilometers run, temperature, 

the kind of day and from this information has to 

declare the necessary electricity consumption [4].  

The data of consumption, in MWh, are provided 

by an electronic energy meter that measures the 

hourly electricity consumption during night and 

daytime. The dataset is related to 2011 year, i.e. 

period that goes from the 1
st
 of January 2011 to the 

31
st
 of December 2011. 

The electrical transport in Sofia has started in 

1901. Currently in Sofia electrical trams and 

trolleybuses are a relevant part of the public 

transportation,  carrying each year, millions of 

passengers. In 2008, for instance, over 198 million 

of passengers have been transported [34].  

Power is delivered by 24 rectifier stations with a 

total installed capacity of over 125950 kW. The 

network consists of over 263 km tram tracks and 

257 km trolley tracks, and the cable network is more 

than 740 kilometers [34].  

Since summer and winter exploit a strong 

variation in average temperatures, with a consequent 

different usage of electrical heating system, and 

since in summer transportation schedule a smaller 

number of vehicles is used, a seasonal variation in 

electricity consumption is expected. The same 

occurs for week (working) days and weekend days 

(and public holidays), such as for day and night 

variations. This suggests weekly and daily 

periodicities. 

In general, in the last decades, electricity 

consumption in Bulgaria has been growing but, 

thanks to the operating nuclear plants, the country 

satisfied the internal request and was able to export 

part of the produced electrical power. However, 

since 2006, the export of electricity have been 
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reduced because of the closing of two older nuclear 

units. This energy production changes requires a 

more effective management of local consumptions. 

 

4 Data analysis and results 
The first step, in order to build the model, is to 

analyse the dataset to be used in the calibration 

phase. The choice was to consider the  hourly 

electricity consumption, measured during all the 

year 2011.  

The calibration dataset is made of 8760 hourly 

electricity consumptions, measured in MWh, and 

the summary statistics are resumed in Table 1. 

As it can be noticed from skewness and kurtosis 

values, the distribution is normal. In addition, the 

high value of standard deviation with respect to the 

mean, together with the maximum and minimum 

values, exploits a very spread distribution.  

The load duration curve, i.e. the plot of energy 

consumption (sorted in descending order) versus the 

number of hours in which that value of consumption 

is obtained and surpassed, is reported in Fig. 1.  

 

 
Table 1: Summary of statistics of the calibration data set, 

8760 data, in Megawatt hour. 

Mean 

[MWh] 

Std.dev 

[MWh] 

Median 

[MWh] 

Min 

[MWh] 

Max 

[MWh] 
skew kurt 

5.14 3.12 5.28 0.22 12.62 0.17 -0.75 

 

 

 
Fig. 1: Electricity consumption sorted by descending 

order of magnitude. The x axis reports the number of 

hours in which the corresponding electrical consumption 

is exceeded. 

 

 

Table 2: Ljung-Box and Box-Pierce tests performed on 

the 8760 measurements of the calibration dataset. 

Test 𝜒2 h p-value 

Ljung-Box 53542.33 30 < 2.2e-16 

Box-Pierce 78500.02 50 < 2.2e-16 

Table 3: Lee-White-Granger (LWG) and Terasvirta-Lin-

Granger (TLG) tests for linearity performed on the 8760 

measurements of the calibration dataset. 
Test Statistic of the test df p-value 

LWG 37.4105 2 7.524e-09 

TLG 35.4774 2 1.978e-08 

 

 

In the previous section, it has been discussed the 

probable presence of three periodicities, a daily one, 

a weekly one and a seasonal one, that will be 

implemented on a monthly base. In order to check if 

the data are autocorrelated or not, the Ljung-Box 

(LB) and Box-Pierce (BP) tests have been 

performed. Results are reported in Table 2, in which 

the small p-values in both tests, i.e. the very small 

probability to observe the sample if the null 

hypothesis is true, indicates that the hypothesis of 

absence of autocorrelation in the data can be 

rejected. 

The linearity tests proposed in the section II, are 

performed on the time series under study, in the “R” 

software framework. The resulting very low 

probability values, reported in Table 3, suggest to 

reject the null hypothesis, i.e. the linearity of the 

time series. The tests result and the good 

performances of the model presented in this section 

highlight its capability of reproducing the non-linear 

feature of the time series. 

The autocorrelation of the data has been evaluated 

by means of an autocorrelation plot (correlogram), 

reported in Fig. 2. It is evident the presence of 

several periodicities. In particular the maximum 

values of the autocorrelation are obtained in 

correspondence of a lag (period) of 24 hours (daily 

periodicity) and 168 hours (weekly periodicity). The 

latter periodicity is confirmed by the highest 

autocorrelation value in the correlogram of the first 

moving average data, calculated with 24 hours span 

(Fig. 3). 

Figures 4, 5 and 6 report the auto dispersion plots 

of three different datasets: in all cases that data are 

clustered around the bisector, confirming the 

presence of the presumed lag. Figure 4 reports the 

observed dataset and it is plotted as a function of the 

same data shifted by 24 hours. Two patterns are 

evident out from the bisector line, showing that 

more periodicities are present. Figure 5 reports the 

auto dispersion of the observed dataset as a function 

of the same data shifted by 168 hours, i.e. one week. 

Again, the data follow the bisector, but still some of 

them seem to be not randomly distributed. Figure 6, 
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instead, reports the centred moving average data 

(span 24), plotted versus the same data shifted by 

168 hours (one week). The plot shows a general 

gathering along the bisector line, with some 

variations that are mostly symmetric with respect to 

the bisector. This result confirms the presence of a 

further periodicity, with low frequency. 
  

 

 

 
Fig. 2: Autocorrelation plot (correlogram) of the data as a 

function of the lag (periodicity).  

 

 

 

 
Fig. 3: Correlogram for the first centred moving average 

data. The value of autocorrelation coefficient is plotted as 

a function of the lag. 

 

 
Fig. 4: Auto dispersion plot of the electricity 

consumption dataset plotted as a function of the same 

data shifted by 24 hours. 

 

 
Fig. 5: Auto dispersion plot of the electricity 

consumption dataset plotted as a function of the same 

data shifted by 168 hours.  

 

 
Fig. 6: Auto dispersion plot of the moving average with 

span 24 plotted as a function of the same moving average 

data shifted by 168 hours.  
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Once the periodicities have been detected, the 

model has been built as described in Section II. The 

moving averages are plotted in Figure 7, together 

with the trend line.  

The set of TSA model parameters, that are trend 

line parameters and 24 first seasonality (daily) 

coefficients, is reported in Table 4, while the 168 

second seasonality (weekly) coefficients are plotted 

in Figure 8. 
 

 

 
Fig. 7: Plot of the two centred moving averages and of 

the trend line. In blue the actual data, in violet the trend 

line, in red the first moving average (span 24), in green 

the second moving average (span 168). 
 

 

 
Fig. 8: Hourly coefficient used by the model to 

reconstruct the weekly periodicity in the dataset. 
 

 

With this procedure, a Double Seasonality TSA 

Model (DSM) has been built. The result of the 

forecast of the DSM are shown in Figure 9, together 

with the observed values dataset. It is easy to notice 

that even if the model forecasts follow the local 

(daily and weekly) oscillation, there is a long term 

(low frequency) periodicity to be still included. As 

reported in section II, a third coefficient, in charge 

of describing the monthly seasonal behavior of the 

data, is introduced. This corrective coefficient is 

calculated according to formula (7), i.e. dividing the 

average value of the measured electricity 

consumption in each month by the average value of 

the estimated trend line in the same month. 
 

Table 4: Model parameters estimated on the 2011 

electricity consumption data. b0 and b1 are respectively 

the intercept and the slope of the trend line, while 𝑆𝑖̅ is 

the hourly coefficient, to reconstruct the daily periodicity, 

in the time range from i-1 to i hour. 

Time Series Model parameters 

b0 5.55998 b1 0.0000957 

𝑆1̅ 0.14318 𝑆1̅3 1.38711 

𝑆2̅  0.10604 𝑆1̅4 1.28621 

𝑆3̅ 0.10540 𝑆1̅5 1.22370 

𝑆4̅ 0.11779 𝑆1̅6 1.26628 

𝑆5̅ 0.42944 𝑆1̅7 1.28007 

𝑆6̅ 0.97802 𝑆1̅8 1.35565 

𝑆7̅ 1.26947 𝑆1̅9 1.41998 

𝑆8̅ 1.47812 𝑆2̅0 1.39447 

𝑆9̅ 1.43660 𝑆2̅1 1.22622 

𝑆1̅0 1.36739 𝑆2̅2 0.80087 

𝑆1̅1 1.38302 𝑆2̅3 0.60751 

𝑆1̅2 1.41843 𝑆2̅4 0.46727 

 

 

These 12 ratios are able to describe the long term 

variations of the time series. The resulting monthly 

coefficients are plotted in Figure 10 and exploit the 

higher electricity consumption observed during cold 

months, probably due to higher number of vehicles 

running and to heating systems. 

The application of the third seasonal coefficient to 

the DSM, produce a Triple Seasonality TSA Model 

(TSM) whose forecasts are plotted in Fig. 11 

together with the observed data.  

In order to better depict the improvement 

produced by the third seasonal coefficient, a plot of 

the DSM and TSM forecasts and of  the observed 

data, in the summer time range (from 4000 to 4500 

hours), is reported in Figure 12. 
 

 

 

 
Fig. 9: Observed electricity consumption and Double 

Seasonality TSA model results, plotted in 2011 time 

range. 
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Fig. 10: Monthly coefficient used by the model to 

reconstruct the third seasonal behaviour of the electricity 

consumption. 

 

 

 
Fig. 11: Observed electricity consumption and Triple 

Seasonality TSA model, plotted in 2011 time range. 

 

 

 
Fig. 12: Observed (blue line) and predicted electricity 

consumption according to DSM (red line) and TSM 

(green line), during 2011: zoom on the time range from 

4000 to 4500 hours. 

 

 

The TSM better agrees with the observed data in 

quite all the range, while the DSM model 

underestimates during winter time and overestimate 

in summer months. Few local oscillations are lost. 

 In order to quantify the performances of the 

complete model (TSM), an error analysis has been 

done both on DSM and TSM. Comparing the error 

statistics of both models (Table 5), it can be noticed 

that the standard deviation strongly decreases when 

moving from double to triple seasonality. Also the 

median and the spread between minimum and 

maximum error improve when introducing the 

monthly periodicity.  

Table 5: Summary of statistics of the error distribution in 

the Double Seasonality Model (DSM) and Triple 

Seasonality Model (TSM), evaluated on the calibration 

dataset; results are given in MWh. 

Model Mean 

[MWh] 

Std.dev 

[MWh] 

Median 

[MWh] 

Min 

[MWh] 

Max 

[MWh] 

DSM 0.02 1.49 -0.25 -4.86 4.92 

TSM 0.02 0.81 0.03 -3.99 3.6 

 

 

In DSM case, the histogram of errors (Figure 13) 

is right skewed, while in TSM case the distribution 

(Figure 14) is more Gaussian-like, suggesting that 

after introducing the third coefficient the errors are 

randomly distributed. 

Finally, in Figures 15 and 16 respectively the 

correlogram of the DSM and the TSM errors are 

reported. It is evident that in the DSM case the 

errors are still strongly autocorrelated, while in 

TSM, thanks to the adoption of the third seasonal 

coefficient, this effect is clearly reduced. 

 
 

 
Fig. 13: Frequency histogram of the errors calculated on 

the Double Seasonality Model, performed on the 8760 

calibration data. 

 

 
Fig. 14: Frequency histogram of the errors calculated on 

the triple seasonality model, performed on the 8760 

calibration data. 
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Fig. 15: Correlogram for the errors, Double Seasonality 

Model . The value of autocorrelation coefficient is plotted 

as a function of the lag. 

 

 
Fig. 16: Correlogram for the errors, Triple Seasonality 

Model. The value of autocorrelation coefficient is plotted 

as a function of the lag. 

 

 

5 Conclusions 
The implementation of a Time Series Analysis 

model to electricity consumption of public 

transportation in Sofia (Bulgaria) is presented. 

With respect to previous applications of this 

model, a multiple seasonality is present in the data 

and a third seasonal coefficient is introduced. In this 

way, the daily, weekly and monthly periodicities are 

reproduced by the Triple Seasonality TSA Model 

(TSM). A comparison between a Double 

Seasonality Model (DSM) is performed by means of 

error distribution analysis, i.e. the analysis of the 

difference between observed values and forecasts. 

The improvement of error statistics and distribution 

is obtained with TSM and the strong reduction of 

autocorrelation in the error dataset is achieved with 

respect to DSM case. 

Finally, the presented model fully achieved the 

aim of reproducing the behavior of the data used in 

the calibration, in terms of general trend and 

periodicities.  

In addition, besides the good prediction 

performances of the model, its coefficients can be 

used to better understand the consumptions behavior 

in different seasons and conditions. For instance, 

regarding the raise of consumption during winter 

time, the percentage of absorption due to heating 

system can be studied according to the monthly 

coefficients, in order to understand if a load 

curtailment process can be performed. 

Further studies could be the comparison of the 

presented model results with other models, such as, 

for instance, neural network models. 
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