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Abstract: This paper provides an overview of the applications that calculus of variations found in two major fields
of interest, namely signal processing and image processing. We will describe the significant role of calculus of
variations in modeling and optimizing a variety of signal and image processing problems. Specifically, the key role
of calculus of variations in deriving the worst-case (maximum) Cramér-Rao bound, or equivalently the minimum
Fisher information, and in optimizing the pulse shaping in wireless communications will be discussed. Also, the
variational methods applied in image processing, such as image denoising and deblurring, will be illustrated.
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1 Introduction
Variational methods refer to the technique of opti-
mizing the maximum or minimum of an integral in-
volving unknown functions. During the last two cen-
turies, variational methods have played an important
role in addressing problems in many disciplines such
as statistics, physics and particularly mechanics. Re-
cently, the applications of variational methods have
been found in some other fields such as economics
and electrical engineering. The goal of this paper is
to provide the readers the basic definitions, concepts
and results of calculus of variations and how these re-
sults can be applied to some applications in signal and
image processing.

The remainder of this paper is structured as fol-
lows. In Section 2, some variational calculus prelim-
inary definitions and theorems will be first reviewed.
In Section 3, two applications of signal processing,
namely the minimum Fisher information and the pulse
shaping optimization, will be formulated and solved
within the framework of calculus of variations. A
variational approach for denoising and deblurring an
image will be discussed in Section 4. Section 5 con-
cludes the paper.

2 Preliminaries on Calculus of Vari-
ations

In this section, some fundamental concepts and results
from calculus of variations will be reviewed and used
constantly throughout the rest of the paper. Most of
these results are standard and therefore will be stated

briefly without further details. The reader is referred
to [1, 2, 3] for more details.

Definition 1. A functional J(f) of the form

J(f) =

∫ x2

x1

F (x, f(x), f ′(x))dx, (1)

is defined on the set of continuous functions f(x) with
continuous first-order derivatives f ′(x) = df(x)/dx
on the interval [x1, x2]. The function f(x) is as-
sumed to satisfy the boundary conditions f(x1) =
A, f(x2) = B and F (x, f(x), f ′(x)) is also assumed
to have continuous first-order and second-order par-
tial derivatives with respect to (w.r.t) all of their argu-
ments.

In particular, when the functional does not depend
on f ′(x), the equation (1) simplifies to

J(f) =

∫ x2

x1

F (x, f(x))dx. (2)

Definition 2. Define the perturbation of f(x) as

f̂(x) = f(x) + ϵη(x),

where η(x), defined as the increment of f(x), is an ar-
bitrary continuous function with boundary conditions
η(x1) = η(x2) = 0. The first variation of functional
J(f) is defined as

δJ =
∂J(f̂)

∂ϵ

∣∣∣∣∣
ϵ=0

. (3)
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Theorem 3. A necessary condition for the functional
J(f) to have an extremum (or local optimum) for a
given function f = f∗ is that its first variation van-
ishes at f∗,

δJ(f∗) = 0, (4)

for all admissible increments η(x) defined above. This
implies the Euler equation

Ff − d

dx
Ff ′ = 0 (5)

at f∗, where Ff and Ff ′ denote the partial derivative
∂F
∂f and ∂F

∂f ′ respectively. Particularly, when the func-
tional admits the form (2), the equation (5) reduces
to

Ff = 0. (6)

Theorem 4. Suppose the functional J(f) with con-
straints

Ii(f) =

∫ x2

x1

Fi(x, f(x), f
′(x))dx = li, (7)

i = 1, 2, · · · ,m, has an extremum at f∗ , then there
exist constants α1, α2, · · · , αm such that f∗ is also an
extremum of the functional

J∗ =

∫ x2

x1

F ∗dx =

∫ x2

x1

(
F +

m∑
i=1

αiFi

)
dx, (8)

and satisfies the corresponding Euler equation

F ∗
f − d

dx
F ∗
f ′ = 0. (9)

Note that this theorem is referred to as the La-
grange multipliers rule for isoperimetric problems.

Theorem 5. For the functional in (1) subject to the
constraints in (7), suppose (f, f ′) to form a convex set

and F ∗ = F +
m∑
i=1

Fi to be convex w.r.t (f, f ′) for

each x in the interval [x1, x2]. Let f∗ be an extremum
satisfying the Euler equation (9), then the functional
achieves the minimum at f∗.

Proof. Assume f(x) to be any arbitrary function sat-
isfying constraints (7) and the boundary conditions,
due to the fact that the convex function lies above its
tangent, it turns out that

F ∗(x, f, f ′,α)− F ∗(x, f∗, f ′∗,α)

≥(f − f∗)F ∗
f + (f ′ − f ′∗)F ∗

f ′ ,

where

F ∗
f =

∂F ∗

∂f

∣∣∣∣
f=f∗

and F ∗
f ′ =

∂F ∗

∂f ′

∣∣∣∣
f=f∗

.

Thus,

J(f)− J(f∗)

=

∫
F (x, f, f ′)dx−

∫
F (x, f∗, f ′∗)dx

=

∫
F (x, f, f ′)dx−

∫
F (x, f∗, f ′∗)dx

+

m∑
i=1

[
αi

(∫
F (x, f, f ′)dx− li

)
− αi

(∫
F (x, f∗, f ′∗)dx− li

)]
=

∫
F ∗(x, f, f ′,α)− F ∗(x, f∗, f ′∗,α)dx

≥
∫

(f − f∗)F ∗
f + (f ′ − f ′∗)F ∗

f ′dx

(a)
=

∫
(f − f∗)F ∗

f dx−
∫

(f − f∗)

(
d

dx
F ∗
f ′

)
dx

=

∫
(f − f∗)

(
F ∗
f − d

dx
F ∗
f ′

)
dx

(b)
=0,

where (a) follows from the integration by parts and (b)
is due to (9).

3 Variational Methods in Signal Pro-
cessing

In signal processing, variational methods are used to
model and optimize the communication systems by
choosing the optimal signaling functions. In this sec-
tion, we will briefly describe how variational tech-
niques can be applied to derive the worst-case Cramér-
Rao bound for unbiased estimators and to match sig-
naling pulses optimally to channel transfer functions.

3.1 Minimum Fisher Information
In statistical signal processing, suppose θ is an un-
known parameter to be determined by measurements
x, which assume the probability density function (pdf)
f(x; θ). Any estimator θ̂ of θ, which satisfies the
equation Eθ(θ̂) = θ, is referred to as the unbiased
estimator of θ. The Cramér-Rao inequality [4] states
that the variance of any unbiased estimator θ̂ is lower-
bounded by the reciprocal of the Fisher information
I(f),

var(θ̂) ≥ 1

I(f)
, (10)
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Figure 1: Communication system with pulse shaping filter

where the Fisher information I(f) is defined as

I(f) =

∫ ∞

−∞

(
∂log f(x; θ)

∂θ

)2

f(x; θ)dx. (11)

In the case of a scale or location parameter [5], the
formula (11) simplifies to

I(f) =

∫ ∞

−∞

(
f ′(x)

f(x)

)2

f(x)dx. (12)

Now we show that if nothing is known about
f(x; θ) except its second-order moment information,
the Gaussian assumption is a natural choice due to the
fact that the Gaussian distribution leads to the min-
imum Fisher information, or equivalently the maxi-
mum Cramér-Rao bound, subject to a fixed second-
order moment. In the framework of calculus of varia-
tions, the problem can be formulated as

min

∫ (
f ′(x)

f(x)

)2

f(x)dx

s.t.

∫
f(x)dx = 1∫
x2f(x)dx = σ2,

(13)

where the integrand is from −∞ to ∞. By utilizing
Theorem 4, problem (13) can be solved as

F ∗ =

(
f ′(x)

f(x)

)2

f(x) + α1f(x) + α2x
2f(x),

and

F ∗
f −

d

dx
F ∗
f ′ =

(
f ′(x)

f(x)

)2

−2
f ′′(x)

f(x)
+α1+α2x

2 = 0.

(14)
It is shown in [6] that the Gaussian distribution

f∗(x) =
1√
2πσ2

e−
x2

2σ2 (15)

is the solution of (14) with α1 = −2/σ2 and
α2 = 1/σ4. Since the Hessian matrix of F ∗ w.r.t
(f(x), f ′(x))[

2f ′(x)/f3(x) −2f ′(x)/f2(x)
−2f ′(x)/f2(x) 2/f(x)

]
is positive semidefinite, F ∗ is convex. Due to Theo-
rem 5, it can be concluded that the Gaussian distribu-
tion (15) minimizes the Fisher information.

3.2 Pulse Shaping Optimization
In modern communication systems, a pulse shaping
is the process of changing the waveform or spectrum
of a transmitted input pulse to make the transmitted
signal better suited to the characteristics of the com-
munication channel. In this section, we will briefly
discuss the variational methodology to achieve the op-
timal signal-to-noise ratio at the receiver side for a
given total transmitted power P0. For more details,
the reader is referred to [8].

The communication system we consider is the
baseband system shown in Figure 1 [8]. The transmit-
ter has a given input power spectrum P (f), an out-
put power spectrum P1(f) and a total output power
P0. Thus, the relationship between P (f) and P1(f) is
given by

P (f) = P1(f)H(f)H∗(f), (16)

where H∗(f) represents the complex conjugate of
H(f). If the spectral density is restricted to positive
frequencies only, the output power spectrum P1(f) is
constrained by ∫ ∞

0
P1(f)df = P0. (17)

Thus, the total signal power at the receiver side can be
expressed as

Ps =

∫ ∞

0
P1(f)H(f)H∗(f)df =

∫ ∞

0
P (f)df,

(18)
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and the total noise power at the receiver side admits
the form

Pn =

∫ ∞

0
N0H(f)H∗(f)df =

∫ ∞

0
N0

P (f)

P1(f)
df.

(19)
Since P (f) is given, maximizing the signal-to-

noise ratio Ps/Pn is equivalent of minimizing the total
noise power in (19). Therefore, by utilizing calculus
of variations, the problem can be formulated as

min

∫ ∞

0
N0

P (f)

P1(f)
df

s.t.

∫ ∞

0
P1(f)df = P0.

(20)

Based on Theorem 4, it turns out that

F ∗ = N0
P (f)

P1(f)
+ αP1(f),

and
∂F ∗

∂P1(f)
= −N0

P (f)

[P1(f)]2
+ α = 0,

which yields the solution

P ∗
1 (f) =

√
N0P (f)

α1
. (21)

Note that P ∗
1 (f) in (21) is the optimal solution of (20)

since F ∗ is convex w.r.t P1(f). Plugging (21) into the
constraint (17) leads to

α =
N0

P 2
0

(∫ ∞

0

√
P (f)df

)2

,

and the optimal signal-to-noise ratio admits the form

Ps

Pn
=

P0

N0

∫∞
0 P (f)df(∫∞

0

√
P (f)df

)2 . (22)

Therefore, the optimal signal-to-noise ratio for
any prescribed signal spectral shape P (f) is given by
(22) and the shaping filter H(f) can be designed by
using the relationships in (16) and (21).

4 Variational Methods in Image Pro-
cessing

Traditionally, image processing has been investigated
via spectral and Fourier methods in the frequency do-
main. In the last two decades, variational methods
and partial differential equation (PDE) methods have
drawn great attention to address a variety of image
processing problems including image segmentation,
image registration, image denoising and image de-
blurring. In this section, we will focus our attention
on applications of variational techniques in image de-
noising and image deblurring.

Figure 2: Original image

4.1 Image Denoising
In the process of acquiring, storing and transmitting
an image, the measurements are always perturbed by
noise. An example of a noisy image is given in Figure
3 compared to the original image in Figure 2

Mathematically, the model can be expressed as

u0 = u+ n, (23)

where the observed image u0 includes the original im-
age u and the additive noise n. The method that re-
moves the noise from the observed image is called
image denoising. The simplest and the best inves-
tigated way for denoising noise is to apply a linear
filter such as the Gaussian smoothing filter and the
Wiener filter [9]. Recently, variational methods have
been introduced to address the image denosing prob-
lem. Instead of considering an image as a sampled
and quantized matrix, we define an image to be a
continuous real-valued function u : Ω → R, where
Ω = {(x, y)|a < x < b, c < y < d}. When consider-
ing the signal model (23), the variational method in-
volves determining the unknown function u that min-
imizes the objective functional:∫∫

Ω
F (u)dxdy, (24)

subject to the image data constraint∫∫
Ω
(u− u0)

2dxdy = σ2. (25)

Extending the Lagrange multipliers rule in The-
orem 4 to the two-dimensional case [1], the problem
resumes to

min

∫∫
Ω
F (u) +

α

2
(u− u0)

2dxdy, (26)
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Figure 3: Noisy image

where α is an nonnegative coefficient parameter so
that the constraint (25) is satisfied. In practice, α is
often estimated or chosen as a prior information [10].
The functional in (26) is often referred to as the en-
ergy functional in image processing, where (u− u0)

2

represents the data term or similarity term, and F (u)
represents the smoothing term or regularization term
[11].

Consequently, a critical issue is to determine the
smoothing term F (u). A special aspect of image pro-
cessing within the framework of variational methods
is to consider the edges at which discontinuities occur.
This can be done by using the total variation, which is
defined as the average magnitude of the gradient of u
over the region Ω [12, 13]:

TV (u) =

∫∫
Ω
|∇u|dxdy =

∫∫
Ω

√
u2x + u2ydxdy.

(27)
Another well-known functional that is also designed
for allowing abrupt changes within images is referred
to as the Dirichlet variation [10]:

D(u) =
1

2

∫∫
Ω
|∇u|2dxdy. (28)

Consider the problem (26) under the assumption
that the smoothing term F (u) is modeled as the total
variation defined in (27) and define

J(u) =

∫∫
Ω
|∇u|+ α

2
(u− u0)

2dxdy, (29)

then the problem can be formulated by

û = argmin J(u). (30)

It can be seen that J(u) admits the general func-
tional form

J(u) =

∫∫
Ω
F ∗(x, y, u, ux, uy)dxdy, (31)

which represents a two-dimensional extension of Def-
inition 1. It is shown in [1] that Theorems 3 and 4 can
be generalized to attain the corresponding Euler equa-
tion (31) as follows

F ∗
u − ∂

∂x
(F ∗

ux
)− ∂

∂y
(F ∗

uy
) = 0. (32)

As a result, the corresponding partial differential Eu-
ler equation of (29) is given by

∇
(

∇u

|∇u|

)
− α(u− u0) = 0, (33)

or equivalently

∂

∂x

 ux√
u2x + u2y

+
∂

∂y

 uy√
u2x + u2y

−α(u−u0) = 0.

(34)
To solve the PDE in (33), iterative methods such

as gradient descent [13], or fixed point method [14]
may be applied.

4.2 Image Deblurring
Image blurring, which is referred to as the process of
recovering the original image from the blurred image,
usually occurs because of the movement of the imag-
ing device during shooting or choosing a fast enough
shutter speed to freeze the action under the light con-
ditions. An example of image blurring is shown in
Figure 4 as a comparison to the original image in Fig-
ure 2.

Image blurring is typically modeled with a linear
and shift-invariant operator K defined as the convolu-
tion of the image [11]:

K(u) = k(x, y) ∗ u(x, y),

where k(x, y) denotes the convolution kernel and
K(u) represents the convolution of the image. Un-
der the assumption that the total variation (27) is used
as the smoothing term, the energy functional is given
by

J(u) =

∫∫
Ω
|∇u|+ α

2
(K(u)− u0)

2dxdy. (35)

Similarly to the image denoising case, the image de-
blurring model (35) is computed by the Euler equation
(32), which resumes to:

∇
(

∇u

|∇u|

)
− αK∗(K(u)− u0) = 0, (36)
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Figure 4: Blurred image

or equivalently

∂

∂x

 ux√
u2x + u2y

+
∂

∂y

 uy√
u2x + u2y

−

αK∗(K(u)− u0) = 0,

where K∗ represents the adjoint operator.
If we define the notation |x|a as |x|a =

√
x2 + a2

for a fixed positive parameter a, the nonlinear degen-
erate elliptic equation (36) is often regularized to [15]:

∇
(

∇u

|∇u|a

)
− αK∗(K(u)− u0) = 0,

which can be computationally solved by an iterative
approach referred to as the lagged-diffusivity tech-
nique [16, 17].

5 Conclusion
In this paper, several applications of variational tech-
niques were discussed mainly in signal and image pro-
cessing area. Rather than illustrate mathematical de-
tails of calculus of variations and the aforementioned
applications, our goal is to provide the reader some in-
sight into how signal and image processing problems
can be formulated and tackled within the framework
of calculus of variations.
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