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Abstract: In this paper, we evaluate the price of discretely-sampled variance swaps using a equity-interest rate
hybrid model. Our modeling framework extends the Heston stochastic volatility model by including the Cox-
Ingersoll-Ross stochastic interest rates and imposes correlation between the stochastic interest rate and volatility.
It is known that one limitation of the hybrid models is that the analytical pricing formula is often unavailable
due to the non-affinity property of hybrid models. An efficient semi-closed form pricing formula is derived for
an approximation of the fully correlated hybrid model. Our pricing formula which involves solving two phases
of three-dimensional partial differential equations is evaluated through numerical implementations to confirm its
accuracy.
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1 Introduction

One of the contemporary developments in the finan-
cial world is the emergence of hybrid models, which
link products from different asset classes such as
stock, interest rate and commodities. Hybrid models
can be generally categorized into two different types,
namely hybrid models with full correlations or hybrid
models with partial correlations between the engaged
underlyings. The hybrid models are often solved us-
ing analytical or numerical approaches according to
the complexities involved.

There has been an active research field concern-
ing hybrid models with partial correlations between
asset classes due to less complexity involved. Ma-
jority of the researchers focused on including either
correlation between the stock and interest rate, or cor-
relation between the stock and the volatility of the
stock [10, 11, 20, 4, 13]. The study of hybrid models
with full correlations between all state variables also
attracted attention for improved model capability. The
relevant works can be referred from [18, 12, 5, 14, 8].

Despite the relevance of imposing correlations as
described above, the attention should be drawn on the
ability of the hybrid models to keep their analytical
and computational tractability. One possible approach

to keep tractability is to implement some modifica-
tions to the models’ correlation structure so that the
property of affine diffusion models could hold. This
framework which was adopted from [7] guarantees
that the state vector would have closed or semi closed-
form expressions. This is applicable with the aid
of the characteristic functions obtained from Fourier
transform techniques. Other advantages of affine dif-
fusion models include the ability to replicate numer-
ous shapes of the term structure, and also provide ad-
equate fitting either to the whole or the initial term
structure [16].

We present an equity-interest rate hybrid model
where the interest rate is driven by the CIR inter-
est rate model whereas the equity price follows the
dynamics of the Heston stochastic volatility model.
Our focus is on the pricing of discretely-sampled vari-
ance swaps with full correlations between the stock
price, interest rate as well as the volatility of the stock.
Note that an analytical variance swaps pricing for-
mula of partially correlated Heston-CIR hybrid model
is derived in [3]. However, since the fully correlated
Heston-CIR hybrid model is analytically untractable,
we modify the model such that the affinity property
holds for the approximation of the hybrid model. The
characteristic functions of the approximated hybrid
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model are then derived and it leads to a semi-closed
form formula for variance swaps.

2 Solution Techniques for Pricing
Variance Swaps

In this section we describe details about the Heston-
CIR hybrid model and discuss our solution techniques
for pricing discretely-sampled variance swaps with
full correlations between the asset classes. In partic-
ular, we apply the deterministic approximation by [9]
to obtain a semi closed-form solution for the pricing
formula.

2.1 The Heston-CIR hybrid model
Under the real world probability measure P, the hy-
bridization of the Heston-CIR model can be described
as:

dS(t) = µS(t)dt+
√
ν(t)S(t)dB1(t),

dν(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dB2(t),

dr(t) = α(β − r(t))dt+ η
√
r(t)dB3(t),

(1)

where r(t) is the stochastic instantaneous interest rate
in which α determines the speed of mean reversion
for the interest rate process, β represents the inter-
est rate term structure and η measures the volatility
of the interest rate. In the stochastic instantaneous
variance process ν(t), κ is its mean-reverting speed
parameter, θ is its long-term mean and σ is its volatil-
ity. In order to ensure that the square root processes in
ν(t) and r(t) are always positive, it is required that
the Feller conditions (2κθ ≥ σ2 and 2αβ ≥ η2)
are satisfied, refer to [6, 15]. The correlations in-
volved in the model are given by (dB1(t), dB2(t)) =
ρ12dt = ρ21dt, (dB1(t), dB3(t)) = ρ13dt = ρ31dt
and (dB2(t), dB3(t)) = ρ23dt = ρ32dt, where −1 ≤
ρij ≤ 1 for all i, j = 1, 2, 3.

For any 0 ≤ t ≤ T , let

Z(t) = exp

[
−1

2

∫ t

0
(γ1(s))

2ds−
∫ t

0
γ1(s)dB1(s)

−1

2

∫ t

0
(γ2(s))

2ds−
∫ t

0
γ2(s)dB2(s)

−1

2

∫ t

0
(γ3(s))

2ds−
∫ t

0
γ3(s)dB3(s)

]
,

where γ1(t) =
µ−r(t)√

ν(t)
, γ2(t) =

λ1

√
ν(t)

σ and γ3(t) =

λ2

√
r(t)

η are the market prices of risk (risk premium)

of Brownian processes B1(t), B2(t) and B3(t), re-
spectively. Here, λj (j = 1, 2) is the premium of
volatility risk as illustrated in [15], where Breeden’s
consumption-based model is applied to yield a volatil-
ity risk premium of the form λ(t, S(t), ν(t), r(t)) =
λν for the CIR square-root process [1].

Define three processes B̃1(t), B̃2(t) and B̃3(t)
such that

dB̃1(t) = dB1(t) + γ1(t)dt,

dB̃2(t) = dB2(t) + γ2(t)dt,

dB̃3(t) = dB3(t) + γ3(t)dt.

According to Girsanov’s theorem, EP[Z(T )] = 1
and there exists a risk-neutral probability measure Q
equivalent to P such that Z(t) = dQ

dP |Ft and B̃1(t),
B̃2(t) and B̃3(t) are Brownian motions under Q. In
what follows, the conditional expectation at time t is
denoted by EQ

t = EQ[· | Ft], where Ft is the filtra-
tion up to time t. Under Q, equations (1) are trans-
formed into the following form

dS(t) = r(t)S(t)dt+
√
ν(t)S(t)dB̃1(t),

dν(t) = κ∗(θ∗ − ν(t))dt+ σ
√
ν(t)dB̃2(t),

dr(t) = α∗(β∗ − r(t))dt+ η
√
r(t)dB̃3(t),

(2)

where κ∗ = κ + λ1, θ∗ = κθ
κ+λ1

, α∗ = α + λ2 and
β∗ = αβ

α+λ2
are the risk-neutral parameters.

Under Q, (2) can be re-written as
dS(t)
S(t)

dν(t)
dr(t)

 =

 r(t)
κ∗(θ∗ − ν(t))
α∗(β∗ − r(t))

 dt+Σ×L×


dW1(t)

dW2(t)

dW3(t)

 ,
(3)

where

Σ =


√
ν(t) 0 0

0 σ
√
ν(t) 0

0 0 η
√
r(t)


and

L =


1 0 0

ρ12
√

1− ρ212 0

ρ13
ρ23−ρ13ρ12√

1−ρ212

√
1− ρ213 −

(
ρ23−ρ13ρ12√

1−ρ212

)2


such that

LL⊤ =

 1 ρ12 ρ13
∗ 1 ρ23
∗ ∗ 1

 .
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Here, W1(t), W2(t) and W3(t) are three Brown-
ian motions under Q such that dW1(t), dW2(t) and
dW3(t) are mutually independent and satisfy the fol-
lowing relation

dB̃1(t)

dB̃2(t)

dB̃3(t)

 = L×


dW1(t)

dW2(t)

dW3(t)

 .
2.2 Valuation of variance swaps
Variance swaps were first launched in the 1990s due to
the breakthrough of volatility derivatives in the mar-
ket. Since the payment of a variance swap is only
made in a single fixed payment at maturity, it is one
type of forward contract which is traded over the
counter. A typical formula for the measure of realized
variance (RV ) is

RV =
AF

N

N∑
j=1

(
S(tj)− S(tj−1)

S(tj−1)

)2

× 1002, (4)

where S(tj) is the closing price of the underlying as-
set at the j-th observation time tj , T is the lifetime of
the contract andN is the number of observations. AF
is the annualized factor which follows the sampling
frequency to convert the above evaluation to annual-
ized variance points. Assume there are 252 business
days in a year, then AF is equal to 252 for daily sam-
pling frequency. Similarly, if the sampling frequency
is every month or every week, then AF will be 12 and
52, respectively. The measure of realized variance re-
quires monitoring the path of underlying stock price
discretely, usually at the end of each business day. For
this purpose,we assume equally discrete observations
to be compatible with the real market, which reduces
to AF = 1

∆t =
N
T .

At maturity time T , variance swaps rates can be
evaluated as V (T ) = (RV −K)×L, where K is the
annualized delivery price for the variance swap and
L is the notional amount of the swap in dollars. The
notional amount can be expressed in two terms which
are variance notional and vega notional. Variance no-
tional gives the dollar amount of profit or loss obtained
from the difference of one point between the realized
variance and the delivery price. Vega notional on the
other hand, calculates the profit or loss from one point
of change in volatility points. Since it is the market
practice to define the variance notional in volatility
terms, the notional amount is typically quoted in dol-
lars per volatility point.

In the risk-neutral world, the value of a variance
swap with stochastic interest rates at time t is the
expected present value of its future payoff, that is,

V (t) = EQ
t

[
e−

∫ T
t r(s)ds(RV −K)L

]
. This value

should be zero at t = 0 since it is defined in the class
of forward contracts. The above expectation calcula-
tion involves the joint distribution of the interest rates
and the future payoff which is complicated to eval-
uate. Thus, it would be more convenient to use the
bond price as the numeraire since the joint dynamics
can be diminished by taking advantage of the property
P (T, T ) = 1.

Since the price of a T -maturity zero-coupon bond
at t = 0 is given by P (0, T ) = EQ

0

[
e−

∫ T
0 r(s)ds

]
, we

can determine the value of K by changing Q to the
T-forward measure QT . It follows that

EQ
0

[
e−

∫ T
0 r(s)ds(RV −K)L

]
= P (0, T )ET

0 (RV−K),

(5)
where ET

0 (·) denotes the expectation with respect to
the T-forward measure QT at t = 0. Thus, the fair
delivery price of the variance swap is defined as K =
ET
0 [RV ].

2.3 Dynamics under the T-forward measure
Under the T-forward measure, the valuation of the fair
delivery price for a variance swap is reduced to calcu-
lating the N expectations expressed in the form of

ET
0

[(
S(tj)− S(tj−1)

S(tj−1)

)2
]

(6)

for t0 = 0, some fixed equal time period ∆t and N
different tenors tj = j∆t (j = 1, · · · , N). It is im-
portant to note that we have to consider two cases
j = 1 and j > 1 separately. For the case j = 1,
S(tj−1) = S(0) is a known value at time t0 = 0, in-
stead of an unknown value of S(tj−1) for any other
cases with j > 1. In the process of calculating this
expectation, the value j, unless otherwise stated, is
regarded as a constant. Hence both tj and tj−1 are
regarded as known constants.

Based on the tower property of conditional expec-
tations, the calculation of expectation (6) can be sepa-
rated into two phases in the following form

ET
0

[(
S(tj)

S(tj−1)
− 1
)2]

= ET
0

[
ET
tj−1

[(
S(tj)

S(tj−1)
− 1
)2]]

.

(7)
In the first phase, the computation involved is

ET
tj−1

[(
S(tj)

S(tj−1)
− 1
)2]

= Ej−1, (8)

and in the second phase, we need to compute

ET
0 [Ej−1] . (9)
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Note that the numeraire under Q is N1,t =

e
∫ t
0 r(s)ds, whereas the numeraire under QT is N2,t =

P (t, T ) (refer [2]). Implementation of the Radon-
Nikodym derivative for these two numeraires gives
the new dynamics for (3) under the forward measure,
QT as follows: dS(t)

S(t)

dν(t)
dr(t)


=

 r(t)− ρ13B(t, T )η
√
r(t)

√
ν(t)

κ∗(θ∗ − ν(t))− ρ23σB(t, T )η
√
r(t)

√
ν(t)

α∗β∗ − [α∗ +B(t, T )η2]r(t)


dt+Σ× L×

 dW1(t)
dW2(t)
dW3(t)

 ,
(10)

where

B(t, T )

=
2
(
e(T−t)

√
(α∗)2+2η2−1

)
2
√

(α∗)2+2η2+
(
α∗+

√
(α∗)2+2η2

)(
e(T−t)

√
(α∗)2+2η2−1

) .

2.4 Price evaluation techniques
As illustrated in (8), we shall focus on a contingent
claim denoted as Uj(S(t), ν(t), r(t), t), whose pay-

off at expiry tj is
(

S(tj)
S(tj−1)

− 1
)2

. Applying standard
techniques in the general asset valuation theory, the
PDE for Uj over [tj−1, tj ] can be described as

∂Uj

∂t
+

1

2
νS2∂

2Uj

∂S2
+

1

2
σ2ν

∂2Uj

∂ν2
+

1

2
η2r

∂2Uj

∂r2
+

ρ12σνS
∂2Uj

∂S∂ν
+
[
rS − ρ13B(t, T )η

√
r(t)

√
ν(t)S

]
∂Uj

∂S
+
[
κ∗(θ∗ − ν)− ρ23σB(t, T )η

√
r(t)

√
ν(t)

]
∂Uj

∂ν
+
[
α∗β∗ − (α∗ +B(t, T )η2)r

] ∂Uj

∂r

+ρ23ση
√
ν(t)

√
r(t)

∂2Uj

∂ν∂r
+ ρ13η

√
ν(t)

√
r(t)S

∂2Uj

∂S∂r
= 0

(11)
with the terminal condition

Uj(S, ν, r, tj) =

(
S

S(tj−1)
− 1

)2

. (12)

It can be seen that the system (10) is not

in the affine form due to the existence of
non-affine terms ρ13B(t, T )η

√
r(t)

√
ν(t)S,

ρ23σB(t, T )η
√
r(t)

√
ν(t), ρ23ση

√
ν(t)

√
r(t)

and ρ13η
√
ν(t)

√
r(t)S. Therefore, it is impossible

to obtain the characteristic function of equation (11)
by standard techniques in [7], thus an approximation
for the PDE (11) is needed.

The expectation ET (
√
ν(t)) with stochastic pro-

cesses ν(t) of the CIR-type process given by (10) can
be approximated by (refer [9]):

ET (
√
ν(t)) ≈√

q1(t)(φ1(t)− 1) + q1(t)l1 +
q1(t)l1

2(l1 + φ1(t))

=: Λ1(t),

(13)
with

q1(t) =
σ2(1− e−κ∗t)

4κ∗
, l1 =

4κ∗θ∗

σ2
,

φ1(t) =
4κ∗ν(0)e−κ∗t

σ2(1− e−κ∗t)
.

(14)

In order to avoid further complications during
derivation of the characteristic function and present a
more efficient computation, the above approximation
is further simplified as

ET (
√
ν(t)) ≈ m1 + p1e

−Q1t =: Λ̃1(t), (15)

where

m1 =
√
θ∗ − σ2

8κ∗ , p1 =
√
ν(0)−m1,

Q1 = − ln[p−1
1 (Λ1(1)−m1)].

(16)

The same procedure can be applied to find the ex-
pectation of ET (

√
r(t)):

ET (
√
r(t)) ≈√

q2(t)(φ2(t)− 1) + q2(t)l2 +
q2(t)l2

2(l2 + φ2(t))

=: Λ2(t),

(17)
with

q2(t) =
η2(1− e−α∗t)

4α∗ , l2 =
4α∗β∗

η2
,

φ2(t) =
4α∗r(0)e−α∗t

η2(1− e−α∗t)
,

(18)

ET (
√
r(t)) ≈ m2 + p2e

−Q2t =: Λ̃2(t), (19)
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and

m2 =
√
β∗ − η2

8α∗ , p2 =
√
r(0)−m2,

Q2 = − ln[p−1
2 (Λ2(1)−m2)].

(20)

Utilizing the above expectations of both stochastic
processes, we are able to find ET (

√
ν(t)

√
r(t)) by

employing properties of dependent random variables
and instantaneous correlation.

Replace the non-affine
terms ρ13B(t, T )η

√
r(t)

√
ν(t)S,

ρ23σB(t, T )η
√
r(t)

√
ν(t), ρ23ση

√
ν(t)

√
r(t)

and ρ13η
√
ν(t)

√
r(t)S with their expec-

tations ρ13B(t, T )ηET (
√
ν(t)

√
r(t))S,

ρ23σB(t, T )ηET (
√
ν(t)

√
r(t)),

ρ23σηET (
√
ν(t)

√
r(t)) and

ρ13ηET (
√
ν(t)

√
r(t))S, and the equation (11)

is in the affine form. It leads us to the solution for the
modified PDE with terminal condition (12).

Proposition 1. If the underlying asset follows the dy-
namic process (10) and a European-style derivative
written on this underlying asset has a payoff function
U(S, ν, r, T ) = H(S) at expiry T , then the solution
of the associated PDE system of the derivative value



∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+

ρ12σνS
∂2U

∂S∂ν
+
[
rS − ρ13B(t, T )η

√
r(t)

√
ν(t)S

]
∂U

∂S
+
[
κ∗(θ∗ − ν)− ρ23σB(t, T )η

√
r(t)

√
ν(t)

]
∂U

∂ν
+
[
α∗β∗ − (α∗ +B(t, T )η2)r

] ∂U
∂r

+ρ23ση
√
ν(t)

√
r(t)

∂2U

∂ν∂r
+ ρ13η

√
ν(t)

√
r(t)S

∂2U

∂S∂r
= 0

U(S, ν, r, T ) = H(S),
(21)

can be expressed in closed form as:

U(x, ν, r, t)

= F−1
[
eC(ω,T−t)+D(ω,T−t)ν+E(ω,T−t)rF [H(ex)]

]
,

(22)
using generalized Fourier transform method (see
[17]), where x = lnS, i =

√
−1, τ = T − t, and

ω is the Fourier transform variable, and

D(ω, τ) =
a+ b

σ2
1− ebτ

1− gebτ
,

E(ω, τ) =
(α∗ +B(T − τ, T )η2) + d

η2
1− edτ

1− hedτ
,

C(ω, τ) =
κ∗θ∗

σ2

[
(a+ b)τ − 2 ln

(
1− gebτ

1− g

)]
+
α∗β∗

η2
[
(α∗ +B(T − τ, T )η2) + d)τ

−2 ln

(
1− hedτ

1− h

)]
−2ρ13ηωi

∫ τ
0 E(

√
ν(T − s)

√
r(T − s))

B((T − s), T )ds

+ρ13ηωi
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))E(ω, s)ds

−ρ23ση
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))D(ω, s)

B((T − s), T )ds

+ρ23ησ
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))D(ω, s)

E(ω, s)ds,

a = κ∗ − ρ12σωi, b =
√
a2 + σ2(ω2 + ωi),

g =
a+ b

a− b
,

d =
√

(α∗ +B(T − τ, T )η2)2 − 2η2ωi,

h =
(α∗ +B(T − τ, T )η2) + d

(α∗ +B(T − τ, T )η2)− d
.

(23)

It can be seen in Proposition 1 that the solution
for the PDE (11) is defined universally without fully
specifying the terminal condition, which is (12) in our
case. For convenience, let I = S(tj−1) and x = lnS.
Note that the terminal condition involves the Dirac
delta function, it is necessary to handle the solution
of PDE (11) via the generalized Fourier transform. In
particular, the corresponding Fourier transformation is
defined as

F [eiξx] = 2πδξ(ω), (24)

where ξ is any complex number and δξ(ω) is the gen-
eralized delta function satisfying∫ ∞

−∞
δξ(x)Φ(x)dx = Φ(ξ). (25)

Conducting the generalized Fourier transform for
the payoff function H(S) = (SI − 1)2 with respect to
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x results in

F

[(
ex

I
− 1

)2
]
= 2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]
.

(26)
As a result, the solution of the PDE (11) is derived as
follows:

Uj(S, ν, r, I, τ)

= F−1
[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)r

2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]]
=
e2x

I2
eC̃(τ)+D̃(τ)ν+Ẽ(τ)r − 2ex

I
eĈ(τ)+Ê(τ)r + 1,

(27)
where tj−1 ≤ t ≤ tj and τ = tj − t. We denote
C̃(τ), D̃(τ) and Ẽ(τ) as C(−2i, τ), D(−2i, τ) and
E(−2i, τ) respectively. The specific forms of C̃(τ),
D̃(τ) and Ẽ(τ) are

Ẽ(τ) =
(α∗ +B(tj − τ, T )η2) + d̃

η2

(
1− ed̃τ

1− h̃ed̃τ

)
,

D̃(τ) =
ã+ b̃

σ2

(
1− eb̃τ

1− g̃eb̃τ

)
,

C̃(τ) =
κ∗θ∗

σ2

[
(ã+ b̃)τ − 2 ln

(
1− g̃eb̃τ

1− g̃

)]
+
α∗β∗

η2

[
(α∗ +B(T − τ, T )η2) + d̃)τ

−2 ln

(
1− h̃ed̃τ

1− h̃

)]
−2ρ13η

∫ τ
0 E(

√
ν(T − s)

√
r(T − s))

B((T − s), T )ds

+2ρ13η
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))E(s)ds

−ρ23ση
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))D(s)

B((T − s), T )ds

+ρ23ησ
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))D(s)E(s)ds,

ã = κ∗ − 2ρ12σ, b̃ =
√
ã2 − 2σ2, g̃ =

ã+ b̃

ã− b̃
,

d̃ =
√

(α∗ +B(tj − τ, T )η2)2 − 4η2,

h̃ =
(α∗ +B(tj − τ, T )η2) + d̃

(α∗ +B(tj − τ, T )η2)− d̃
.

(28)

In addition, Ĉ(τ) and Ê(τ) are the notations for

C(−i, τ) and E(−i, τ) respectively. The specific
forms of Ĉ(τ) and Ê(τ) are



Ê(τ) =
(α∗ +B(tj − τ, T )η2) + d̂

η2

(
1− ed̂τ

1− ĥed̂τ

)
,

Ĉ(τ) =
α∗β∗

η2

[
(α∗ +B(tj − τ, T )η2) + d̂)τ

−2 ln

(
1− ĥed̂τ

1− ĥ

)]
−ρ13η

∫ τ
0 E(

√
ν(T − s)

√
r(T − s))

B((T − s), T )ds

+ρ13η
∫ τ
0 E(

√
ν(T − s)

√
r(T − s))E(s)ds,

d̂ =
√

(α∗ +B(tj − τ, T )η2)2 − 2η2,

ĥ =
(α∗ +B(tj − τ, T )η2) + d̂

(α∗ +B(tj − τ, T )η2)− d̂
.

(29)

We shall continue to carry out the second phase
to find out the expectation (6) as described in Section
2.3. We aim to compute the expectation ET

0 [Ej−1],
which will finally leads us to obtain the fair delivery
price of a variance swap.

The inner expectation had been worked out by our
first phase of the computation, and the solution is

[Ej−1] = eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

−2eĈ(∆t)+Ê(∆t)r(tj−1) + 1.
(30)

We use Gj(ν(tj−1), r(tj−1)) to denote the above ex-
pression. To proceed with the outer expectation,
ET
0 [Gj(ν(tj−1), r(tj−1))], the corresponding expec-

tation is represented by

ET
0 [Gj(ν(tj−1), r(tj−1))]

= ET
0

[
eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

−2eĈ(∆t)+Ê(∆t)r(tj−1) + 1
]
.

(31)

Based on the assumption that ν(tj−1) and r(tj−1) are
dependent with correlation ρ23, the above expression
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can be approximated as

Gj(ν(0), r(0)) = ET
0 [Gj(ν(tj−1), r(tj−1))]

= eC̃(∆t) · ET
0

[
eD̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

]
−2eĈ(∆t) · ET

0

[
eÊ(∆t)r(tj−1)

]
+ 1

≈ eC̃(∆t) · exp[D̃(∆t)(q1(tj−1)(l1 + φ1(tj−1)))

+Ẽ(∆t)(q2(tj−1)(l2 + φ2(tj−1)))

+ D̃(∆t)2

2 (q1(tj−1)
2(2l1 + 4φ1(tj−1)))

+ Ẽ(∆t)2

2 (q2(tj−1)
2(2l2 + 4φ2(tj−1)))

+D̃(∆t)Ẽ(∆t)ρ23

√
q1(tj−1)

2(2l1 + 4φ1(tj−1))√
q2(tj−1)

2(2l2 + 4φ2(tj−1))]

−2eĈ(∆t) · exp[Ê(∆t)(q2(tj−1)(l2 + φ2(tj−1)))

+ Ê(∆t)2

2 (q2(tj−1)
2(2l2 + 4φ2(tj−1)))] + 1.

(32)
The solution of the first phase becomes the termi-

nal condition for the second phase, and the expecta-
tion (6) is obtained. However, as mentioned in Sec-
tion 2.3, we have to consider two cases j = 1 and
j > 1 separately. The case j > 1 follows directly the
expression in (32). For the case of j = 1, the known
value of the asset price at t0 gives

G(ν(0), r(0)) = ET
0

[(
S(t1)

S(0)
− 1

)2
]
, (33)

whose values can be evaluated from Proposition
1.

Combining these two cases, we are able to find
the fair delivery price of a variance swap involving
summation for the whole period from j = 1 to j = N
as outlined in (4)

K = ET
0 [RV ]

=
1002

T

[
G(ν(0), r(0)) +

∑N
j=2Gj(ν(0), r(0))

]
,

(34)
where N is a finite number denoting the total sam-
pling times of the variance swap contract. Our solu-
tion technique involves derivation of the characteristic
function using approximations in order to fulfill the
affinity property for the fully correlated hybrid model.

2.5 Formula validation
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Figure 1: Comparison of the delivery price of
variance swaps produced between our model,
continuous-sampling model and MC simulation.

In order to analyze the performance of our approxima-
tion formula for evaluating prices of variance swaps
as described in the previous section, we present some
numerical results. Comparisons are made with the
Monte Carlo (MC) simulation which resembles the
real market, and the continuous-sampling variance
swaps model in [19]. We perform the MC simula-
tion using the Euler-Maruyama scheme with 200, 000
sample paths. In Figure 1, the results of all three
compared models are plotted against each other, with
the MC simulation results taken as the benchmark.
It could be seen that our approximation formula re-
sults matches the MC simulation results quite well,
whereas the continuous sampling model results do not
provide a satisfactory match. To gain some insights of
the relative difference between our formula and the
MC simulation, we compare their relative percentage
error. By taking N = 52 which is the weekly sam-
pling frequency and 200, 000 path numbers, we find
that the error produced is 0.07%, with further error
reduction as path numbers reach 500, 000. Further-
more, even for small sampling frequency such as the
quarterly sampling frequency when N = 4, our for-
mula can be executed in 0.49 seconds compared to
27.7 seconds needed by the MC simulation.

3 Conclusion
This paper considers the Heston-CIR hybrid model
for the pricing of discretely-sampled variance swaps
with correlated stochastic volatility and stochastic in-
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terest rates. Since our model involves a full correla-
tion structure between the state variables, we can only
derive a semi-closed form approximation formula for
the fair delivery price of variance swaps. We also con-
sider the numerical implementation of our pricing for-
mula which is validated to be fast and accurate via
comparisons with the Monte Carlo simulation.
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