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Abstract:The most malignant brain cancer, so called Glioblastoma, has extremely poor outcome. It confounds the
clinical management of glioblastomas due to the hight local invasiveness of these cancer cells. Furthermore the
mechanisms governing invasion are poorly understood. Stein et al. proposed a continuum mathematical model of
the dispersion behaviours based on a Swanson’s model describing glioblastoma invasion. They conducted experi-
ments on the patterns of growth and dispersion of U87 glioblastoma tumour spheroids in a three-dimensional colla-
gen gel. They intended to identify and characterize discrete cellular mechanisms underlying invasive cell motility
from the experimental data. The mathematical model reproduces an characteristic behaviour of the U87WT inva-
sive cells that they have a strong radial directional motility bias away from the spheroid center. However in their
experiments it is observed that the U87WT invasive cells sometimes exhibit more complicated behaviour than
indicated by their model. We propose a mathematical model in a more general form of the radially biased compo-
nent term of their model so that it covers more realistic behaviour of U87WT cells in the experiment. We show a
rigorous mathematical analysis of our model and give computer simulation of cell motility in the experiment from
our mathematical model.

Key–Words:Glioblastoma, 3D invasion, Tumour, radially biased motility, Collagen, Mathematical model, Mathe-
matical analysis, Computer simulation, Existence of solution, Asymptotic behaviour of solution.

1 Introduction

In 2007 Stein et al. [18] presented results from
their experiment where tumour spheroids are grown
in three-dimensional collagen gels ([3], [4], [5]). They
describe a continuum mathematical model that allows
us to quantitatively interpret the data. Fitting the
model to the experimental data indicates that Glioma
cells invade in a more biased manner, away from the
tumour spheroid and are shed from the spheroid at
a great rate, suggesting lower cell-cell adhesion and
they specified the extent of invasive cell population.
When we follow to their mathematical model, the path
of invasive cell radiates in a fixed direction and at a
constant velocity. However it is observed that they
sometimes exhibit more complicated and undirected
behaviour, such as greatly turn around or turn back
to one’s path. In order to describe such kind of be-
haviour of cell motility we generalize their mathemat-
ical model by extending the radially biased compo-
nent term.

The goal of this paper is to better understand
the mechanisms governing invasive cell behaviour.
We will show rigorous mathematical analysis of our

model and give computer simulations of cell motility
of our mathematical model, which includes the simu-
lations in [18].

1.1 Mathematical models

Several mathematical models have been known in
the literature for cell invasion ([1], [6], [21]). In the
single model for core and invasive cell behaviour by
Swanson et al. [17], tumour growth is described by a
reaction-diffusion equation:

∂u

∂t
= D∇2u+ gu

(
1− u

umax

)
(1.1)

where cell concentrationu move along undirected,
random paths as a function of position and time,
cells throughout the tumour are assumed to prolifer-
ate at a constant rateg until they reach a limiting
density,umax, the constantD is the diffusion (undi-
rected motion); the largerD becomes, the more motile
the cells. This model assumes spherical symmetry
of the multicellular tumour spheroid. The single-
population reaction-diffusion model has been used
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with some success to describe how a tumour responds
to chemotherapy and why surgical removal of GBM
is usually not effective ([17]). This model is only ap-
plicable for tumours that are> 1mm3 and it fails for
smaller tumours.

In addition, Stein et al. [18] considered that the
invasive cells are biased to move away from the cen-
ter of the tumour spheroid at an average speed,vi. It
has been observed that invasive cells may follow di-
rected paths away from the tumour spheroid . The
cause of this bias is not known. It may be due to at-
traction toward nutrients in the environment, repulsion
from waste products produced by the spheroid, or a re-
alignment of the collagen gel as the cells move. They
proposed the following equation for the evolution of
the cell population,ui

∂ui
∂t

= D∇2ui︸ ︷︷ ︸
diffusion

− vi∇r · ui︸ ︷︷ ︸
a radially biased component

+ sδ(r −R(t))︸ ︷︷ ︸
shedding invasive cells rate

+ gui

(
1− ui

umax

)
︸ ︷︷ ︸

proliferation

(1.2)

The behaviour of invasive cells can be described
by four parameters:{D, vi, s, g}. Invasive cells are
introduced into the population through shedding from
the core surface,s, and proliferation,g. Cell motil-
ity is modeled as having an undirected component,
D, and a radially biased component,vi. In the above
equation,δ is the Dirac delta function,r is the spa-
tial coordinate for the radial distance from the tumour
center, andR(t) is the radius of the core at timet. We
take the core radius to be given byR(t) = R0 + vct,
whereR0 is the initial tumour radius, andvc is the rate
at which the core increases in radius.

In in vitro experiments of glioma tumour 3D inva-
sion in collagen gel by Stein et. al. ( [16; ChapterIV],
[20]) , invasive cells with the radially biased motility
away from the spheroid center make a progress ini-
tially and after that they often exhibit more compli-
cated behaviour(see Figure1.(a)). It seems that such
complicated behaviour of invasive cells can not be
reproduced by their simulation as in Figure1.(b) or
even using (1.2), because their radially biased com-
ponent term of (1.2) islinear. In order to describe
thenonlinear paths of such cell motility we propose
a mathematical model generalized the radially biased
component of their model to anonlinear term. We
also gain rigorous mathematical analysis of our model
and give computer simulation of cell motility of the
mathematical model.

Figure 1: In vitro experiments of glioma tumour
3D invasion in collagen gel performed by Stein and
coworkers in [16],[20].
(a) Cell trajectories from experiment (b) Simulation of
cell trajectories.

1.2 Mathematical model generalized radi-
ally biased component

Now we consider the problem for the model by Stein
et al. [18] for invasive cell populationu := u(x, t)

(1.3)



∂u

∂t
= D∇2u− v∇r · u+ sδ(r −R(t)) + gu

(
1− u

umax

)
in Ω× (0, T )

∂

∂ν
u|∂Ω = 0,

u|t=0 = u0(x)

Since we especially focus on the behaviour of each
cell of dispersing cells at the spheroid’s edge, neglect-
ing the effect ofδ function and proliferation, that is,
we consider

∂u

∂t
= D∇2u− v∇r · u (1.4)

Furthermore we generalize∇r · u as follows. Forr =
(r1, · · · , rn) we have

∇r · u = (r1, · · · , rn) · (ux1 , · · · , uxn)

putting(ux1 , · · · , uxn) = ∇u

= ∇u · (r1, · · · , rn)
= ∇ · u(r1, · · · , rn)

= ∇ · u∇(x1r1 + · · ·+ xnrn).

Replacing(x1r1 + · · · + xnrn) by log(α + w) for a
positive constantα it follows from∇r · u

∇ · (u∇ log(α+ w)).

Therefore (1.4) is extended to the following equation.
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∂u

∂t
= D∇2u−∇ · (u∇ log(α+ w)) (1.5)

(1.5) is considered by Othmer-Stevens [13] as a con-
tinuum model of reinforced random walks wherew is
called control species andlog(α + w) is, so called,
a sensitivity function. Hence it is seen that (1.5) ad-
mits a randomwalking of the invasive cell along the
direction and the velocity indicated by the radially bi-
ased component in (1.2). The following systems for
(1.5) is applied to a understanding of tumour angio-
genesis([2],[12]).

(1.6)



∂u

∂t
= D∇2u−∇ · χ0(u∇ log(α+ w))

in Ω× (0,∞)

∂w

∂t
= −kuw

in Ω× (0,∞)

∂

∂ν
u|∂Ω = 0

on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω

whereD is a positive constant,Ω is a bounded domain
in Rn and∂Ω is a smooth boundary ofΩ andν is the
outer unit normal vector.

2 Mathematical analysis

In this section we review a known mathematical
result related to our model and apply it to ours and
Othmer-Stevens model, which plays an important role
to carry out the computer simulation of (1.6).

2.1 Known result

In Kubo [7] the following initial Neumann-boundary
value problems of nonlinear evolution equations is
considered(see [8]-[11]).

(NE)


utt = D∇2ut +∇ · (χ(ut, e−u)e−u∇u)

in Ω× (0,∞) (2.1)
∂

∂ν
u |∂Ω = 0 on ∂Ω× (0,∞) (2.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω (2.3)

where we denote

∂

∂t
= ∂t,

∂

∂xi
= ∂xi , i = 1, · · · , n,

∇u = gradxu = (∂x1u, · · ·, ∂xnu) (2.4)

Suppose that the assumption (A) holds.

(A) Let Br+ = Br ∩ R × R+, whereBr is a ball
of radiusr at 0 in R2. For any constantr > 0 and
(s1, s2) ∈ Br+ there exist positive constantscr, c′r
andδr such that for any integerm ≥ [n/2] + 3

cr(b− δr) < χ(s1 + b, s2) ∈ Cm(R×R+), (2.5)

sup(s1,s2)∈Br+
| (∂ks1∂

l
s2χ)(s1 + b, s2) | ≤ c′rb,

0 ≤ k + l ≤ m. (2.6)

Now let us introduce function spaces. First,
H l(Ω) denotes the usual Sobolev spaceW l,2(Ω) of
orderl onΩ. For functionsh(x, t) andk(x, t) defined
in Ω× [0,∞), we put

(h, k)(t) =

∫
Ω
h(x, t)k(x, t)dx,

∥h∥2l (t) =
∑
|β|≤l

∥∂βxh(·, t)∥2L2(Ω).

The eigenvalues of−∆ with the homogeneous
Neumann boundary conditions are denoted by

{λi|i = 1, 2, · · ·},
which are arranged as

0 < λ1 ≤ λ2 ≤ · · · → +∞,

andφi = φi(x) indicates theL2 normalized eigen-
function corresponding toλi.

For a non-negative integerl, we setW l(Ω) as a
closure of{φ1, φ2, · · ·, φn,· · ·} in the function space
H l(Ω). Takingλ1 ̸= 0 into account,it is noticed that
we have

∫
Ω h(x) = 0 for h(x) ∈ W l(Ω), which en-

ables us to use Poincare’s Inequlaity. Then the follow-
ing result is obatined in Kubo[11].

Theorem 1. Assume that (A) holds and
(h0(x), h1(x)) ∈ Wm+1(Ω) × Wm(Ω) for
h0(x) = u0(x) − a and h1(x) = u1(x) − b.
For sufficiently large a and any b > 0 there
is a solution u(x, t)(= a + bt + v(x, t)) ∈
1∩

i=0

Ci([0,∞);Hm−i(Ω)) to (NE) such that for

u1 = |Ω|−1
∫
Ω
u1(x)dx

lim
t→∞

∥ut(x, t)− u1∥m−1 = 0. (2.7)
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2.2 Application

We apply theorem 1 to our problem (1.6) follow-
ing to the method by Levin and Sleeman [12]. Put
logw(x, t) = −

∫ t
0 u(x, τ)dτ = U(x, t) in the sec-

ond equation of (1.6), then (1.6) are reduced to

Utt = D∆Ut +∇ · ( χ0e
−U

1 + αe−U
Ut∇U)

which is regarded as the same type of equation as (2.1)
and satisfies the condition(A). Therefore it is evident
that Theorem 1 holds for (1.6) and it implies that there
exists a classical solutionu(x, t) to (1.6) such that

lim
t→∞

∥u(x, t)− u0∥m−1 = 0.

3 Computer simulation

It is possible to carry out computer simula-
tion of Othmer-Stevens model by reinforced random
walk([13]). Since our model (1.6) can be consid-
ered as a special case of Othmer-Stevens model, sim-
ulations of (1.6) by using reinforced radomwalk are
shown in Fig.3 and Fig.4. Also, simulation for a math-
ematical model of in vitro experiment for endothelial
cell migration is given by [15],[19] in the similar way.

The following picture is a photo of an experiment
in vitro of glioma tumour 3D invasion in collagen gel
performed by Eke and coworkers in [4]. We choose
three characteristic paths of each single invasive cell
from the experiment and draw them as solid lines on
the picture. In figure 4, we intend to reproduce the
three solid lines by using 3D simulations of the model
(1.6).

Figure2: A photo inx − y plain of an experiment in
vitro of U87WT glioma tumour 3D invasion in colla-
gen gel performed by Eke and coworkers in [4], which
is similar to the experiment in [16], [18], [20].

3.1 3D simulation of a path of a single cell
from (1.6)

Figure 3: Simulation of a single path of a tip cell in
the cuboid domain from various viewpoints.

3.2 2D simulation from (1.6) of Glioblastoma
3D invasion in vitro experiment

Figure 4: Simulation from (1.6) of three paths of each
cell in x− y plain for 3D cell invasion in vitro exper-
iment of U87WT.

The path (a) indicates that the cell initially radi-
ates rather linearly and after that turns around. In the
path (b) it is observed that the cell exhibits more com-
plicated behaviour than (a). In the path (c) Once the
cell arrives at the edge of the sphere consist of invasive
cells, it turns back to one’s way.

4 Conclusions

The data of the experiment provides clear evidence
that the tumour spheroid cells move away from it at a
constant rate initially in the radial direction and after
that the radial velocity bias decrease. It seems to be
important to gain the understanding of the mechanism
of invasion in these in vitro experiments so that their
usefulness in understanding the in vitro situation can
be understood. However in the mathematical model
of Stein et al. [18] the radially biased component im-
plies that the cell motility with a constant velocity and
a fixed direction is different from real cell paths ob-
served in the experiment. The cause of radial bias
is not known. Therefore we propose a mathematical
model generalized and improved the radially biased
component term of the model of [18] so that it covers
more realistic motility as observed in the experiment
of Eke et. al. [4]. For this purpose we choose three
characteristic paths of U87WT cell. We show a rigor-
ous mathematical analysis of our model and give re-
sults of computer simulation of solid lines in Figure
2 for our mathematical model, which seems to realize
more realistic invasive cell behaviour.
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3.1 3D simulation a single path of a tip cell
from (1.6)

(a)

(b)

(c)

(d)

Figure3: Simulation of a single path of a tip cell in
the cuboid domain from various viewpoints.

3.2 2D simulation from (1.6) of Glioblastoma
3D invasion in vitro experiment

We choose three characteristic paths of a single cell
of U87WT and by the method as obtained Figure 3
we have simulations of them from our model (1.6) in
Figure 4.

Figure 2’: In three solid lines, the path (a) indi-
cates that the cell initially radiates and after that turns
around greatly. In the path (b) it is observed that the
cell changes the direction greatly several times. In
the path (c) Once the cell arrives at the edge of the
sphere consist of invasive cells, it suddenly turns back
to one’s way.

Figure4: Simulations of the path of each cell are cor-
responding to the solid lines (a)-(c) in Figure 2’ re-
spectively. Compared with Figure 1. (b), our simula-
tions seem to be much closer to (a)-(c) in Figure 2’.
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