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Abstract: In the field of image processing, computer vision, bio-informatics, classification of data is an area of
study for many researchers and scholars from the beginning. SVMs are dynamic and powerful learning methods
which provide excellent generalization performance for a wide range of regression and classification problems.
Previous software implementations of SVMs have reported high classification accuracy. But software designs can
not meet the real time requirements because these designs can not take the advantage of parallelism inherent in
the SVM algorithm. Thus, the hardware implementation of SVM can efficiently decrease total simulation time
and synthesis time. In the field of classification efficient utilization of power is one of the major concern. So,
in this paper we mainly concern about decreasing hardware complexity and reduction of power of SVM design.
For reduction of power we are proposing here the multiplierless kernel for classification in hardware, instead
of using conventional vector product kernel. We have trained SVM using binary linearly, nonlinearly separable
and multiclass data in Matlab. Then the extracted trained parameters are used in the hardware for classification
purpose. For data flow from processing element (PE) to PE in hardware, we are using parallely pipelined systolic
array system.
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1 Introduction
In classification problems, SVM classifiers often show
superior recognition efficiency than the other classi-
fiers. So, it becomes quite popular after its intro-
duction by Cortes and Vapnik in 1995 [1]. For its
high classification accuracy, the embedded designing
of SVM for image processing, bio-informatics, object
detection has been growing interest. SVMs work on
the principle of decision boundary. The boundary that
separates two discriminant classes with high accuracy.
SVMs are basically binary classifiers. To create mul-
ticlass classification, we are mainly using here one
against all algorithm for which all the patterns from
class x are trained as positive instances and the pat-
ters from all other classes are trained as negative in-
stances for classifier x [1], [2]. The class which gives
highest output is the class of the new test sample. In

the field of classification efficient utilization of power
is one of the major concern. So, in this paper we
mainly concern about decreasing hardware complex-
ity and reduction of power of SVM design. For reduc-
tion of power we are proposing here the multiplierless
kernel for classification in hardware instead of using
conventional vector product kernel. We have trained
SVM using binary linearly, nonlinearly separable and
multiclass data in Matlab. Then the extracted trained
parameters are then used in the hardware for classi-
fication purpose. For data flow from processing ele-
ment (PE) to PE in hardware, we are using parallely
pipelined systolic array system.
The rest of the sections of this paper are organized
as follows. Section 2 provides an explanation on the
working principle of SVM and a brief discussion on
previous related works. The proposed architecture is
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Figure 1: Geometrical representation of the SVM
margin

described in Section 3. The experimental details and
results are discussed in Section 4. Lastly, Section 5
provides conclusion and future work.

2 SVM Background and Related
work

Here, working principle of SVM and the works related
to implementation of SVM are discussed.

2.1 SVM Background
SVM is based on the concept of decision planes that
separates two classes of data. The data set contain-
ing samples are given as input to the SVM, which
construct the separating hyperplane that separates two
classes of data. The hyperplane that best separates
data of two classes are called maximum margin hy-
perplane and the samples that resides nearest to the
hyperplane are called Support vectors (SV) [2]. These
SVs are then used for classifying new data. Geomet-
rical representation of the SVM margin is shown in
Fig 1. Let the training data labeled as {Xi, yi}, i =
1, 2,....., l, yiε{−1, 1}, XiεR

d. The hyperplane is the
plane that separates positive samples from the nega-
tive samples. The point X that lies on the hyperplane
satisfies wx + b = 0, where w is normal to the hy-
perplane, ‖b‖/‖w‖ is the perpendicular distance from
the hyperplane to the origin and ‖w‖ is the Euclidian
distance. Let d+ be the shortest distance of the hyper-
plane from the positive side and d− from the negative
side respectively. Then the equation for margin of the
separating hyperplane becomes d+ + d-. Let all the
training samples satisfies the following conditions:

xi.w + b ≥ +1for yi = +1 (1)

xi.w + b ≤ −1for yi = −1 (2)

These two equations can be combined as following:

yi.(xi.w + b)− 1 ≥ 0,∀i (3)

When samples from two classes are not linearly sepa-
rable then it is projected to higher dimension data us-
ing kernel trick. The most innovative kernel designs
which are widely used because of their efficiency in
mapping data to higher dimensional space are listed
below [2]:

1. Linear:K(~x, ~z) = (~x.~z)

2. Polynomial: K(~x, ~z) = (1 + (~x.~z))d

3. Sigmoid: K(~x, ~z) = tan((~x.~z) + θ)

4. Radial Basis function: K(~x, ~z) = exp((x −
z)2/(2σ2))

The main decision function of SVM classification is
given by equation (4).

zj = sign(
∑

aiyik(xi, si) + b) (4)

2.2 Related Work

During the last few years, hardware designing of SVM
has recieved lots of interest. Many designs have been
developed in this field. Yet there are lot more refine-
ment to be done. In [3], the authors utilize the uni-
formity behavior of the SVM decision function in the
integrated vision system. The main module used in
this system is SVM classifier. The authors proposed
a parallel implementation on an FPGA programmed
with VHDL for the reduction of the computation time.
In [4], the authors proposed an SVM learning algo-
rithm and elaborate its implementation on a field pro-
grammable gate array (FPGA). In [5], the authors
present a parallel architecture for SVM to be imple-
mented on Xilinx FPGA. Here they used thousands
of complex classification patterns from the high en-
ergy physics to obtain the results and also compared
the performance of the architecture with the simpler
sequential architecture. In [6], the authors present a
massively parallel FPGA based coprocessor. To take
the advantage of large amount of parallelism in data
of this application, both SVM training and classifica-
tion is implemented in this coprocessor. In [7], the
authors introduce a design called Systolic Chain of
Processing Elements (SCOPE) which was the first at-
tempt of realization of generic systolic array in SVM
for object detection and and describes its embedded
audio and video application. This design provides ef-
ficient memory management, reduced complexity and
efficient data transfer mechanisms. As the size of the
chain and kernel module can be changed in plug, the
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proposed architecture is generic and scalable and any
changes can be done without effecting the overall ar-
chitecture. In [8], the authors designed a high perfor-
mance circuit which supports both linear and nonlin-
ear classification. Concerning the efficiency of classi-
fication a 48×96 or 64×64 sliding window with win-
dow strides is used. The circuit size is minimized here
by sharing most of the resources used for linear and
nonlinear classification. In [9], a power aware hard-
ware implementation of multiclass SVM on FPGA us-
ing systolic array architecture is presented. Here, the
authors used reconfiguration method for power reduc-
tion and compared it to the same design before recon-
figuration.

3 Proposed Approach

The proposed block diagram of our design is shown in
Figure 2. We have trained the SVM using two groups
of linearly separable setosa and non-setosa data of
Fisheriris, two groups of nonlinearly separable data
and 3 class data in Matlab separately. These gener-
ates SVs, alpha values and class labels separately for
all the 3 problems. These values are then used for the
classification purpose. As power reduction becomes a
crucial factor now a days. We are proposing the use
of multiplierless kernel instead of vector product ker-
nel. The working of our entire design is summerized
below:

• Random test samples are given input to each PE.

• Then the multiplierless kernel operation is per-
formed in each PE. This yields a scalar value
which is then multiplied with alpha labels and
class labels. The value of class label can be +1
or -1.

• All these operations are parallaly performed in
each PE.

• The outputs from each PE are then stored in reg-
isters and these values are added classwise to
their corresponding bias values.

• The class with maximum value is the class of the
test sample.

From the training phase of the above 3 classification
problems we got 8 SVs and alpha values for binary
linear case, 24 SVs and alpha values for binary non
linear case and 74 SVs and alpha values for multiclass
problem. The dimensions of different matrices of bi-
nary linear classification, binary nonlinear classifica-
tion and multiclass classification is given in Table 1,
Table 2 and Table 3 respectively.

Figure 2: The Proposed architecture of SVM

Table 1: Dimension for different matrices for linear
classification

Class Test Vector SV Kernel decision fn
setosa 1× 2 2× 3 1× 3 1× 1

non setosa 1× 2 2× 5 1× 5 1× 1

Table 2: Dimension for different matrices for nonlin-
ear classification

Class Test Vector SV Kernel Decision fn
class 0 1× 2 2× 12 1× 12 1× 1

class 1 1× 2 2× 12 1× 12 1× 1

Table 3: Dimension for different matrices for multi-
class classification

Class Test Vector SV Kernel Decision fn
class 1 1× 2 2× 12 1× 12 1× 1

class 2 1× 2 2× 30 1× 30 1× 1

class 3 1× 2 2× 32 1× 32 1× 1

In the multiplierless block we are using Canonic
Signed Digit (CSD) to reduce the maximum number
of adders. Simplifying this kernel block results in re-
duction of power used in multiplierless block. Again,
we are using Systolic Array for speeding up the entire
system. We here provide a brief description of Sys-
tolic Array and CSD algorithms.

3.1 SA-Basic architecture

Systolic architecture represent a network of PE that
rhythmically compute and pass data through the sys-
tem. These PE regularly pump data in and out such
that a regular flow of data is maintained. As a re-
sult, systolic system features modularity and regular-
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ity, which are important properties for VLSI design
[11]. It was invented by Kung and Leiserson (1978).
Ever since Kung proposed the systolic model its ele-
gant solutions to demanding problems and its poten-
tial performance have attracted great attention [12].

3.2 CSD Representation

CSD is a number system by which we can represent
a floating point number in two’s complement form.
The representation uses -1, 0, +1 (or -, 0, +) symbols
only. With each position denoting the addition and
subtraction of power of 2 [12]. These encoding tech-
niques contains 33 % fewer non-zero elements than
2’s complement form which leads to efficient imple-
mentations of add/subtract networks in hardwired dig-
ital signal processing (DSP). The properties of a CSD
number are listed below:

• No two consecutive bits in a CSD number are
non-zero.

• CSD representation of a particular number is al-
ways unique.

• A CSD representation contains minimum possi-
ble number of ones.

The general representation of a 2’s complement form
is

∑
ai2i, where an−1ε−1, 0, aiε0, 1, i = 0, K, n− 2

and n is the word length. If we insert -1 in the value set
of bit representation, it becomes aiε{−1, 0, 1}, i = 0,
K, n−1, and aj .aj+1 = 0, j = 0,

∧
, n−2. The con-

stant ai is said to be in CSD representation. CSD algo-
rithm is applied to the input test vectors, then conven-
tional shift and add operations are applied [13], [14].
This algorithm is efficiently applied in FIR filter de-
sign to reduce the complexity of hardware. Here also
we are applying this algorithm in SVM with the same
motive.

4 Results and Discussion

The output of CSD conversion block is shown in
Table 4. The CSD digit is binary encoded into a
sign bit xis and a magnitude bit xim. Under the
sign-magnitude encoding 0 = 00; 1 = 01; -1 = 11.

4.1 Binary linear classifier hardware imple-
mentation

We have designed the binary linear classifier in XIL-
INX 7vx485tffg1157-2. The primitive and black box

Table 4: Values after applying CSD Algorithm in
hardware

Test Vector Binary CSD digit (In Xilinx)
xis 00000000100014.2 100.0011001100

xim 0010001010101

xis 00000000000004.5 100.1
xim 0010010000000

xis 00000000000005 101
xim 0010100000000

xis 00101000000005.5 101.1
xim 0101010000000

xis 00010000000006 0110
xim 0101000000000

xis 00001000000003 0011
xim 0010100000000

Table 5: Primitive and Black Box usage for multipli-
erless kernel of binary linear SVM

GND 1 MUXCY 789
INV 372 MUXF7 6

LUT1 26 VCC 1
LUT2 187 XORCY 457
LUT3 294 IBUF 26
LUT4 217 OBUF 37
LUT5 232 IO buffers 63
LUT6 682 DSP48E1 0

Table 6: Device utilization summary for multiplierless
kernel of binary linear SVM

Device: xc5vlx110t Utilized Available % Utilization
Number of Slice
LUTs:

2010 303600 0.7%

Number used as
Logic:

2010 303600 0.7%

Number with an un-
used Flip Flop:

2010 2010 100%

Number with an un-
used LUT

0 2010 0%

Number of bonded
IOBs:

63 600 10%

Number of
DSP48E1

0 2800 0%

uses of LUTs, DSP4s and clocks of binary linear clas-
sifier using multiplierless kernel is given in Table 5.
The design utilization summary using multiplierless
kernel is given in Table 6. This is obtained from the
synthesis report of the design in XILINX. The power
is measured using XILINX POWER ESTIMATOR
(XPE) 14.1. This version is used for power measure-
ment of 7 series FPGA. The on chip power summary
report of both the vector product kernel module and
multiplierless kernel for the binary linear classifica-
tion is given in Table 7.

From Table 6, we can interpret that LUT usage
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Table 7: On- Chip Power Summary for binary linear
SVM

On- chip vector product(W) Multiplierless(W)
Clock 0.005 0.002
Logic: 0.012 0.014
PLL 0.114 0.114

Others 0.332 0.332
BRAM 0.000 0.000

I/Os 0.766 0.766
DSPs 0.012 0

Device Statistics 0.251 0.251
Total 1.493 1.479

in multiplierless kernel is 0.7% but the dsp usage is
0%. We can justify the usage of large number of
LUTs. As we are using CSD algorithm and add and
shift operation in multiplierless binary SVM instead
of vector multiplication, the logic increases in multi-
plierless binary SVM. But this has no effect on the
power factor which is demonstrated in Table 7. Here
as the resource utilization (LUT) is higher in multipli-
erless kernel so the logic consumes higher power. All
the other power consumption factors like clock, PLL,
I/O, device statistics and others consume almost same
power for multiplierless kernel and the vector product
kernel, only we can find a difference in power con-
sumption in case of the dsp. As dsp consumes more
power in vector product kernel, the total power con-
sumption decreases from 1.493 to 1.479 using mul-
tiplierless kernel. So, we have achieved around 1%
reduction in power in binary linear SVM.

4.2 Binary non linear classifier hardware im-
plementation

This design is implemented in XILINX
7vx485tffg1157-2. The primitive and black box
uses of LUTs, DSP4s and clocks for binary non
linear classifier using multiplierless kernel is given in
Table 8. The design utilization summary using mul-
tiplierless kernel is given in Table 9. The synthesis
report estimates the resources used for every design
implemented in Xilinx. The power is measured using
XILINX POWER ESTIMATOR (XPE) 14.1. This
version is used specifically for the 7 series FPGA.
The on chip power summary report of both the vector
product kernel module and multiplierless kernel for
the binary non linear classification is given in Table
10.

In the nonlinear case, for multiplierless kernel
also 515 numbers of dsps are used. This is because
we are using polynomial kernel of order 4. So,
DSPs are extracted for the exponent operation of
polynomial kernel. On chip power summary for

Table 8: Primitive and Black Box usage for multipli-
erless kernel of binary non linear SVM

GND 1 MUXCY 2225
INV 2087 MUXF7 3

LUT1 1760 VCC 1
LUT2 3534 XORCY 5436
LUT3 4030 IBUF 26
LUT4 6379 OBUF 1
LUT5 1177 IO buffers 27
LUT6 46 DSP48E1 515

Table 9: Device utilization summary for multiplierless
kernel of binary non linear SVM

Device: XILINX
xc7vx485t

Utilized Available % Utilization

No. of Slice LUTs: 19023 303600 7%
No. used as Logic: 19023 303600 7%
No. with an unused
Flip Flop:

19023 19023 100%

No. with an unused
LUT

0 19023 0%

No. of bonded
IOBs:

27 600 4%

No. of DSP48E1 515 2800 18%

Table 10: On- Chip Power Summary for binary non
linear SVM

On- chip vector product(W) Multiplierless(W)
Clock 0.016 0.014
Logic: 0.089 0.134
PLL 0.114 0.114

Others 0.332 0.332
BRAM 0.000 0.000

I/Os 0.766 0.766
DSPs 0.478 0.378

Device Statistics 0.255 0.255
Total 2.051 1.994

binary nonlinear SVM is demonstrated in Table 10.
Here as the resource utilization (LUT) is higher in
multiplierless kernel so the logic consumes higher
power in multiplierless kernel than the vector product
kernel. All the other power consumption factors like
clock, PLL, I/O, device statistics and others consumes
almost same power for multiplierless kernel and the
vector product kernel except the dsp. But as the power
consumption due to dsp is more in vector product
kernel, the total power consumption decreases from
2.051 to 1.994 due to the use of multiplierless kernel.
So we are successful in around 2.7% reduction in
power in case of binary non linear SVM.
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Table 11: Primitive and Black Box usage for multipli-
erless kernel of multiclass SVM

GND 211 MUXCY 3352
INV 2695 MUXF7 0

LUT1 154 VCC 41
LUT2 4913 XORCY 3985
LUT3 7612 IBUF 26
LUT4 12874 OBUF 2
LUT5 712 IO buffers 28
LUT6 4400 DSP48E1 0

Table 12: Device utilization summary for multiplier-
less kernel of multiclass SVM

Device: VIRTEX7
xc7vx485t

Utilized Available % Utilization

No. of Slice LUTs: 33360 303600 11%
No. used as Logic: 33360 303600 11%
No. with an unused
Flip Flop:

33360 33360 100%

No. with an unused
LUT

0 33360 0%

No. of bonded
IOBs:

28 600 4%

No. of DSP48E1 0 2800 0%

Table 13: On- Chip Power Summary for multiclass
SVM

On- chip vector product(W) Multiplierless(W)
Clock 0.010 0.002
Logic: 0.126 0.236
PLL 0.114 0.114

Others 0.332 0.332
BRAM 0.000 0.000

I/Os 0.766 0.766
DSPs 0.163 0

Device Statistics 0.253 0.253
Total 1.764 1.703

4.3 Multiclass classifier hardware imple-
mentation

This design is implemented in XILINX
7vx485tffg1157-2. The primitive and black box
uses of LUTs, DSP4s and clocks for multiclass
classifier using multiplierless kernel is given in Table
11. The design utilization summary using multi-
plierless kernel is given in Table 12. The synthesis
report estimates the resources used for every design
implemented in Xilinx. The power is measured using
XILINX POWER ESTIMATOR (XPE) 14.1. This
version is used specifically for the 7 series XPE. The
on chip power summary report of both the vector
product kernel module and multiplierless kernel for
the multiclass classification is given in Table 13.

From Table 12, we can analyze that the percent-

Table 14: Power reduction using multiplierless kernel
compared to vector product kernel

Binary linear Binary nonlinear Multiclass
1% 2.7% 3.5%

age utilization of LUT and slice logic is very high in
case of multiplierless kernel. This is because we have
74 PEs and in case of multiplierless kernel each PE
carries all logics to perform multiplierless vector op-
eration. On chip power summary of multiclass SVM
is demonstrated in Table 13. Here as the resource uti-
lization (LUT) is higher in multiplierless kernel so the
logic consumes higher power in multiplierless kernel
than the vector product kernel. All the other power
consumption factors consumes almost same power ex-
cept dsp. As in case of vector product kernel the dsp
power consumption is much higher due to use of large
number of dsp units, the total power consumption de-
creases from 1.764 to 1.703 using multiplierless ker-
nel. So we have reached to our goal that is around
3.5% reduction in power is achieved in case of multi-
class SVM. % reduction in power using proposed ker-
nel for all the classification results are listed in Table
14. From this table we can see that the power decrease
is high in case of binary nonlinear and multiclass ker-
nel which are mainly used for real-time applications.

5 Conclusion
SVM is efficient in classification problems and has
numerous application in object detection, computer
vision and image processing. It has been effectively
implemented in software. But the hardware imple-
mentation of this continues to be challenging. Here,
we have proposed the design of multiplierless kernel
function which is suitable for binary and multiclass
problems with both low and high dimension data. The
proposed multiplierless kernel is used in case of bi-
nary linear, binary nonlinear and multiclass classifi-
cation. All of these classification problems showing
successful results in classifying the data. We have
also implemented the above three different classifica-
tion problems in hardware using multiplierless kernel
module. Comparative analysis of all these three clas-
sification problems are done using multiplierless ker-
nel and using conventional vector product kernel re-
garding resource utilization. We are also able to re-
duce the power requirement of the hardware design
of all the three classification problems discussed here
using the proposed multiplierless kernel compared to
the vector product kernel.
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