
Assessment of the Impact of Aspect Oriented Programming on Refactoring
Procedural Software

Zeba Khanam,
S.A.M Rizvi,

Department of Computer Science,
Jamia Millia Islamia, New Delhi.

INDIA

Abstract---Many organizations suffer from superfluous,
disproportionate, difficult-to-extend software because of the lack
in maintenance effort and ignoring the fact that continuous
refactoring provides a competitive advantage. Refactoring is
assumed to positively affect the software parameters like
scalability, modularity, reusability, complexity,
maintainability, performance and efficiency. Several refactoring
have been proposed for object-oriented languages, but there are
few related works focusing on procedural programming. In this
paper, an assessment is provided of selected literatures which relate
to refactoring of procedural languages, and it also contributes to
highlighting new concepts and requirements for developing new
refactoring techniques for C that may eventually benefit other
procedural languages also .To this end, we have studied the
refactorings performed on 3 procedural languages that are Fortran,
Cobol and C to analyze the pattern of refactorings followed in
these languages and assess their cumulative effect in different
applications. We offer a few refactoring capabilities that may
improve the existing refactorings for these languages by our
contribution to refactoring that characterizes of a new aspect
oriented programming style.

Keywords: Reengineering, Refactoring, C, Cobol, Fortran,
Procedural languages, Aspect oriented Programming.

I. INTRODUCTION
Legacy software is hard to maintain and understand due to
various reasons such as those who have to maintain the
systems are not the same who created them, the corporate
strategy gets redefined, e.g. traditional data processing
models are obsolete whereas multichannel, service oriented
model is the preferred choice. Other reasons are business
processes are redefined by management and business
structure is reorganized, they have been built sometimes
without anticipating that they would be still running decades
later and so they don’t have the ability to change as rapidly
without complicating the code.

Although refactoring concept has been born in the heart of
the object oriented programming, it has crossed over these
borders. Refactoring tools can be found in object oriented
programming, in structured programming and functional

programming. We begin by highlighting the contributions
that have been made in the area of refactoring these
procedural languages and that bear a relation to our work. In
this paper we have analyzed the refactorings affect on the
procedural languages that includes Fortran, C and Cobol.
Thereafter, we conclude what are the major parameters that
have been focused in those works and then we conclude that
some parameters like modularity, scalability, reusability and
performance of a code structure can be enhanced through
refactoring by use of aspect orientation as we are working
on refactoring C with AspectC. We begin by highlighting
the work that has been done in the area of refactoring
Fortran. The next section focuses on Cobol and then C
refactorings.

.

II. ROLE OF REFACTORING IN FORTRAN

As a programming language, Fortran is one of the most
ancient, yet it is still being used. Fortran is a procedural
language heavily used in high performance computing. Its
evolution has resulted in a wide range of equivalent
syntactical constructions. From those equivalent
constructions, the older ones (coming from old language
version/s) have many disadvantages/drawbacks. The
refactorings in Fortran are based on the traditional
approaches.

The concept of refactoring as an interactive process
performed by an expert programmer while carefully
examining the code, in small and safe steps, was defined in
Opdyke’s thesis many years ago, in this work refactoring is
presented in the context of Object Oriented Programming.
Thereafter the major contribution was by Ralph Johnson’s
research group that promoted refactoring and the
development of automated refactoring tools. The major
development included introduction to Photran, an
integrated development environment that was used to
implement those refactorings , an automated refactoring tool
for Fortran and high performance computing further
discussed the impact of such a tool on legacy code
reengineering [2][3]. Vaishali De has also identified 90

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 161

possible Fortran refactorings [5]. Later on, Overbey etal. [3]
bring to light the need of refactoring tools integrated with
IDEs for Fortran programs and in the High Performance
world. John Brant and Don Roberts’ Smalltalk Refactoring
Browser [4] was the first implementation, introducing
automated refactorings to the Smalltalk community.

A. Major Refactoring approaches in Fortran Refactoring

1) Maintainability refactorings

Most of the work in refactoring covers the parameters like
scalability, modularity and maintainability. The paradigm
viewpoint classifies the refactorings as Object Oriented
refactoring, Structured Programming refactoring or
Functional Programming Refactoring. But with Fortran,
though it started as a procedural language, the later releases
such as Fortran 2003 has made use of structured and object
oriented features. Another viewpoint to adapt in order to
create a good classification may be found in the way that
users or programmers need refactorings. As a successful
programming language Fortran is characterized as the oldest
programming language for scientific purposes and having a
huge production of legacy code due to its particular
evolutionary process.

The major work in Fortran refactorings have specifically
focused on 2 categories: Refactorings to Improve
Maintainability and Refactorings to Improve Performance.
Each one of these classes may be divided into subclasses
[2]. However, the refactorings to improve performance is an
entirely different class of refactorings that are unique to the
domain of supercomputing. It is well-known that, despite
the best efforts of compiler vendors, code intended to run on
a specific supercomputer must undergo many hand
optimizations. Examples include manual unrolling of loops
and optimizing data structures based on the machine’s cache
size.

In the first place we refer to the most recent work done by
Mendez in the area of refactoring Fortran. Fortran being a
fifty-year-old programming language with a large number
of software applications developed through years and with
most of the Fortran software being legacy. The findings in
[2] dealt with refactoring as a technique to understand, to
comprehend, to upgrade, to modify and to add changes on
legacy software. Some of the refactorings focused on
parallelizing and performance improvements. Moreover the
contribution to Photron project was also made. The
parameters for refactoring were Improving Maintainability
and Performance.

2) Performance Refactorings

In general the refactoring techniques focus on improving the
external attributes like maintainability and understandability
but performance based refactorings are generally not
attempted. This category currently has two examples of how
refactoring can be used to improve performance while
preserving not only the behavior of the program but also the
readability and maintainability of the code. Some major
refactorings for the purpose in Fortran are Change To
Vector Form, Interchange Loops, Loop Reversal, Loop
Unrolling.

B. Scenario in Fortran Refactoring

There are certain refactoring that are common to most of the
languages for example renaming methods, variables,
extracting fragments of code etc. But many of the
refactorings done in Fortran are very much Fortran specific.
The reason is that Fortran has had a particular evolutionary
process through different versions across time, about ten
language versions have been published in the last 50 years
(six of them were standards). These versions have
transformed Fortran into a language with a rich set of
syntactical constructions. Therefore each version
corresponds to different set of refactorings. As a
consequence, programs written years ago are hard to read
because of the lack of modern software engineering
concepts such as software quality, development processes,
etc. As a result most of the work is focused on improving
the code readability and understandability [16]. Therefore,
as has been highlighted above the refactorings are focusing
on avoiding poor Fortran practices, removing outdated and
obsolete and non standard constructs that fall under the
category of improving maintenance. The performance
refactoring is generally dealt with interchanging and
reversing loops. But what has not been focused
maintainability refactorings are the internal software
attributes like modularity and scalability. The refactorings
that should primarily focus on increasing the cohesiveness
and decreasing the module coupling is not explored broadly.
There are certain concerns that crosscut the whole source
code and increase the code entanglement thereby increasing
the code duplication. This issue most conveniently can be
handled by aspect oriented approach, but till now the aspect
oriented version of Fortran has not evolved therefore this
issue can be handled with the various versions of Extract
fragment to method refactoring. In the area of automated
support to refactoring a set of automated refactorings for
Fortran based on the Photran plug-in are described in [21]
that are meant to improve the design of existing
applications.

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 162

Fortran has undergone a complex evolutionary phase. The
upgradation of Fortran language to Fortran 2003 was a
major revision that incorporated the object oriented features
also such as: type extension and inheritance,
polymorphisms, dynamic type allocation, and type-bound
procedures. Therefore, some of the existing object oriented
refactorings can also be used in the similar way as are
applied to the existing object oriented software.
Furthermore, the object oriented code smells may be used to
identify the symptoms for refactoring.

III. ROLE OF REFACTORING IN COBOL

Cobol is one of the oldest programming languages. Cobol
was created in 1959 as a language that has its primary
domain in business, finance and administrative systems for
organizations and government. This focus led Cobol to
become the preferred language for business development,
starting in the 1960s. When implemented in software,
business knowledge, information and rules tend to be spread
out over the entire system. With applications written in
Cobol this is even more the case, as Cobol is a language
targeted at business processing but without modern day
modularity mechanisms. This information tends to get lost
over time, so that when some maintenance is required one is
again forced into reverse engineering [31]. As the language
evolved, standards emerged, and Cobol penetration in the
business market increased. As Cobol is the traditional
powerhouse for business applications, Cobol should expect
significant growth. Experts instead have forecasted a
decrease in Cobol development for the future. (This
constant forecast has been published for the last 20 years,
first stating that Cobol was to be overtaken by C, then by
Java, etc.) Since 1959 Cobol is continuously in the evolving
process. Cobol-68, Cobol-74, Cobol-85, Cobol- 2002. The
Cobol-2002 included object orientation as its main feature.
Though the language is in a continuous evolving process,
still changes in technology and resources have lessened the
need for Cobol specific processing during the last 20 years
due to the lack of complex graphical screen designing, due
to the availability of good DBMS its impact as a data
processing language has reduced and also due to its lack of
integrating capabilities with other non Cobol business
applications.

Cobol is not a distributed and object-oriented language,
however its integration with other languages or distributed
systems is a prerequisite for achieving migration towards
Web technologies. Therefore to make it compatible with the
current technologies most of the research work focuses on
migrating the legacy Cobol to web based architecture [10].
Legacy COBOL applications are now becoming a risk to
your business. Most researchers now feel that moving the

COBOL applications to another platform only prolongs this
situation, since the application will still have the same
functionality and problems. For example, you would still
need to pay third-party vendors for compilers and runtime
environments. Appending Web services and Web clients to
your existing systems only increases the complexity of your
existing architecture. Therefore most of the work is done to
migrate away from the legacy COBOL to Java or COBOL
to C#.

A. Scenario in Cobol Refactoring

Due to its structure Cobol has not been a much focused
area for refactoring. The earlier versions of Cobol did not
support local variables, recursion, dynamic memory
allocation, or structured programming constructs. Support
for some or all of these features have been added in later
editions of the COBOL standard. COBOL is still the
dominant language on mainframe computers. Most code is
written once and read many times—usually, to focus on a
particular point (for instance, to fix a bug). Thus, it is
important that the reader quickly grasp the essence of
what’s happening. COBOL though is readable but, because
of its verbose characteristics, many lines of code have to be
read to get anywhere. Old-fashioned COBOL (in contrast to
OO COBOL) tended to use PERFORMs, instead of
procedure calls, and that means that the logic and the data
are miles apart. C does not have this problem; but C can still
be hard to understand. This is partly the fault of the
language. But refactoring has not been focused in legacy
Cobol code. The main reason for this could be that due to its
unstructured nature Cobol refactoring is not easy and safe as
JAVA/.NET refactorings. Though piecemeal refactorings
are attempted at various levels in Cobol programming but a
complete refactoring catalog is not available till now.

With the evolution of aspect oriented programming in
Cobol a scope of refactoring has increased with the usage of
aspect oriented programming constructs [11]. The presence
of crosscutting concerns is an indication to code smells that
can be refactored. A list of cross cutting concerns has been
identified [11]; some of them are logging, tracing, context-
sensitive error handling, coordination of threads, remote
access strategies, execution metrics, performance
optimization, persistence, authentication, access control,
data encryption, transaction management etc. There are
many cross cutting concerns that are definitely meaningful
from the Cobol perspective. For example Logging certain
file operations or subprogram and procedure executions is
implemented in Cobol code on a regular basis — with
varying degrees of tangling. Error handling is another cross
cutting concern existing in the Cobol code. Another issue
like synchronization is (much) does not effect the Cobol
code much as the Cobol standard does not define
expressiveness for multi-threading. Only the newer versions
support it that is not widely used in business.

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 163

Another work includes application of aspect orientation in
understanding Cobol code by defining the context aspect
and error handling aspect [12]. Aspect orientation is also
applied to strengthen the internal control in enterprise
information systems. In this regard Altair environment was
used for understanding and developing programs for aspect-
oriented Cobol [23].The researchers claim that aspect
orientation can be applied to strengthen the internal control
of existing Cobol programs. Cobol companies worldwide
are also making their information systems comply with the
new standards and requirements such as the SOX like laws
[23] [22].The additional features that needs to be
implemented for this compliance are when implemented
using aspects results in better modularization and separation
of concerns. 2The business rules staying as it is in the base
code and the additional features being implemented using
thee aspects.

IV. ROLE OF REFACTORING IN C

Though plethora of research work has been done on
refactoring object-oriented languages. But there is still lack
of refactoring tools when it comes to the C programming
language. The reason is the presence of C’s preprocessors
directives to both parsing and ensuring the correctness of
applied refactorings. But C still remains a dominant
language with its widespread applications. Nevertheless,
there are good reasons for exploring refactoring needs and
thereby, new refactoring tool for C as it remains one of the
most dominant languages in use and is widely used in a
large number of legacy systems.

This section highlights the major research work done in the
area of refactoring C. The first attempt in refactoring the
software is by W. Opdyke and Ralph Johnson [60]. He
proposed and described each of the primitive refactorings
and proved the preconditions that must be met to ensure that
the transformation preserves program behavior. The other
major development was made by Fowler [Fowler 99] who
had published a book on Refactoring. The book presents a
catalog of refactorings, with examples in Java. However, he
did not construct a tool implementing his ideas. Specifically
in the area of refactoring C language code, Garrido seems to
have introduced the refactoring concept to structured
programming [6]. Her work is based on refactoring C
programs [6] [7]. However, the major refactorings dealt
with adding, deleting, changing a program entity and few
other refactorings. The work also contributed to the
development of a refactoring browser, CRefactory, with
the objective of reusing the architecture of the Smalltalk
Refactoring Browser to construct a refactoring tool for C.

Her PhD thesis presented an algorithm to handle C
preprocessor directives. An extension of the refactoring
catalog has been attempted in [18] along with the survey of
the tools existing for refactoring C code and their
underlying design and implementation techniques.

Presently, one of the commercially used refactoring tool for
C is XRefactory created by XRef-Tech [19]. It is a C/C++
refactoring browser which works with the Emacs and
XEmacs editors and offers the following refactorings for C |
extract function, rename program element, and delete or
move parameters.

Another important tool in the world of C programming is
the development of a syntactic replacement language for C
ASTEC [17] with a translator tool Macroscope, which
translates the directives into the new language that deals
with the most important deficiencies of the preprocessor and
an ASTEC aware refactoring tool that handles preprocessor
constructs naturally. The refactoring browser CScout
developed by Spinells[9], running on a powerful
workstation, can be used to accurately analyze, browse, and
refactor large program families written in C. CScout is
designed to handle multiple related projects , collection of C
source files that are linked together, also handling most of
the complexity introduced by the C preprocessor. CScout
takes advantage of modern hardware (fast processors, large
address spaces, and big memory capacities) to analyze C
source code beyond the level of detail and accuracy
provided by current ideas, compilers, and linkers.

The most recent addition to the area of refactoring is the use
of Aspect oriented programming in formulating new
refactoring techniques. The use of AOP constructs can help
solve the problem of crosscutting concerns as they are hard
to implement and change consistently because multiple,
possibly unrelated, locations in the code have to be found
and updated simultaneously[20]. There is a prospect of
widespread adoption of aspect orientation in C as that has
already started in object oriented paradigms with the
predominance of AspectJ. In this context, we have
introduced new refactoring techniques with preconditions
and steps using the aspect oriented constructs such as
extract conditionals to advice, encapsulate fields, merge
duplicate conditionals [13].

A. Enhancement Refactorings in C using AOP

It is necessary to reevaluate existing procedural refactorings
because the constructs of AOP programming languages
significantly affect what changes can be meaning-
preserving. We are working on C refactorings that will be

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 164

valuable to the programmers and is also different from the
traditional refactorings as they incorporate the aspect
oriented constructs also. We extracted from existing
catalogs [8][14][15] the ones that can apply to C and added
some novel refactorings too. In this section we give
examples of a few refactorings using a case study that are
novel to the C programming using the Aspect oriented
constructs.

may not be added in the original code but in the advice. This
is shown in the code snippet below (Listing 1 and Listing 2)

Before Refactoring

struct customer
{

One of the major benefits obtained by Aspect oriented code
is the extraction of cross cutting concern. In this section we
explain the so-called crosscutting concerns that scattered
across the various functions or over the whole code.
Therefore apart from the AOP based refactorings for C, the
other facet to refactoring the code is that it should be able to
do enhancements or modifications, such as: This would
increase the scalability of the system as well because one of

length 2*/

length 2*/

}rec;

char id[NUM]; /* ID of Length 5*/
char name[MIN]; /* Name of Length 30*/
char address[MAX]; /* Address of Length 61*/
char phone[PH]; /* Phone Number of Length 12*/
int connection; /* Connection Type of length 2*/
int day; /* It is used to display the day of

int month; /* It is used to display the month of

int year; /* it is used to display the year*/

the major aims of refactoring is to prepare the source code
for future refactorings and extensions such as:

• Adding New Concerns
• Updating existing concerns
• Removing existing concerns.

In general, if the following operations are to be performed
on a code it is a cumbersome and time consuming job but
the AOP constructs simplifies the job to a great extent. The
next section highlights how the following changes can be
accommodated easily using the AOP constructs. For this
purpose we have highlighted the scenarios taken from a case
study “Mobile store Information System” that maintains the
records of the its employees and customers.

Listing 1: The customer structure that needs updation

After Refactoring

Refactoring for addition of a new member to a structure

introduce(): intype(struct customer) { <-- advice : add a member
char * userid;}

before (struct customer* ptr): call($ add(struct customer *...)) &&
args(*ptr)
{

printf(“Enter the user id”); //addition of functionality related to userid

gets(ptr->userid);

}

Listing 2: Adding new parameter to a structure

1) Addition of a new concern

If with the current customer a change has to be
accommodated that the customer details should also include
the user ids so that they may be able to check their records
online and pay their bills online. In this case the customer
structure can be updated without disturbing the original
structure and additional fields can be added using the
introduce advice.

But why to use the introduce () advice? The utility of adding
it using an introduce () advice is depicted if the task
performed by the added parameter could also be captured by
an advice that would not disturb the original source code
and thereby the functionality provided by the new parameter

2) Updation of existing concern
To the following case study if it is required that before
viewing, adding or deleting any employee record the
authentication of the user has to be verified then the system
needs to be updated at various places. The typical usage of
aspect based refactoring is in places where a cross cutting
concern is detected, as it can be separated as a concern in an
aspect. The updation can easily be performed by adding an
advice.

before():call (void add()) || call(void view()) || (call (void delete()))
{
//Add code to verify password
verify(); //Or a function may be introduced for the verification
}

Listing 3: Addition of verification code in a before() advice

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 165

The code for verifying the password can be written in the
advice or as has been shown in the above listing a separate
function is called for the verification purpose.

3) Removal of Existing Concern
There are certain concerns that may not be required by the
application though they were earlier built into the
application for a purpose. For example, everytime the
record of the employee is accessed for viewing , updation or
deleting the status of the employee is prompted through a
function named status ().Suppose the status checking
concern is no more required, Instead a security concern is to
be introduced . This requires modification at various places
in the program disturbing the structures of various
functions, but the modifications can be easily obtained by
AOP constructs. As shown in the listing 4 below, the call to
the status function may be avoided without removing it
actually and doing modifications at various places by using
the around advice that skips the calling of the function
status () (Listing 5).

void view(struct employee c) //Scenario displaying the calling
of function status() after the call to
each function
{
status(c);
-
-
}

void update(struct employee c)
{
status(c);
-
-}

void delete(struct employee c)
{
status(c);
-
-
}

Listing 4: The original structure of the functions

void around(): call(void status(struct customer c))
{
printf("Status not displayed"); //call to status is omitted

securitychecking (struct customer c) //May or may not be introduced

}

Listing 5: Addition of around () advice for status () function

V. DISCUSSION

New technologies like aspect orientation can enable legacy
systems to be managed with modern techniques, or reused
cost-effectively to deploy new systems. Our discussion in
this section describes concepts in AOP from the world of
procedural languages (C, Cobol, Fortran).The result is
extending system lifetimes years into the future, thereby
deferring expensive replacement costs, or reducing the costs
of deploying new systems by enabling the recovery and
reuse of long-proven business rules and data models,
potentially saving up to millions of dollars.

One of the areas where the traditional refactorings have not
focused much is the existence of crosscutting concerns in
the code. Aspect-Oriented Programming (AOP) provides
new modularization of software systems by encapsulating
crosscutting concerns. Based on the analysis of the
refactorings that have been done for Fortran. It can be
deduced that most of the refactoring intends to improve
internal quality attributes of the code such as: readability,
understandability and extensibility (attributes that
refactoring has been recognized to improve) and removal of
obsolete features. Similarly in the area of C programming
also the refactorings proposed emphasize more on
readability and understandability and also development of C
refactoring tool to carry on the refactorings in largely
automated way. Though a number of researchers have
focused on bringing aspect orientation to C programming
but most of the work has been performed in parts focusing
on single aspects.

The work done by Coady et. al. [28] depicted how AOP
can be used to refactor prefetching code in the FreeBSD OS
kernel. The new solution proposed in terms of AspectC
depicted many significant benefits such as independent
development of the prefetching modes and overall improved
comprehensibility. Their work does not focus on a general
approach for isolating crosscutting concerns, since they
restructured the code manually in an ad-hoc way.

Prior to this study many more researchers had investigated
the utility of applying AOP to various crosscutting
concerns. One of the earliest studies was conducted by [29]
for preparing the code for isolating concerns and performing
the necessary restructurings and concluded that the aspect
solution does reduce the code size.

Lippert’s [27] dealt with exception detection and handling
code in a large Java framework. Both works discuss
advantages of using AOSD, such as reduced code
duplication and improved cohesion, and discuss some
particular limitations of using AspectJ. Bruntink et al.
present their experiences of [25] [26], solving crosscutting
concerns in embedded C code to using aspect oriented

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 166

programming. They [26] developed a domain-specific
language (DSL) for parameter checking.

Gradually, many other aspect languages [30] also evolved
that worked on the similar line of bringing aspect oriented
software development to the C programming language.

The evolution of aspect oriented concept can be a great
benefit to the procedural legacy refactoring world especially
in refactoring the cross cutting concerns that enhance code
entanglement and increases code cohesion. For example
logging or security is very often mentioned as an example
of cross cutting concern that is scattered throughout the
source code. Code entanglement and crosscutting concerns
form a major part of procedural programming. The
individual goal of both refactoring and AOP is creating
systems that are easier to understand and maintain without
requiring huge upfront design effort. A combination of the
two aspect-oriented refactoring helps in reorganizing code
corresponding to crosscutting concerns to further improve
modularization and get rid of the usual symptoms of
crosscutting: code-tangling and code-scattering.

In Fortran , the aspect orientation is still in the phase of
gaining significance but as has been seen that fortran has
also evolved from the traditional procedural language to
object oriented fortran the code entanglement introduced
through cross cutting concerns have not been focused in
refactoring. Therefore, the target of Fortran refactoring was
mostly to improve readability and performance. In C the
exception handling that is solved using idiomatic concerns
can be handled using exception handling methods with
aspect oriented constructs. While rare today, some
languages don't provide for effective modularity, especially
the procedural languages which mean the breakup of code
into units that can be maintained separately and used in at
least two different composite programs. This inhibits
refactoring of functionality common to domains or feature-
sets into associated libraries. This is critical, but yet more
modularity can come from eliminating required cohesion,
where language semantics force that a piece of code be
defined or shadowed all in one place (this advantage being
related to Cross Cutting Concern).

In the world of Cobol programming, though refactoring may
not be a common practice but code transformations and
automated reengineering transformation are frequently done
to migrate, renovate or integrate the Cobol code[24].But the
transformation reengineering problems and definite AOP
problems are separated from a poorly understood
borderline. Thus there are number problems such as for web
enabling, the dumb terminal I/O are to be replaced by CGI-
based HTML pages, Active Server Pages or others[11] in
which AOP does not serve the purpose. But as has been

mentioned in the sections above, the typical crosscutting
problem such as the logging and tracing concern cannot be
tackled easily in classic Cobol. Another example such as
error checking and error handling can be readily handled by
aspects [11].

The significance of aspect based refactoring is established
more in situations where existing concerns are to be
updated, deleted or new concerns are to be added that relate
to the scalability of the system as has been depicted in the
case of C language in the above section. This is because the
modifications required to achieve them may be very
complex or may result in additional bug to the software.

VI. CONCLUSION
In this paper we have analyzed the work that is done in the
field of refactoring the procedural languages. Our area of
focus is specifically 3 languages that are Fortran , Cobol and
C. We have highlighted the contributions that have been
done in the area of refactoring these languages and have
also extracted the shortcomings that exist in the existing
refactoring techniques. As each of these languages has a
different history, origin and application areas therefore their
evolution process also differ significantly. Fortran that is
designed specifically for scientific applications has a
complex evolutionary process of transforming from
structured procedural language to an object oriented version
gaining a leading role in High Performance Computing
world. The major refactorings focus on improving
maintainability and performance that majorly deals with
improving readability and removing poor Fortran coding
practices. But the problem of crosscutting concerns still
remains a difficult task to be solved in Fortran. Whereas,
Cobol that still serves to be a business critical language has
billions of lines of code in use worldwide. Though the
Cobol literature does not focus much on refactoring but it
has to undergo a number of reengineering transformations
for the purpose of migration, renovation or integration. But
world wide companies using Cobol are in strict need of
complying with the new standards and transforming and
refactoring the systems with aspects is being adopted these
days for achieving better separation of concerns. Therefore,
the role of aspect orientation is gradually increasing in
reengineering the Cobol legacy systems also. The C
programming language has widespread applications and a
number of refactoring strategies have been adopted for code
improvement. But even the traditional refactorings
performed in C fail to achieve proper modularization. The
study tries to extract the refactoring pattern that these
languages follow and the patterns that may benefit these
languages. Our approach to refactoring using aspect
orientation in C can help the programmers gain insight to
improve upon the development productivity and support for
changes in the requirements in other procedural languages
as well. With the acceptance of Aspect-oriented
programming as a tool for the identification of concerns, it

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 167

is gaining a bigger role in the refactoring scenario.
Especially in tackling the concerns that are complex or
impossible to handle using the traditional refactoring
techniques, the aspect oriented constructs makes it easy to
achieve.

REFRENCES

[1]M.Mendez, J.L. Overbey, A. Garrido, F.G.Tinetti and R.Johnson “A

Catalog and Classification of Fortran Refactorings for Legacy
Systems, 2011.

[2] J. L. Overbey, S. Xanthos, R. Johnson, and B. Foote. Refactorings for
Fortran and High-Performance Computing. In SE-HPCS ’05:
Proceedings of the second international workshop on Software
engineering for high performance computing system
applications, New York, NY, USA, 2005. ACM.

[3] J.L. Overbey, S. Negara, and R.E. Johnson. Refactoring and the
Evolution of Fortran. In 2nd International Workshop on
Software Engineering for Computational Science and
Engineering (SECSE’09), 2009.

[4] Roberts, D., Brant, J., and Johnson, R. “A Refactoring Tool for
Smalltalk.” Theory and Practice of Object Systems 3(4), 1997.

[5] De, V. A Foundation for Refactoring Fortran 90 in Eclipse. M.S.
Thesis, University of Illinois at Urbana-Champaign, 2004.

[6] A. Garrido. Software Refactoring Applied to C Programming
Language. Master’s thesis, University of Illinois, 2000.

[7] A. Garrido and R. Johnson. Program Refactoring in the Presence of
Preprocessor Directives. University of Illinois at Urbana-
Champaign, Champaign, IL, 2005.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley
Professional, 1999.

[9] D. Spinellis. CScout: A refactoring browser for C. Science of Computer
Programming 75 (2010) 216_231, 2009.Elsevier.

[10] Bodhuin, T. Guardabascio, E. Tortorella, M. Migrating COBOL
systems to the Web by using the MVC design pattern,2003.

[11] Ralf Lamme and Kris De Schutter. What does aspect-oriented
programming mean to Cobol? Proceedings of Aspect-Oriented
Software Development (AOSD 2005).

[12] Jianjun Pu, Zhuopeng Zhang, Jian Kang, Yang Xu and Hongji Yang.
Using Aspect Orientation in Understanding Legacy COBOL
Code, 2007.

[13] Rizvi S.A.M and Khanam Z. Refactoring Catalog for Legacy software
using C and Aspect Oriented Language. In the proceedings of
SERP’11, WorldComp 2011, Las Vegas, USA.

[14] Monteiro M.J.T.P. Refactorings to Evolve Object-Oriented Systems
with Aspect-Oriented Concepts, 2005.

[15] Opdyke, W. Refactoring Object-Oriented Frameworks. PhD
dissertation, University of Illinois at Urbana-Champaign, 1992.

[16] Mariano Mendez .Fortran Refactoring for Legacy Systems.2011

[17] Eric Brewer and Bill McCloskey, “ASTEC: a new approach to
refactoring C”,ACM SIGSOFT Software Engineering Notes,
Volume 30 Issue 5,September 2005,Pages 21-30.

[18] Jingfeng Peng, “Semi-Automated Refactoring Applied to the C
Programming Language”, 2008.
[19] X-Ref. Xrefactory - A C/C++ Development Tool with Refactoring

Browser, May 2007. http://www.xref-tech.com.
[20] M. Eaddy, T. Zimmerman, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, and A. V. Aho,"Do Crosscutting Concerns Cause Defects?,"
IEEE Transactions on Software Engineering , 2008.
[21] B.B.Boniati,A.S.charao,B.O. Stein,G.Rissetti,E.K.Piveta,May 2011,

“Automated refactorings for High performance Fortran
programmes”,International Journal of High Performance
Systems Architecture, Volume 3 Issue 2/3,May 2011,Pages 98-
109.

[22] H. Shinomi, Y. Ichimori. (2010), “Program Analysis Environment for
Writing Cobol Aspects”,Japan.

[23] T. Morioka, H. Danno, and H. Shinomi. An aspect-oriented cobol for
the industrial setting. In 7th International Conference on
Aspect-Oriented Software Development (AOSD.08), Apr. 2008.

[24] N.P. Veerman. Revitalizing modifiability of legacy assets. Journal of
Software Maintenance and Evolution, 16(4-5):219–254, July-
Oct 2004. Special issue on CSMR 2003.

[25]M. Bruntink, A. van Deursen, and T. Tourw´e. Isolating Idiomatic
Crosscutting Concerns. In Proceedings of the 21th International
Conference on Software Maintenance (ICSM). IEEE Computer Society,
2005.
[26] M. Bruntink, A. van Deursen, and T. Tourw´e. Discovering
Faults in Idiom based Exception Handling. In the
Proceedings of the 28th international conference on Software engineering
Pages 242-251 , 2006.
[27] M. Lippert and C. V. Lopes. A study on exception detecton and
handling using aspect-oriented programming. In Proceedings of the 22th
international conference on Software engineering (ICSE), pages 418 –
427. IEEE Computer Society, 2000.
[28] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using
AspectC to Improve the Modularity of Path-Specific Customization in
Operating System Code. In Proceedings of the Joint European Software
Engineering Conference (ESEC)and 9th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE-9), pages
88–98. ACM Press, 2001.
[29] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Separating
Features in Source Code: An Exploratory Study. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 275–
284. IEEE Computer Society, 2001.
[30] B. Adams and T. Tourw´e. Aspect-Orientation in C: Express
Yourself. In Proceedings of the AOSD Workshop on Software-
engineering Properties of Languages for Aspect Technologies (SPLAT).
Aarhus University, March 2005.
[31] K.D.Schutter , B.Adams. Aspect-orientation for revitalising legacy
business software.ERCIM2006.

Computers and Mathematics in Automation and Materials Science

ISBN: 978-960-474-366-7 168

http://www.xref-tech.com/�

