
A Comparison of a dynamic compilation and mathematic parser

libraries in .NET for expression evaluation

PETR ČÁPEK, ERIK KRÁL

Faculty of Applied Informatics

Tomas Bata University in Zlín

Nad Stráněmi 4511, Zlín

Czech Republic

capek@fai.utb.cz, ekral@fai.utb.cz

Abstract: - This work aims to investigate the problems of evaluating expressions in the string format in the .NET

framework. The performances of several mathematical parser libraries in .NET are measured and compared. An

alternative approach based on a dynamic code compilation is presented. The standard benchmark functions for

optimization are used to compare existing libraries against a dynamic code compilation.

Key-Words: .NET, math parser, dynamic compilation, computing, benchmark

1 Introduction
In the world of science, you very often complain

about the evaluation of some mathematic formulas.

You have some data and you need to apply functions

to this data. Small amounts of data can be calculated

by hand but for large amounts of data you need to use

the power of computer.

 For simple calculations you can use a type of

spreadsheet software which allows you to easily

modify functions expression if you need to. For

complex data processing you very often need to

create and compile you own program. [1] [2] For

example compiling process of .NET framework used

2 way compilations as is shown in Fig. 1.

In some cases, there is a requirement to give

users abstract control to change the mathematic

expression in a program without recompiling or

reinstalling the program. If your program uses a

method of data processing with formulas that can be

changed, you need to choose the right techniques to

allow users to do that.

 One of the solutions is to provide a

predefined set of functions for users so a user can

choose a function formula from it.

 Another solution is to provide the ability for

users to design and use their own formulas.

 In the latter option you must implement some

sort of mathematic parser engine which allows users

to enter new formulas into the software.

Fig. 1 Principe of .NET code execution

2 Problem description
A Parser engine is a complex system which has

specific phases [3] [4]. In general, we can describe

the principle of parsing as in Fig. 2.

Execution

Compilation

Source code
Language
compiler

JIT
compilation

Native code

MSIL

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 212

Fig. 2 Principle of parsing [3]

When we want to implement our own parser system

we need to know each component of the parser

system. It can be hard to implement it without bugs

and implement it to achieve a comparable

performance in relation to the native code.

 We compared an existing mathematic

expression parser and we also compared it to our

solution. We chose an alternative approach to

implement a mathematic parser system to simplify

the complexity of parser engine. There is a similarity

between the compilation C# code and the process of

expression parsing. Our solution is a string

replacement engine based on processing Regex

expressions which translate the mathematic

expression into C# code. Finally, the .NET dynamic

code compilation is used to “revive” this code.

2.1 Description of parser libraries
We chose the following mathematic expression

parser libraries:

NCalc

NCalc is a mathematical expressions evaluator in

.NET. NCalc can parse any expression and evaluate

the result, including static or dynamic parameters and

custom functions. [5]

Sprache.Calc

This library provides an easy-to-use extensible

expression evaluator based on the LinqyCalculator

sample. The evaluator supports arithmetic

operations, custom functions and parameters. It takes

the string representation of an expression and

converts it into a structured LINQ expression

instance which can easily be compiled to an

executable delegate. In contrast to interpreted

expression evaluators such as NCalc, compiled

expressions perform just as fast as native C#

methods. [6]

Flee

Flee is an expression parser and evaluator for the

.NET framework. It allows you to compute the value

of string expressions at runtime. It uses a custom

compiler, strongly-typed expression language, and a

lightweight codegen to compile expressions directly

to IL. This means that the expression evaluation can

be fast and efficient. [7]

Jace.NET

Jace.NET is a high performance calculation engine

for the .NET platform. It stands for "Just Another

Calculation Engine".

Jace.NET can interpret and execute strings

containing mathematical formulas. These formulas

can rely on variables. If variables are used, the values

can be provided for these variables at the execution

time of the mathematical formula.

Jace can execute formulas in two modes: in

an interpreted mode and in a dynamic compilation

mode. If the dynamic compilation mode is used, Jace

creates a dynamic method at runtime and generates

the necessary MSIL opcodes for native execution of

the formula. If the formula is re-executed with other

variables, Jace takes the dynamically generated

method from its cache. It is recommended to use Jace

in the dynamic compilation mode. [8]

Mathos Parser

Mathos Parser is a mathematical expression parser,

built on top of the .NET Framework, which allows

you to parse all kinds of mathematical expressions,

and in addition, add your own customised functions,

operators, and variables. [9]

Input string

Tokenizer

Tree builder

Compiler /
interpreter

Parser

Output

characters

tokens

simple data structure

tree data structure

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 213

xFunc

xFunc is a simple and easy-to-use application that

allows you to build mathematical and logical

expressions. It is written in C#. This project consists

of two libraries and an execution file. The libraries

include a code that converts strings into expressions.

[10]

muParser

muParser is an extensible high performance math

expression parser library written in C++. It works by

transforming a mathematical expression into

bytecode and precalculating the constant parts of the

expression.

The library was designed with portability in

mind and should compile on every standard

compliant C++ compiler. There is a wrapper for C

and C#. The parser archive contains a ready-to-use

project and makefiles files for a variety of platforms.

The code runs on both 32 bit and 64 bit architectures

and has been tested using Visual Studio 2013 and

GCC V4.8.1. Code samples are provided in order to

help you understand its usage. The library is open

source and distributed under the MIT license. [11]

Expression Evaluator

Expression Evaluator is a fast-growing, lightweight,

simple and free library capable of parsing and

compiling simple to medium complexity C#

expressions.

Expression Evaluator can take a string that

contains C# code, compile it and return the value of

the expression, or a function that executes the

compiled code. You can also register types or

instances of classes to access their properties and

methods, essentially allowing you to dynamically

interact with those objects at runtime. [12]

Dynamic Expresso

Dynamic Expresso is an expression interpreter for

simple C# statements. Dynamic Expresso embeds its

own parsing logic, and really interprets C# statements

by converting it into .NET delegates that can be

invoked as any standard delegate. It does not generate

assembly but it creates dynamic

expressions/delegates on the fly.

By using Dynamic Expresso developers can

create scriptable applications and execute .NET

codes without compilation. The statements are

written using a subset of C# language specifications.

Global variables or parameters can be injected and

used inside expressions. [13]

2.2 Dynamic compilation
Our approach is not to make a whole parser engine

but instead to try using a kind of hybrid technique.

Our technique can be described like this:

 Take the input string

 Find incompatible tokens and replace it with

C# code

 Insert the string into a pre-prepared class

 Use C# feature, dynamic compilation, to

compile the code “on-fly”

 Load this compiled class into a current

program and load “evaluation” function into

the cache

Our approach is trying to achieve maximum

performance for evaluating a large amount of data

against a small number of functions.

3 Benchmark description
Due to the varied complexity of expressions, we

categorized the expressions depending on the

complexity of the expressions. There are categories

based on expression complexity, in which the

complexity is defined by the number of operators,

operands and variables:

 Simple expressions – up to 5 operands and 5

operators

 Medium expressions – up to 10 operands and

10 operators, up to 3 function nesting

 Complex expressions – more than 10

operands and operators, more than 3 function

nesting

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 214

Category Function name Expression

Simple Constant 𝑓 = 10 + 750

Simple Second constant 𝑓 = 10 + 𝜋 + 29

Simple Sum 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦

Simple Linear 𝑓(𝑥) = 55𝑥 − 150

Simple Sphere, n = 2 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

Medium Quadratic 𝑓(𝑥, 𝑦) = 55𝑥2 − 150𝑥 + 44 + 12𝑦2 − 22 − 4

Medium Rosenbrock, n = 2 𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

Medium Beale’s 𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2

Medium Booth’s 𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2

Medium Bukin N.6 𝑓(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10|
Medium Matyas 𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦

Medium Three-hump 𝑓(𝑥, 𝑦) = 2𝑥2 − 1.05𝑥4 +
𝑥6

6
+ 𝑥𝑦 + 𝑦2

Medium Easom 𝑓(𝑥, 𝑦) = −cos(𝑥) cos(𝑦) exp(−((𝑥 − 𝜋)2 + (𝑦 − 𝜋)2))
Medium McCormick 𝑓(𝑥, 𝑦) = sin(𝑥 + 𝑦) + (𝑥 − 𝑦)2 − 1.5𝑥 + 2.5𝑦 + 1

Complex Ackley’s
𝑓(𝑥, 𝑦) = −20exp(−0.2√0.5(𝑥2 + 𝑦2)) − exp(0.5(cos(2𝜋𝑥) +

cos(2𝜋𝑦))) + 20 + 𝑒

Complex Goldstein-Price 𝑓(𝑥, 𝑦) = (1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2))
Complex Lévi 𝑓(𝑥, 𝑦) = sin2(3𝜋𝑥) + (𝑥 − 1)2(1 + sin2(3𝜋𝑦))

Complex Cross-in-tray 𝑓(𝑥, 𝑦) = −0.0001(| sin(𝑥) sin(𝑦) exp(|100 −
√𝑥2 + 𝑦2

𝜋
|) | + 1)0.1

Complex Eggholder

𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin(√|𝑦 +
𝑥

2
+ 47|) − 𝑥 sin(√|𝑥 − (𝑦 + 47)|)

Complex Hölder table 𝑓(𝑥, 𝑦) = −| sin(𝑥) cos(𝑦) exp(|1 −
√𝑥2 + 𝑦2

𝜋
|) |

Complex Schaffer N.4 𝑓(𝑥, 𝑦) = 0.5 +
cos(sin(|𝑥2 − 𝑦2|)) − 0.5

(1 + 0.001(𝑥2 + 𝑦2))2

Table 1 List of used function in benchmark [14]

There are two test scenarios for evaluating

expressions because there are two main factors that

influence the test performance, the expression

processing time and expression evaluation time. Let

the N is the number of different expressions which

are used in the test and M is the number of expression

evaluation with given input variables.

 The first scenario is focused on measuring

the performance of processing different expressions

(N >> M). In this case it is the measured time of the

evaluation.

 The second scenario is focused on measuring

the performance of evaluating the same expression

against different input variable values (N << M). In

this case, the measured time represents the expression

processing.

4 Results
We compiled our test program under the .NET 4.5

platform, “Any CPU” platform setting and release

configuration. We ran it on a laptop with Intel i7 3517

CPU, 10 GB RAM, SSD disk with Windows 8.1 Pro.

 For the first scenario we used 24 different

expressions as shown in table 1 and each has been

evaluated 1 000 000 times. The evaluation time of the

measured functions has been summarized for each

category and divided by the total number of functions

in the category.

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 215

Library

name

Complexity of expressions

Simple Medium Complex

NCalc 2105 4565 6561

Sprache 610 892 855

Flee 875 1339 1374

Jace 1553 2415 3137

Mathos 11311 29053 FAILED

Xfunc 2297 5425 5158

muParser 89 244 360

EE 838 1149 1184

D.

Expresso

51 170 213

Dynamic 93 202 220

Native 32 146 162

Table 2 Result for scenario 1 in ms

In the results table 2, our developed test solution is

called “dynamic” and its function evaluation

performance is the best of all libraries for function

evaluating. However, it must be taken into account

that our approach has a relative high starting overheat

because of a compilation time of about 50 ms. If a

simple function and a small amount of evaluation is

used, our approach cannot currently be faster than 50

ms due to the compilation time overheat.

Fig. 3 Benchmark result for scenario 1

 In the second scenario, the 1000 function was

used (the function set was created by random choice

from 24 function sets as shown in table 1). Each of

these functions was evaluated only once.

100 1000 10000

NCalc

Sprache

Flee

Jace

Mathos

Xfunc

muParser

EE

D. Expresso

Dynamic

Native

Average parsing time [ms]

Scenario 1, n=1M, m=24

Complex expression Medium expressions

Simple expressions

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 216

Library

name

Complexity of expressions

Simple Medium Complex

NCalc 129 186 263

Sprache 801 1822 2527

Flee 2536 2961 3269

Jace 910 2004 2480

Mathos 41 71 0

Xfunc 93 199 247

muParser 145 215 283

EE 4526 9425 13441

D.

Expresso

5532 5258 6699

Dynamic 48605 51703 52713

Native 0 0 1

Table 3 Result for scenario 2 in ms

In the results table 3, our library is also called

“dynamic” and we can see our approach has the worst

result against the other libraries. This bad result is due

to the .NET compilation time overheat.

Fig. 4 Benchmark result for scenario 2

6 Conclusion
The main aim of this work was to create an

alternative approach to processing string expressions

in C# language. Instead of defining our own parsing

engine or using an existing parser engine, we tried to

make a different approach.

Our approach is to transfer a string to a C#

equivalent code and use a dynamic compilation for

converting the code from a string expression into a

data structure which can be easily consumed by a C#

program.

We compared our approach with existing

.NET mathematic parser libraries. However, there is

10 100 1000 10000

NCalc

Sprache

Flee

Jace

Mathos

Xfunc

muParser

EE

D. Expresso

Dynamic

Native

Total parsing time [ms]

Scenario 2, n=1, m=1k

Complex expression Medium expressions

Simple expressions

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 217

a bug in C# compiler which did not allow us to create

only in the memory assembly and we were penalised

because of this. But even with this handicap we

achieved great results with our approach as you can

see in the benchmark results.

7 Future work
For now we created a closed system which does not

allow users to define user specific functions but we

are plaining to allow this to users in a future release.

We also looking forward to the next release

of C# compiler called ‘Roslyn’ which has a

significantly faster dynamic code compilation which

allows us to take off penalty time for compilations.

We are also planning to implement some sort

of optimization service for mathematic formulas

which will allow us to achieve more speed

improvements.

References:

[1] M. P. Radha Thangaraj, "Differential

Evolution Algorithm for Solving Multi-

objective Optimization Problems," in

Proceedings of the 7th International

Conference on Applied Mathematics,

Simulation, Modelling (ASM '13), 2013.

[2] R. A. Rahmat, "Application of Genetic

Algorithm in Optimizing Traffic Control," in

Proceedings of the 7th International

Conference on Applied Mathematics,

Simulation, Modelling (ASM '13), 2013.

[3] Compilers Principles Techniques and Tools

(2nd Edition), Boston: Pearson Education,

Inc, 2007.

[4] J. A. Farrell, "Compiler Basics," 1995.

[Online]. Available:

http://www.cs.man.ac.uk/~pjj/farrell/compm

ain.html.

[5] "NCalc - Mathematical Expressions

Evaluator for .NET," 2014. [Online].

Available: https://ncalc.codeplex.com/.

[6] "Sprache.Calc," 2014. [Online]. Available:

https://github.com/yallie/Sprache.Calc.

[7] "Fast Lightweight Expression Evaluator,"

2014. [Online]. Available:

http://flee.codeplex.com/.

[8] "Jace.NET," 2014. [Online]. Available:

https://github.com/pieterderycke/Jace.

[9] "Mathos Parser," 2014. [Online]. Available:

http://mathosparser.codeplex.com/.

[10] "xFunc," 2014. [Online]. Available:

http://xfunc.codeplex.com/.

[11] "muparser - Fast Math Parser Library," 2014.

[Online]. Available:

http://muparser.beltoforion.de/.

[12] "C# Expression Evaluator," 2014. [Online].

Available: https://csharpeval.codeplex.com.

[13] "Dynamic Expresso," 2014. [Online].

Available:

https://github.com/davideicardi/DynamicExp

resso.

[14] S. F. University, "Test Functions and

Datasets," 2014. [Online]. Available:

http://www.sfu.ca/~ssurjano/optimization.ht

ml.

Recent Advances in Applied Mathematics, Modelling and Simulation

ISBN: 978-960-474-398-8 218

